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Variational quantum support 
vector machine based on Ŵ matrix 
expansion and variational 
universal‑quantum‑state generator
Motohiko Ezawa 

We analyze a binary classification problem by using a support vector machine based on variational 
quantum-circuit model. We propose to solve a linear equation of the support vector machine by 
using a Ŵ matrix expansion. In addition, it is shown that an arbitrary quantum state is prepared by 
optimizing a universal quantum circuit representing an arbitrary U(2N) based on the steepest descent 
method. It may be a quantum generalization of Field-Programmable-Gate Array (FPGA).

Quantum computation is a hottest topic in contemporary physics1–3. An efficient application of quantum com-
putations is machine learning, which is called quantum machine learning4–17 . A support vector machine is 
one of the most fundamental algorithms for machine learning18,22,23, which classifies data into two classes by a 
hyperplane. A support vector machine (SVM) is a computer algorithm that learns by examples to assign labels to 
objects. It is a typical method to solve a binary-classification problem18. The optimal hyperplane is determined by 
an associated linear equation F|ψin� = |ψout� , where F and |ψout� are given. A quantum support vector machine 
solves this linear equation by a quantum computer10,13,24. Usually, the linear equation is solved by the Harrow-
Hassidim-Lloyd (HHL) algorithm25. However, this algorithm requires many quantum gates. Thus, the HHL algo-
rithm is hard to be executed by using a near-term quantum computer. Actually, this algorithm has experimentally 
been verified only for two and three qubits26–28. In addition, it requires a unitary operator to execute eiFt , which 
is quite hard to be implemented. The Kernel based SVM implementation based on the quantum is reported19–21.

The number of qubits in current quantum computers is restricted. Variational quantum algorithms are appro-
priate for these small-qubit quantum computers, which use both quantum computers and classical computers. 
Various methods have been proposed such as Quantum Approximate Optimization Algorithm (QAOA)29, vari-
ational eigenvalue solver30, quantum circuit learning31 and quantum linear solver32,33. We use wave functions with 
variational parameters in QAOA, which are optimized by minimizing the expectation value of the Hamiltonian. 
A quantum circuit has variational parameters in quantum circuit learning31, which are optimized by minimizing 
a certain cost function. A quantum linear solver solves a linear equation by variational ansatz32,33. The simplest 
method of the optimization is a steepest-descent method.

In this paper, we present a variational method for a quantum support vector machine by solving an associ-
ated linear equation based on variational quantum circuit learning. We propose a method to expand the matrix 
F by the Ŵ matrices, which gives simple quantum circuits. We also propose a variational method to construct an 
arbitrary state by using a universal quantum circuit to represent an arbitrary unitary matrix U(2N ) . We prepare 
various internal parameters for a universal quantum circuit, which we optimize by minimizing a certain cost 
function. Our circuit is capable to determine the unitary transformation U satisfying U |ψinitial� = |ψfinal� with 
arbitrary given states |ψinitial� and |ψfinal� . It will be a quantum generalization of field-programmable-gate array 
(FPGA), which may execute arbitrary outputs with arbitrary inputs.

Results
Support vector machine.  A simplest example of the SVM reads as follows. Suppose that there are red and 
blue points whose distributions are almost separated into two dimensions. We classify these data points into two 
classes by a line, as illustrated in Fig. 1a.

In general, M data points are spattered in D dimensions, which we denote xj , where 1 ≤ j ≤ M . The problem 
is to determine a hyperplane,
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separating data into two classes with the use of a support vector machine. We set

for red points and

for blue points. These conditions are implemented by introducing a function

which assigns f (x) = 1 to red points and f (x) = −1 to blue points. In order to determine ω0 and ω for a given 
set of data xj , we introduce real numbers αj by

 A support vector machine enables us to determine ω0 and αj by solving the linear equation

where yi = f (xi) = ±1 , and F is a (M + 1)× (M + 1) matrix given by

Here,

is a Kernel matrix, and γ is a certain fixed constant which assures the existence of the solution of the linear equa-
tion (6) even when the red and blue points are slightly inseparable. Note that γ → ∞ corresponds to the hard 
margin condition. Details of the derivation of Eq. (6) are given in Method A.

