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Finite confinement potentials, core 
and shell size effects on excitonic 
and electron‑atom properties 
in cylindrical core/shell/shell 
quantum dots
M. Hbibi1,4, O. Mommadi1,4*, S. Chouef1, R. Boussetta1, L. Belamkadem1, 
A. El Moussaouy1,2, F. Falyouni1, C. M. Duque3, J. A. Vinasco3 & C. A. Duque3

The effects of confinement potentials of the first and second materials, core size and first shell 
thickness on the confinement of electron, electron-donor atom, and exciton in cylindrical core/shell/
shell quantum dot (CSSQD) are studied taking into account the finite confinement potential model. 
The confinement of charge carriers in CSSQD with two finite confinement potentials models of the 
barrier materials are studied. Within the effective mass and parabolic band approximation, the 3D 
time-independent Schrödinger equation has been resolved. To obtain the ground state quasiparticles 
energies, we have used the variational technique. Our results show that the donor atom and exciton 
binding energy, as well as the electron energy, strongly depend on the core radius, first shell 
thickness, confinement potentials of the barrier materials, and their structures (A and B). Moreover, 
the confinement potential effect of the first material on the energies is more pronounced when their 
thickness is large and the core radius is small. So, the external potential effect is more significant 
when the first shell thickness and potential are small. Also, The binding energy of an on-center 
(off-center) donor atom is greater (weaker) than that of the exciton, whatever the structure of the 
confinement potential. In addition, the transition from a type-A to a type-B confinement system 
has been observed. The findings might be used to modify the electronic and excitonic properties in 
nanomaterials science.

In recent years, improved material growth techniques have enabled the practical realization of semiconductor-
based nanoscopic structures such as quantum wells (QWs), quantum dots (QDs), and quantum rings (QRs). 
Which have been the most studied, both from a theoretical and experimental point of view, because of the 
numerous possibilities of application in electronic and optoelectronic devices1–8. The QDs are considered as 
carrier systems of almost zero dimension, since the motion of charge carriers in these structures is limited to 
well-defined energy values. The interest in these particular nanostructures lies in their novel and exceptional 
electronic, magnetic, and optical properties9–11.

In addition, the advances in materials science have enabled the production of a new generation of heterostruc-
tures called core/shell quantum dots (CSQDs) and multi-layer quantum dots with different geometrical shapes 
and material compositions12–15. The interest of these nanostructures leads to control the physical properties of 
the CSQDs by varying their size/thickness, and leads to adjust their energy levels, as well as the intra- or inter-
band transitions by absorption or emission. In the published literature, a lot of researches have been interested 
in core/shell nanostructures16–18. Whenever the shell thickness was raised from 10 nm to 17 nm, the interband 
transition energies marginally dropped from 2.061 eV to 2.007 eV, according to X-ray diffraction patterns, high-
resolution transmission electron microscopy scans, and energy dispersive spectroscopy characteristics19. The 
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photovoltaic characteristics of self-assembled core-shell GaN/InGaN wires fabricated on sapphire substrates 
using metal-organic vapor phase epitaxy have been studied20. They have used photocurrent spectroscopy to show 
that the response assigned to the absorption of InGaN/GaN quantum wells can be seen at wavelengths shorter 
than 440 nm, and that its contact optimization produces an increase of conversion efficiency with 0.33% and a 
replenishment factor of 83% under 1 sun (AM1.5G) on single wires. Also, the effect of the first and second shell 
in InAsxP1−x/InP/ZnSe multi-layered QDs have been investigated21. A red-shift and the enhancement of the 
quantum yield are caused by the first shell of InP. The ZnSe shell allows to improve the stability of the dots for 
watery applications, such as near-infrared biomedical fluorescence imaging. In an experience with mapping of 
the sentinel lymph node, these near-infrared emitting multi-layered QDs were effectively utilized. Among the 
important theoretical researches, we can cite the study of the electron states and their Raman scattering in core/
shell quantum well wire22. The authors demonstrated that the core/shell and step-quantum well wires23 are highly 
comparable systems, with the step-quantum well wire’s Raman net gain being substantially bigger than the core/
shell quantum well wire’s. In addition, in Ref.24 they have demonstrated that the quantum well step-barriers are 
more effective models than the step-quantum well, though it is less practical than the asymmetric double QW.