Quantum linear solver based on Ŵ matrix expansion.  We solve the linear equation (6) by a quantum 
computer. In general, we solve a linear equation

for an arbitrary given non-unitary matrix F and an arbitrary given state |ψout� . Here, the coefficient c is introduced 
to preserve the norm of the state, and it is given by

(1)ω · x + ω0 = 0,

(2)ω · x + ω0 > 0

(3)ω · x + ω0 < 0

(4)f (x) = sgn(ω · x + ω0),
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M
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αjxj .
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Figure 1.   (a) Binary classification of red and blue points based on a quantum support vector machine with soft 
margin. A magenta (cyan) line obtained by an exact solution (variational method). (b) Evolution of the cost 
function. The vertical axis is the log10Ecost . The horizontal axis is the variational step number. We have used 
r = 2 , ξ1 = 0.001 and ξ2 = 0.0005 and γ = 1 . We have runed simulations ten times, where each simulation 
is plotted in different color. (c) The saturated value of the cost function log10 Eopt as a function of ξ2 ranging 
10−1 ≤ ξ2 ≤ 10−5 for various ξ1 . The green dots indicates ξ1 = 0.0001 , black dots indicates ξ1 = 0.001 , magenta 
dots indicates ξ1 = 0.01 and cyan dots indicates ξ1 = 0.1.
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 The HHL algorithm25 is a most famous algorithm to solve this linear equation by a quantum computer. We first 
construct a Hermitian matrix by

 Then, a unitary matrix associated with F is uniquely obtained by eiHt . Nevertheless, it requires many quantum 
gates. In addition, it is a nontrivial problem to implement eiHt.

Recently, variational methods have been proposed32 to solve the linear equation (9). In one of the methods, 
the matrix F is expanded in terms of some unitary matrices Uj as

 In general, a complicated quantum circuit is necessary to determine the coefficient cj.
We start with a trial state |ψ̃in� to determine the state |ψin� . Application of each unitary matrix to this state is 

efficiently done by a quantum computer, Uj|ψ̃in� = |ψ̃
(j)
out� , and we obtain

where |ψ̃out� is an approximation of the given state |ψout� . We tune a trial state |ψ̃in� by a variational method so 
as to minimize the cost function32

which measures the similarity between the approximate state |ψ̃out� and the state |ψout� in (9). We have 
0 ≤ Ecost ≤ 1 , where Ecost = 0 for the exact solution. The merit of this cost function is that the inner product is 
naturally calculated by a quantum computer.

Let the dimension of the matrix F be 2N . It is enough to use N satisfying 2N−1 < D ≤ 2N without loss of 
generality by adding trivial 2N − D components to the linear equation. We propose to expand the matrix F by 
the gamma matrices Ŵj as

with

where α = 0, x, y and z.
The merit of our method is that it is straightforward to determine cj by the well-known formula

 In order to construct a quantum circuit to calculate cj , we express the matrix F by column vectors as

 We have 
(∣

∣fq−1

〉)

p
= Fpq , where subscript p denotes the p-th component of 

∣

∣fq−1

〉

 . Then cj is given by

where the subscript q denotes the ( q+ 1)-th component of Ŵj

∣

∣fq
〉

 . We have introduced a notation 
∣

∣q
〉

� ≡ |n1n2 · · · nN � with ni = 0, 1 , where q is the decimal representation of the binary number n1n2 · · · nN . See 
explicit examples for one and two qubits in Method B.

The state 
∣

∣q
〉〉

≡ |n1n2 · · · nN � is generated as follows. We prepare the NOT gates σ (i)
x  for the i-th qubit if ni = 1 . 

Using all these NOT gates we define

 We act it on the initial state |0�� and obtain

(10)c =
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 Next, we construct a unitary gate Ufq generating 
∣

∣fq
〉

,

 We will discuss how to prepare Ufq by a quantum circuit soon later; See Eq. (33). By using these operators, cj is 
expressed as

which can be executed by a quantum computer. We show explicit examples in Fig. 2.
Once we have cj , the final state is obtained by applying Ŵj to |ψ̃in� and taking sum over j, which leads to

 The implementation of the Ŵ matrix is straightforward in quantum circuit, because the Ŵ matrix is composed of 
the Pauli sigma matrices, as shown in Fig. 2.

Steepest‑descent method.  One of the most common approaches to optimization is the steepest-descent 
method, where we make iterative steps in directions indicated by the gradient34. We may use this method to find 
an optimal trial state |ψ̃ in� closest to the state |ψin� . To determine the gradient, we calculate the difference of the 
cost function �Ecost when we slightly change the trial state |ψ̃in(t)� at step t by the amount of �|ψ̃in(t)� as

 We explain how to construct |ψ̃in(t)� by a quantum circuit soon later; See Eq. (33). Then, we renew the state as

where we use an exponential function for ηt,

 We choose appropriate constants ξ1 and ξ2 for an efficient search of the optimal solution, whose explicit examples 
are given in the caption of Fig. 1b. We stop the renewal of the variational step when the difference �|ψ̃in(t)� 
becomes sufficiently small, which gives the optimal state of the linear equation (9).

In the numerical simulation, we discretize the time step

with a fixed �t . We add a small value η(n�t) in the p-th component of the trial state |ψ̃(p)
in (t)� at the n step

where δ(p) denotes a unit vector where only the p component is 1 and the other components are zero. Then, we 
calculate the costfunction

 By running p from 1 to 2N , we obtain a vector E(p)cost((n+ 1)�t) , whose p-th component is E(p)cost((n+ 1)�t) . 
Then, the gradient is numerically obtained as
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Figure 2.   Quantum circuits determining cj . We show an example with (a) Ŵyx0 = σy ⊗ σx ⊗ σ0 . 
U

(6)
X |0�� = σ

(1)
x σ

(2)
x |000� = |110� = |6�� and (b) Ŵxyz = σx ⊗ σy ⊗ σz . U (5)

X |0�� = σ
(1)
x σ

(3)
x |000� = |101� = |5��.
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and we set the trial state at the n+ 1 step.

 We iterate this process so that �Ecost(n+ 1) becomes sufficiently small.
We denote the saturated cost function Eopt . It depends on the choice of ξ1 and ξ2 in Eq. (27). We show log10 Eopt 

as a function of ξ2 for various ξ1 in Fig. 1c. There are some features. First, Eopt is small for small ξ1 . Namely, we 
need to choose small ξ1 in order to obtain a good solution. On the other hand, the required step increases for 
small ξ1 . It is natural that small ξ1 means that the step size is small. The required step number is antiproportional 
to ξ1 . Second, there is a critical value to obtain a good solution as a function of ξ2 for a fixed value of ξ1 . We find 
that it is necessary to set ξ2 < 10−3.

A comment is in order. The cost function does not become zero although it becomes very small. It means 
that the solution is trapped by a local minimum and does not reach the exact solution. It is a general feature of 
variational algorithms, where we cannot obtain the exact solution. However, the exact solution is unnecessary 
in many cases including machine learnings. Actually, the classification shown in Fig. 1a is well done.

Variational universal‑quantum‑state generator.  In order to construct the trial state |ψ̃in(t)� , it is nec-
essary to prepare an arbitrary state |ψ� by a quantum circuit. Alternatively, we need such a unitary transforma-
tion U that

 It is known that any unitary transformation is done by a sequential application of the Hadamard, the π/4 phase-
shift and the CNOT gates35,36. Indeed, an arbitrary unitary matrix is decomposable into a sequential application 
of quantum gates35,36, each of which is constructed as a universal quantum circuit systematically37–42. Universal 
quantum circuits have so far been demonstrated experimentally for two and three qubits43–46.

We may use a variational method to construct U satisfying Eq. (33). Quantum circuit learning is a variational 
method31, where angle variables θi are used as variational parameters in a quantum circuit U, and the cost func-
tion is optimized by tuning θi . We propose to use a quantum circuit learning for a universal quantum circuit. 
We show that an arbitrary state |ψ(θi)� can be generated by tuning U(θi) starting from the initial state |0�� as

 We adjust θi by minimizing the cost function

which is the same as that of the variational quantum support vector machine. We present explicit examples of 
universal quantum circuits for one, two and three qubits in Method C.