There have been several research and proposals on electronic properties in the presence of the donor atom or 
in interaction with hole (exciton) under the external perturbations such as the hydrostatic pressure, temperature, 
electric, and magnetic field25–29. Furthermore, it should be mentioned that determining electron characteristics 
(energy and wave function) in the presence of the donor atom is a challenging operation that necessitates theo-
retical effort. Analytical answers are quite tough to come by in this situation. To solve this challenge, multiple 
approaches will be used to calculate the electronic state, such as the variational method, DFT calculations, pertur-
bation theory, diagonalization approach, finite difference method, and finite element method, etc. The proposed 
variational approach is much faster than the direct approach in solving the three-dimensional Schrödinger 
equation, does not require any special software and produces fairly accurate values of the carrier ground state 
energy (an error of no more than 2 % of the potential well depth). This method is shown to be an efficient tool to 
accurately calculate the energy spectrum of different quantum dot models. It also verifies the results obtained so 
far by various analytical and numerical methods that are currently used in a wide range of quantum dot theoreti-
cal studies32. Also, neutral excitation density-functional theory is a generalization of restricted density functional 
theory that maintains all of the benefits of a variational approach while removing any assumptions regarding the 
spatial confinement of electrons and holes33. Overall, this technique provides easy access to optical properties 
and quasiparticles binding energies at computing costs and scales that are equivalent to those of conventional 
density functional theory. Within the compact density matrix formalism approximation, the optical absorption 
coefficients of core/shell/shell quantum dot (CSSQD) are investigated with the presence of a single donor atom32. 
The study discovered a considerable blue shift of the transition energies in the presence of an electric field and 
a QD size influence, allowing them to be adjusted. Taking into consideration rectangular potential profiles, the 
magnetic field influence and the presence of the shallow-donor impurity on electron states in a Al0.3Ga0.7As/
GaAs/Al0.3Ga0.7 multi-layered QD have been investigated33. They demonstrated that the photoionization cross-
section and transition energies are substantially influenced by magnetic field, QD size, and impurity location. 
The electronic properties in two different structures would be affected by the disposition of elements with dif-
ferent energy gaps. Versus core radius of CdSe/ZnS/CdSe and ZnS/CdSe/ZnS QDs, the electronic parameters 
such as the radial probability density and the binding energy have been computed34. In laboratory techniques, 
the binding energy and electron probability density are critical considerations in designing and fabricating QDs 
with excellent electrical characteristics.

Concerning the exciton behavior, the hole created by an electron when it is brought from the valence band 
to the conduction band interacts with it, generating an electron-hole pair. Most usually referred to as an exciton. 
The confined energies and the exciton binding energy are affected by the ratio of CSQD radii, which explains 
that the radiative recombination lifetime and oscillator strength are very sensitive to geometrical confinement35. 
When the ratio equal 1, the radiative lifetime of the InP/ZnS QD approaches saturation, and their radiative life-
time increases up to 9 ns. The �k · �p approach under the Hartree approximation is used to investigate non-linear 
behavior of the binding energy of exciton produced in spherical QDs with a central core and several concentric 
layers36. In fact, the previous works have studied nanostructures with different geometries but what is more 
significant in cylindrical than spherical quantum dots is described that the variation of the size of the spheri-
cal nanostructures as a function of the geometrical parameter (radius) gives only the behavior of the bulk and 
quantum dot, on the other hand the variation of the size of the cylindrical nanostructures as a function of the 
geometrical parameters (radius and the height) gives the results of the bulk to the quantum dot through quantum 
wells and quantum well wires. In an infinite confinement potential, the electron has a zero probability of being 
outside the system, this situation is different in the case of a realistic finite potential where the wave function of 
the electron does not disappear. A better system representation should be obtained when the confining potential’s 
depth is finite, especially for small cylindrical quantum dot sizes. Then, the cylindrical CSSQD configuration with 
finite confinement potential becomes more used in commercial devices and their advantage leads to control the 
energy spectrum with three geometrical parameters: the first and the second radius of the cross section and the 
height of the cylinder, as well as the material parameter such as the doped material concentration, which allows 
to tune the stability and the photoluminescence efficiency of the quantum system. In a series of papers published 
recently37–39, with the use of the variational approach, we investigated a number of issues related to the properties 
of exciton in cylindrical QDs with a finite potential confinement, such as binding energy, interband emission 
energy, diamagnetic susceptibility, and the Stark shift in the presence of LO phonon and under the influence 
of hydrostatic pressure, temperature, and electric field. Our analytical analysis leads us to evaluate the critical 
values of the dot size corresponding to the spatial confinement of the electron-hole pair, also their adaptation to 
the confinement potential effect37–40. Most of the work consists in studying the confinement of quasiparticles in 
cylindrical nanostructures with finite confinement potential of the first shell and infinite confinement potential 
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of second shell41–43. Their numerical calculation shown that the binding energy and optical properties in nano-
structures are size-dependent (size of core and shell). The quasiparticles (trion and biexciton) remain stable 
as the dielectric shell thickness increases in CdSe/ZnS nanowires, however they get unstable in ZnO/ZnMgO 
nanowires when the dielectric shell thickness surpasses 2.5 nm and 2 nm, respectively41. The core size for a fixed 
shell radius in elliptic cylindrical QDs has a significant influence on the position of photoionization and peak 
intensity cross section42. With the second shell dielectric, the real and imaginary parts peaks of the dielectric 
function might undergo a redshift or a blue shift43.

On the other hand, the effect of second shell in QD nanostructures play a key role in tailoring quantum 
devices. Until now, there are no known theoretical or experimental reports about the confinement of exciton or 
donor atom confined in a two-shell cylindrical QD with finite confinement potential of second shell. Consider-
ing the possible uses of optoelectronic devices that may be obtained from these types of systems, this is a subject 
that is still open in the study and merits to be researched. In this work, we have investigated the behavior of the 
electronic energy and the binding energy of quasiparticles in cylindrical core/shell/shell QD that are related to 
the potential of the first and second shells. The aluminum concentration characterizes the barriers material depth 
of the first and second shells. We consider the electron, exciton and electron-donor atom confined in cylindrical 
core/shell/shell QD, assuming finite confinement potential for the first and second shells. The eigenenergy and 
binding energy of exciton and electron-donor are calculated using the effective mass approximation in parallel 
with a variational technique. Depending on the electron energy, the effect of QD size and potential depth on 
ground state electronic and binding energies is investigated. The organization structure of this paper is as follows: 
in "Theoretical framework" section contains the theoretical framework of a free electron, electron-donor atom, 
and exciton. In "Results and discussion" section discusses the core/shell/shell QD energies results. We report in 
"Conclusions" section our conclusions.

Theoretical framework
let us consider a GaAs cylindrical QD surrounded by two semiconductors with higher band gap energies. The 
core material (GaAs) of radius R1 and height H has a low band gap energy compared to the shells materials, 
which is illustrated in Fig. 1a. It is covered by first and second shells constituted by Ga1−x1Alx1 As and Ga1−x2