Quantum field‑programmable‑gate array.  We next consider a problem to find a unitary transforma-
tion Uini-fin which maps an arbitrary initial state |ψinitial� to an arbitrary final state |ψfinal�,

 Since we can generate an arbitrary unitary matrix as in Eq. (33), it is possible to generate such matrices Uini and 
Ufin that

 Then, Eq. (36) is solved as

since Uini-fin|ψinitial� = Uini-finUini|0�� = |ψfinal� = Ufin|0��.
An FPGA is a classical integrated circuit47–50, which can be programmable by a customer or a designer after 

manufacturing in a factory. An FPGA executes any classical algorithms. On the other hand, our variational 
universal quantum-state generator creates an arbitrary quantum state. We program by using the variational 
parameters θi . In this sense, the above quantum circuit may be considered as a quantum generalization of FPGA, 
which is a quantum FPGA (q-FPGA).

We show explicitly how the cost function is renewed for each variational step in the case of two- and three-
qubit universal quantum circuits in Fig. 3, where we have generated the initial and the final states randomly. We 
optimize 15 parameters θi for two-qubit universal quantum circuits and 82 parameters θi for three-qubit universal 
quantum circuits. We find that Uini-fin is well determined by variational method as in Fig.3.

Variational quantum support vector machine.  We demonstrate a binary classification problem in two 
dimensions based on the support vector machine. We prepare a data set, where red points have a distribution 
around (r cos�, r sin�) with variance r, while blue points have a distribution around (−r cos�,−r sin�) with 

(31)�Ecost(n+ 1) ≡
(

E
(p)
cost((n+ 1)�t)− E

(p)
cost(n�t)

)

,

(32)|ψ̃
(p)
in ((n+ 1)�t)� = |ψ̃

(p)
in (n�t)� +�Ecost(n+ 1).

(33)U |0�� = |ψ�.

(34)U(θi)|0�� = |ψ(θi)�.

(35)Ecost(θi) ≡ 1− |�ψ(θi)|ψ� |2,

(36)Uini-fin|ψinitial� = |ψfinal�.

(37)Uini|0�� = |ψ initial�, Ufin|0�� = |ψfinal�.

(38)Ufin = Uini-finUini,
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variance r. We assume the Gaussian normal distribution. We choose � randomly. We note that there are some 
overlaps between the red and blue points, which is the soft margin model.

As an example, we show the distribution of red and blue points and the lines obtained by the variational 
method marked in cyan and by the direct solution of (6) marked in magenta in Fig. 1a. They agrees well with 
one another, where both of the lines well separate red and blue points. We have prepared 31 red points and 32 
blue points, and used six qubits.

Discussion
Efficiency.  The original proposal10 requires O

(

log (NDM)
)

 runtime, where ND is the dimension of the feature 
space and M is the number of training data points. It has an advantage over the classical protocol which requires 
O
(

polynomial(ND,M)
)

 . There exisits also a quantum-inspired classical SVM51, which requires polynomial runt-
ime as a function of the number of data points M and dimension of the feature space ND.

N qubit can represent 2N−1 < NDM ≤ 2N . Hence, the required number of qubits is N = log (NDM) . We need 
4N − 1 quantum gates for an exact preparation of a universal quantum state. On the other hand, a hardware-
efficient universal quantum circuit prepares an approximate universal quantum state by using the order of 4N 
quantum gates52–54. We need N quantum gates for the execution of U(q)

X  and Ŵj , separately. We need 4N + 2N − 1 
quantum gates for exact preparation and 6N for approximate preparation. In machine learning, the exact solution 
is unnecessary. Thus, 6N quantum gates are enough.

On the other hand, the accuracy is independent of the number of required quantum gates. It is determined 
by ξ1 as shown in new Fig.1c.

Radial basis function.  In this paper, we have used the linear Kernel function (8), which is efficient to clas-
sify data points linearly. However, it is not sufficient to classify data points which are not separated by the linear 
function. The radial basis function55,56 is given by

 with a free parameter σ . It is used for a nonlinear classification57. It is known58,59 that the depth of a quantum is 
linear to the dimension of the feature space N.

Conclusion
We have proposed that the matrix F is efficiently inputted into a quantum computer by using the Ŵ-matrix 
expansion method. There are many ways to use a matrix in a quantum computer such as linear regression and 
principal component analysis. Our method will be applicable to these cases.

Although it is possible to obtain the exact solution for the linear equation by the HHL algorithm, it requires 
many gates. On the other hand, it is often hard to obtain the exact solution by variational methods since trial 
functions may be trapped to a local minimum. However, this problem is not serious for the machine learning 
problem because it is more important to obtain an approximate solution efficiently rather than an exact solu-
tion by using many gates. Indeed, our optimized hyperplane also well separates red and blue points as shown 
in Fig. 1a.

In order to classify M data, we need to prepare log2 M qubits. It is hard to execute a large number of data 
points by current quantum computers. Recently, it is shown that electric circuits may simulate universal quantum 
gates60–62 based on the fact that the Kirchhoff law is rewritten in the form of the Schrödinger equation63. Our 
variational algorithm will be simulated by using them.

Methods
Support vector machine.  A support vector machine is an algorithm for supervised learning18,22,23. We first 
prepare a set of training data, where each point is marked either in red or blue. Then, we determine a hyperplane 
separating red and blue points. After learning, input data are classified into red or blue by comparing the input 

(39)Kij = exp
[

−
∣

∣xi − xj

∣

∣

2
/2σ 2

]

,

Figure 3.   Evolution of the cost function for (a) two qubits and (b) three qubits. The vertical axis is the 
log10Ecost . The horizontal axis is the number of variational steps. We use c1 = 0.005 and c2 = 0.005 for both 
the two- and three-qubit universal quantum circuits. We prepare random initial and final states, where we have 
runed simulations ten times. Each simulation is plotted in different color.
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data with the hyperplane. The support vector machine maximizes a margin, which is a distance between the 
hyperplane and data points. If red and blue points are perfectly separated by the hyperplane, it is called a hard 
margin problem (Fig.4a). Otherwise, it is called a soft margin problem (Fig.4b).

We minimize the distance dj between a data point xj and the hyperplane given by

 We define support vectors x as the closest points to the hyperplane. There is such a vector in each side of the 
hyperplane, as shown in Fig. 4a. This is the origin of the name of the support vector machine. Without loss of 
generality, we set

for the support vectors, because the hyperplane is present at the equidistance of two closest data points and 
because it is possible to set the magnitude of |ω · x + ω0| to be 1 by scaling ω and ω0 . Then, we maximize the 
distance

which is identical to minimize |ω|.
First, we consider the hard margin problem, where red and blue points are perfectly separable. All red points 

satisfy ω · xj + ω0 > 1 and all blue points satisfy ω · xj + ω0 < −1 . We introduce variables yj , where yj = 1 for 
red points and yj = −1 for blue points. Using them, the condition is rewritten as

for each j. The problem is reduced to find the minimum of |ω|2 under the above inequalities. The optimiza-
tion under inequality conditions is done by the Lagrange multiplier method with the Karush-Kuhn-Tucker 
condition64. It is expressed in terms of the Lagrangian as

where βj are Lagrange multipliers to ensure the constraints.
For the soft margin case, we cannot separate two classes exactly. In order to treat this case, we introduce slack 

variables ξj satisfying

and redefine the cost function as

 Here, γ = ∞ corresponds to the hard margin. The second term represents the penalty for some of data points 
to have crossed over the hyperplane. The Lagrangian is modified as

(40)dj =

∣

∣ω · xj + ω0

∣

∣

|ω|
.

(41)|ω · x + ω0| = 1

(42)d =
|ω · x + ω0|

|ω|
=

1

|ω|
,

(43)
(

ω · xj + ω0

)

yj ≥ 1

(44)L(ω,ω0,α) =
1

2
|ω|2 −

∑

j

βj[
(

ω · xj + ω0

)

yj − 1],

(45)
(

ω · xj + ω0

)

yj ≥ 1− ξj , ξj ≥ 0

(46)Ecost =
1

2
|ω|2 + γ

M
∑

j=1

ξ 2j .