Figure 1.   Representation of a cylindrical CSSQD with the geometrical parameters ( R1 , R2 , and H are the 
core, first shell radius, and the core height) and the different type of radial and axial confinements (a). In (b) 
is depicted the projection in the xy-plane, which illustrates for a single electron in (b1), in the presence of the 
donor atom in (b2), and for exciton in (b3). Two kind of the confinement potential are depicted (type-A and 
type-B).
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Alx2As, respectively, with the wider band gaps. The first shell thickness is expressed as R12 = R2 − R1 , where R2 
is the first shell radius. The confinement potentials ( V1 and V2 ) considered in our work are finite and controlled 
by the aluminum concentrations x1 and x2 . Two kind of

Electronic properties.  In this section, we consider a single electron confined in cylindrical CSSQD, which 
prototypical shown in Fig. 1b1, in order to study the quantum and confinements potential effects. Within the 
effective mass and parabolic band approximation, in the presence of the two confinement potentials, the Hamil-
tonian for a confined electron is expressed as:

where m∗
e(ω,b1,b2)

 is the electron effective mass in different regions ( b1 means the first barrier material Ga1−x1

Alx1 As and b2 means the second barrier Ga1−x2Alx2 As as well as ω is the QD core). The electron effective mass 
in the barrier materials as a function of concentration is determined as follow:

where m∗
e(ω) is the electron effective mass in the core. The problem’s symmetry allows us to think of the overall 

confinement Ve(ρe , ze) as the sum of the radial and axial potentials. Therefore, the potential may be presented 
as follows: Ve(ρe , ze) = Ve(ρe)+ Ve(ze) , which are expressed by:

and

The aluminum concentration, (x1) and (x2) , dependent confinement potential on the barrier materials, Ve
1 (x1) 

and Ve
2 (x2) , respectively, can be expressed in eV as follows:

and

By using the trial wave function, which is expressed as �e(r) = ℵ(ρe) χ(ze) e
imϕe (where m is an integer quan-

tum number), the effective Hamiltonian will be divided on two operators ( Hρ and Hz ) associated to the radial 
a axial directions, i.e.:

Since the quasi-particle motion can be separated in the xy-plane (see Fig. 1b1) and the z direction, the two time-
independent Schrödinger equations are written as:

and

where ℵ(ρe) and χ(ze) are, respectively, the radial and axial electron wave functions. With the confined electron 
energy Eρ,z ≤ Ve

1
22

and37

with l = 1, 2, ... and m = 0,±1,±2, ... , due to the cylindrical symmetry. The finite confinement potentials effects 
on the wave function are clearer on the nth root of kemn , ηemn , and βe , which are expressed as follow:

(1)He = −
�
2

2m∗
e(ω,b1,b2)

∇2
e + Ve(ρe , ze) ,

(2)m∗
e(b1,2)

= m∗
e(ω) + 0.0835 x1,2 m0

(3)Ve(ρe),m
∗
e(ω,b1,b2)

=







0, m∗
e(ω), if 0 ≤ ρe ≤ R1,

Ve
1 ,m

∗
e(b1)

if R1 ≤ ρe ≤ R2,

Ve
2 ,m

∗
e(b2)

if ρe ≥ R2

(4)Ve(ze),m
∗
e(ω,b1,b2)

=

{

0, m∗
e(ω) if |ze| ≤

H
2

Ve
1 , m∗

e(b1)
otherwise .

(5)Ve
1 (x1) = 0.658 (1.115 x1 − 0.37 x21)

(6)Ve
2 (x2) = 0.658 (1.115 x2 − 0.37 x22) .

(7)He = Hρe +Hze .

(8)

[

−
�
2

2m∗
e(ω,b1,b2

)
∇2
e + Ve(ρe)

]

ℵ(ρe) = Eρ ℵ(ρe)

(9)

[

−
�
2

2m∗
e(ω,b1,b2

)
∇2
e + Ve(ze)

]

χ(ze) = Ez χ(ze) ,

(10)ℵ(ρe) =







Jm(θ
e
mn

ρe
R1
), if ρe ≤ R1

AeKm(k
e
mn ρe)+ BeIm(k

e
mn ρe), if R1 ≤ ρe ≤ R2

CeKm(η
e
mn ρe), if ρe ≥ R2

(11)χ(ze) =

{

cos( l πH ze), if |ze| ≤
H
2

De exp(−l βe |ze|), otherwise ,
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and