Figure 4.   Illustration of the hyperplane and the support vector. Two support vectors are marked by red and 
blue squares. (a) Hard margin where red and blue points are separated perfectly, and (b) soft margin where they 
are separated imperfectly.
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 The stationary points are determined by

 We may solve these equations to determine ω and νj as

from (48), and

from (50). Inserting them into (51), we find

 Since y2j = 1 , it is rewritten as

 Since βj appears always in a pair with yj , we introduce a new variable defined by

and we define the Kernel matrix Kij as

 Then, ω0 and αj are obtained by solving linear equations

which are summarized as

which is Eq. (6) in the main text. Finally, ω is determined by

(47)L(ω,ω0, ξi ,β) =
1

2
|ω|2 + γ

M
∑

j=1

ξ 2j −

M
∑

j=1

[(

ω · xj + ω0

)

βjyj − (1− ξi)
]

.

(48)
∂L

∂ω
=ω −

M
∑

j=1

βjyjxj = 0,

(49)
∂L

∂ω0
=−

M
∑

j=1

βjyj = 0,

(50)
∂L

∂ξj
=γ ξj − βj = 0,

(51)
∂L

∂βj
=
(

ω · xj + ω0

)

yj − (1− ξi) = 0.

(52)ω =

M
∑

j=1

βjyjxj ,

(53)ξj = βj/γ

(54)yj

M
∑

i=1

(

βiyixi · xj + ω0

)

−
(

1− βj/γ
)

= 0.

(55)ω0 +

M
∑

i=1

(

xi · xj + δij/γ
)

βiyi = yj .

(56)αj = βjyj ,

(57)Kij = xi · xj .

(58)
M
∑

i=1

αj =0,

(59)ω0 +

M
∑

i=1

(

xi · xj + δij/γ
)

αi =yj ,

(60)











0 1 · · · 1
1
... K + IM/γ
1





















ω0

α1
...

αM











=











0
y1
...
yM











,

(61)ω =

M
∑

j=1

αjxj .
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 Once the hyperplane is determined, we can classify new input data into red if

and blue if

 Thus, we obtain the hyperplane for binary classification.

Ŵ matrix expansion.  We explicitly show how to calculate cj in (17) based on the Ŵ matrix expansion for the 
one and two qubits.

One qubit.  We show an explicit example of the Ŵ -matrix expansion for one qubit. One qubit is represented by 
a 2× 2 matrix,

 The column vectors are explicitly given by

 The coefficient cj in (17) is calculated as

Two qubits.  Next, we show an explicit example of the Ŵ-matrix expansion for two qubits. Two qubits are rep-
resented by a 4× 4 matrix,

 The column vectors are explicitly given by

 The coefficient cj in (17) is calculated as

(62)ω · xj + ω0 > 0

(63)ω · xj + ω0 < 0.

(64)F =

(

F11 F12
F21 F22

)

.

(65)
∣

∣f1
〉

=

(

F11
F21

)

= F11|0� + F21|1�,

(66)
∣

∣f2
〉

=

(

F12
F22

)

= F12|0� + F22|1�.

(67)cj = Tr
[

σjF
]

= �0|σj
∣

∣f1
〉

+ �1|σj
∣

∣f2
〉

=
∑

p=0,1

�p|σj
∣

∣fp
〉

=
∑

p=0,1

�0|U
(p)
X σjUfp |0�.

(68)F =







F11 F12 F13 F14
F21 F22 F23 F24
F31 F32 F33 F34
F41 F42 F43 F44






.

(69)
�

�f1
�

=







F11
F21
F31
F41






= F11|00� + F21|01� + F31|10� + F41|11�,

(70)
�

�f2
�

=







F12
F22
F32
F42






= F12|00� + F22|01� + F32|10� + F42|11�,

(71)
�

�f3
�

=







F13
F23
F33
F43






= F13|00� + F23|01� + F33|10� + F43|11�,

(72)
�

�f4
�

=







F14
F24
F34
F44






= F14|00� + F24|01� + F34|10� + F44|11�.

(73)

cj = Tr
[

ŴjF
]

= �00|Ŵj

∣

∣f1
〉

+ �01|Ŵj

∣

∣f2
〉

+ �10|Ŵj

∣

∣f3
〉

+ �11|Ŵj

∣

∣f4
〉

=

3
∑

p=0

�
〈

p
∣

∣Ŵj

∣

∣fp
〉

=

3
∑

p=0

��0|U
(p)
X ŴjUfp |0��.
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Universal quantum circuits.  Angle variables are used as variational parameters in a universal quantum 
circuit learning. We present examples for one, two and three qubits.

One‑qubit universal quantum circuit.  The single-qubit rotation gates are defined by

 The one-qubit universal quantum circuit is constructed as

 We show a quantum circuit in Fig. 5a. There are three variational parameters.
It is obvious that an arbitrary state is realized starting from the state |0� as

Two‑qubit universal quantum circuit.  The two-qubit universal quantum circuit is constructed as43

where the entangling two-qubit gate is defined by43

 The two-qubits universal quantum circuit contains 15 variational parameters. We show a quantum circuit in 
Fig. 5b.

Three‑qubit universal quantum circuit.  The three-qubit universal quantum circuit is constructed as

where U (1)
A  , U (1)

B  , U (1)
C  , and U (1)

D  are one-qubit universal quantum circuits, while U (2)
A  , U (2)

B  , U (2)
C  , and U (2)

D  are two-
qubit universal quantum circuit and

(74)R(θ ,φ) = exp
[

−iθ
(

σx cosφ + σy sinφ
)

/2
]

,

(75)Rz(φz) = exp [−iσzφz/2].

(76)U (1)(θ ,φ,φz) = R(θ ,φ)Rz(φz) =

(

e−iφz/2 cos θ
2 − iei(φz/2−φ) sin θ

2
−ie−i(φz/2−φ) sin θ

2 eiφz/2 cos θ
2

)

.

(77)U(1)

(

1
0

)

=

(

e−iφz/2 cos θ
2

−ie−i(φz/2−φ) sin θ
2

)

.

(78)

U(2) ≡
[

U (1)
(

θA,φA,φz,A
)

⊗ U (1)
(

θB,φB,φz,B
)

]

UG

[

R(θE , 0)⊗ R

(

3π

2
, 0

)]

UG

[

R
(

θF ,
π

2

)

⊗ R

(

3π

2
, θG

)]

UG

[

U (1)
(

θC ,φC ,φz,C
)

⊗ U (1)
(

θD ,φD ,φz,D
)

]

,

(79)UG = e−iπ/4 exp

[

iπ

4
σz ⊗ σz

]

.

(80)U(3) ≡
[

U
(2)
A ⊗ U

(1)
A

]

UA(3)
[

U
(2)
B ⊗ U

(1)
B

]

UC(3)
[

U
(2)
C ⊗ U

(1)
C

]

UB(3)
[

U
(2)
D ⊗ U

(1)
D

]

,

Figure 5.   Universal quantum circuits for (a) one, (b) two and (c) three qubits.
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Eplicit quantum circuits for UA(3) , UB(3) and UC(3) are shown in Ref.42. The three-qubits universal quantum 
circuit contains 82 variational parameters. We show a quantum circuit in Fig. 5c.

Multi‑qubit universal quantum circuit.  General multi-qubit universal quantum circuit is constructed in Ref.39. 
The minimum numbers of variational parameters are 4N − 1 for N-qubit unicersal quantum circuits. However, 
we need more variational parameters in the currently known algorithm for N ≥ 3.

Actually, multi-qubit universal quantum circuits are well approximated by the hardware-efficient quantum 
circuit52–54. They are constructed as

with the use of the single qubit rotation

and the CNOT gates

where Un→n+1
CROT  stands for the controlled rotation gate with the controlled qubit being n and the target qubit being 

n+ 1 . We need the order of 4N quantum gates for N-qubit universal quantum circuits. We show an example of 
the hardware-efficient quantum circuit with N = 4 in Fig. 6.

In addition, an ansatz based on the restricted Boltzmann machine requires N2 quantum gates, while a unitary-
coupled cluster ansatz requires N4 quantum gates16,34.

Simulations.  All of the numerical calculations are carried out by Mathematica.
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