Jm and Im are, respectively, the first type Bessel and modified functions, whereas Km denotes the modified Bessel 
function of the second order type in all m-order cases. To find the constants Ae , Be , Ce , and De it is important to 
apply the boundary conditions at ρe = R1 , ρe = R2 , and |ze| = H

2 :

and

where θ emn and π are obtained from the following energetic equations:

and

with

and

The eigenvalue time-independent Schrödinger equations (Eqs. (8) and (9)) lead to determine the ground state 
electronic energy as follows:

Electron‑donor atom properties.  The objective of this section is to examine the off-center atom donor 
effect on the ground state electronic properties and their corresponding wave functions in a cylindrical CSSQD 
like the one shown in Fig. 1b2. Within two finite confinements potentials model, the electron-impurity Hamil-
tonian is given by:

The resolution of the Schrödinger equation leads to determine the energy and trial wave function of an electron 
correlated with an off-center donor atom by this second-order differential equation:

(12)kemn =

[

2m∗
e(b1)

�2
Ve
1 −

(

θ emn

R

)2
]

1
2

,

(13)ηemn =

[

2m∗
e(b2)

�2
Ve
2 −

(

θ emn

R

)2
]

1
2

,

(14)βe =

[

2m∗
e(b1)

�2
Ve
1 −

( π

H

)2
]

1
2

.

(15)Ae =





Im(k
e
mnρe)J

′

m(
θ emn
R1

ρe)− I
′

m(k
e
mnρe)Jm(

θ emn
R1

ρe)

Im(kemnρe)K
′

m(k
e
mnρe)− I

′

m(k
e
mnρe)Km(kemnρe)





ρe=R1

,

(16)Be =





Km(k
e
mnρe)J

′

m(
θ emn
R1

ρe)− K
′

m(k
e
mnρe)Jm(

θ emn
R1

ρe)

Im(kemnρe)K
′

m(k
e
mnρe)− I

′

m(k
e
mnρe)Km(kemnρe)





ρe=R1

,

(17)Ce =

[

1

Km(ηemnρe)

[

AeKm(η
e
mnρe)+ BeIm(η

e
mnρe)

]

]

ρe=R2

,

(18)De =

[

cos( lπH ze)

exp(−lβe|ze|)

]

|ze |=H/2

,

(19)AeM
′

e − BeN
′

e = 0

(20)tan

(

lπ

2

)

=
βe

π
H ,

(21)M
′

e = K
′

m(η
e
mnR2)Km(kmnR2)− Km(η

e
mnR2)Km(k

′

mnR2)

(22)N
′

e = Km(η
e
mnR2)I

′

m(kmnR2)− K
′

m(η
e
mnR2)Im(kmnR2) .

(23)Ee = −
�
2

2m∗
e(ω,b1,b2)

[

(

θ e

R1

)2

+

( π

H

)2
]

.

(24)He−i = −
�
2

2m∗
e(ω,b1,b2)

∇2
e + Ve−i

c (ρe , ze)+ Ve(ρe , ze) .
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where �D(ρe , ze) and ED are the trial wave function and the ground state energy of electron with impurity, respec-
tively. In the presence of a single donor atom, the trial wave function of electron �D(ρe , ze) is written as follows:

with α and γ  the var iat ional  parameters  and ND  the normalizat ion constant .  The 
exp (−αρei) exp [−αρei − γ (ze − zi)

2] describes the correlation effect between the electron and the impurity. 

The electron-impurity distance in the xy-plane is ρei =
√

ρ2
e + ρi

2
− 2ρeρi cos(θ) , whereas the electron and 

impurity positions in the z-direction are ze and zi . Also, ℵ(ρe) and χ(ze) are, respectively, the ground-state solu-
tion of the Schrödinger equation in the xy-plane (lateral direction) and the z-direction (axial direction), which 
are expressed by:

and

where J0 , I0 , and K0 are, respectively, the first type Bessel and first and second modified Bessel functions of 0th 
order. The Coulomb interaction between the electron and the donor impurity is given by:

where e is the electron charge, ε is the GaAs static dielectric constant, ε0 is the vacuum permittivity, and 

rei = |
−→r e −

−→r i| =

√

(−→ρ e −
−→ρ i)

2
+ (ze − zi)

2 is the electron-impurity distance (the impurity and electron 
coordinates are given by ri(−→ρi , zi) and re(−→ρe , ze) , respectively). In addition, k = 0 when there is not the impurity 
and k = 1 when the impurity has been considered. Also, the radial and axial confinement potentials Ve(ρe , ze) 
are presented by the Eqs. (3) and (4). In order to more investigate the correlation between the electron and the 
donor atom, it is important to study the electron-donor binding energy which is defined by the difference between 
the electronic energy without impurity and the ground state energy of the donor atom.

The donor ground-state energy ED is determined by minimizing the expression of average energy:

Excitonic properties.  Concerning the Fig.  1b3, we consider an exciton confined in a GaAs cylindrical 
multi-layered QD. The structure of the nanosystem is similar to the one described above. Within the effective 
mass approximation and two band model, the basic Hamiltonian of the bound exciton can be described as fol-
lows:

where m∗
e(ω,b1,b2)

 (m∗
h(ω,b1,b2)

) is the effective mass of the electron (hole) in different nanostructure regions. 
−→r e = (−→ρ e , ze) and −→r h = (−→ρh , zh) are the spatial coordinates of the quasiparticules (electron and hole) in cylin-
drical CSSQD. The confinement potentials of the quasiparticules Vi(ρi , zi) are given by:

and

(25)

[

−
�
2

2m∗
e(ω,b1,b2)

∇2
e + Ve−i

c (ρe , ze)+ Ve(ρe , ze)

]

�D(ρe , ze) = ED �D(ρe , ze) ,

(26)�D(ρe , ze) = ND ℵ(ρe)χ(ze) exp [−αρei − γ (ze − zi)
2] ,

(27)ℵ(ρe) =







J0(θ
e ρe
R1
), if ρe ≤ R1

AeK0(k
eρe)+ BeI0(k

eρe), if R1 ≤ ρe ≤ R2
CeK0(η

eρe), if ρi ≥ R2

(28)χ(ze) =

{

cos( πH ze), if |ze| ≤
H
2

Be exp(−ke|ze|), otherwise ,

(29)Ve−i
c (r) = −

ke2

4π ε ε0 rei
,

(30)Eb = Ee − ED .

(31)ED = min
α,γ

�ψD|He−i|ψD�

�ψD|ψD�
.

(32)Hex =
∑

i=e,h

[

−
�
2

2m∗
i(ω,b1,b2)

∇2
i + Vi(ρi , zi)

]

−
e2

4πεε0|
−→r e −

−→r h|
,

(33)Vi(ρi),m
∗
i(ω,b1,b2)

=







0,m∗
i(ω) if 0 ≤ ρi ≤ R1

Vi
1,m

∗
i(b1)

if R1 ≤ ρi ≤ R2
Vi
2,m

∗
i(b2)

if ρi ≥ R2

(34)Vi(zi),m
∗
i(ω,b1,b2)

=

{

0,m∗
i(ω) if |zi| ≤

H
2

Vi
1,m

∗
i(b1)

otherwise
.
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The electron effective mass in the barrier materials is expressed in Eq. (2), as well as the hole effective mass in 
the barrier materials is given by:

For the conduction band, the confinement potentials of first and second shells of cylindrical CSSQD are expressed 
in Eqs. (5) and (6). For the valence band, the confinement potentials expressions are given by:

and

Within the reduced atomic units, the energy can be presented by the effective excitonic Rydberg R∗
ex = �

2

2µa2ex
 , 

where a∗ex = ε�2

e2µ
 is the exciton Bohr radius and 1

µ
= 1

m∗
e(ω,b1,b2)

+ 1
m∗
h(ω,b1,b2)

 represents the electron-hole reduced 
mass. The effective Hamiltonian of exciton in cylindrical CSSQD can be expressed as follows:

where σ =
m∗
e(ω,b1,b2)

m∗
h(ω,b1,b2)

 . The electron and hole Laplacian operators in the Hylleraas coordinates are written as 
follows44:

and

In order to calculate the ground state exciton binding energy, the Schrödinger equation 
Hex�ex(ρe , ze) = Eex�ex(ρe , ze) must be resolved numerically using a variational method. The excitonic enve-
lope wave function is proposed as follows:

where the wave function term that described the Coulombic interaction is expressed as:

and

where α and γ are the variational parameters and Nex the normalization constant. According to our system 
cylindrical CSSQD, the ground state radial and axial wave function of electron and hole would be:

and

The exciton ground state binding energy of our system is given by:

where Ee and Eh are the free electron and hole energies:

(35)m∗
h(b1,b2)

= m∗
h(ω) + 0.049 x1,2 m0

(36)Vh
1 (x1) = 0.342 (1.155 x1 + 0.37 x21)

(37)Vh
2 (x2) = 0.342 (1.155 x2 + 0.37 x22) .
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(42)�eh(ρeh, |ze − zh|) = exp [−αρeh − γ (ze − zh)
2]
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The exciton ground-state energy, Eex , is determined by minimizing the average of excitonic Hamiltonian :

Results and discussion
The numerical results of the first shell thickness and potentials forms effects on a single electron energy, electron-
donor atom, and exciton ground state binding energy are discussed. In this work we have considered a GaAs 
cylindrical CSSQD with two confinement potentials (type-A and type-B), which are presented in Fig. 1a. In our 
numerical calculations, the used parameters are37: m∗

e(ω) = 0.067m0 , m∗
h(ω) = 0.087m0 , and εr = 12.74 , where 

m0 is the free electron mass. The effective masses considered in our work are approximately independent to the 
QD nanostructure size. The concentration values x1,2 = 0.2, 0.3 , and 0.4 are respectively equivalent to confine-
ment potentials Ve

1,2 = 162, 250 , and 343 meV for electron and Vh
1,2 = 84, 130 , and 178 meV for the hole. The 

effective Bohr radius a∗ex = 18 nm and the effective Rydberg units R∗
ex = 3.0 meV should be noted. The numerical 

findings are presented in meV for the energies, and in nm for the lengths describing the core radius, first shell, 
and height thickness.

The Fig. 2 plots the variation of the electron ground state energy as a function of the core to shell radius ratio 
R1/R2 for two QD height ( H = 20 and 40nm) and two first shell radius ( R2=10 and 15 nm) with two confinement 
potentials forms: Fig. 2a and d for type-A and Fig. 2b and c for type-B. According to the results of these curves, 
the electron energy increases when the core, first shell radius, and QD height decrease. The effect of height is more 
pronounced in the low thickness of the first layer. It is clear that, in the case of type-A confinement potential (see 
Fig. 2a,d), the electronic energy strongly depends on the potential depth of the first barrier material than on the 
second barrier material, especially in small core sizes. Similarly, the confinement of the ground state inside the 
core is clearer in Fig. 2b,c, which shows that in type-B cases, the second potential depth controls their energy. 
For Ve

1 = 343 meV, Fig. 2b shows that the electron is confined when the core radius is larger than 2 and 3 nm for 
the second potential depth equal to Ve

1=162 and 250 meV. Furthermore, Fig. 2c shows that, for Ve
1 = 162 meV, the 

confinement of the electron ground state increases as the core radius decreases until reaches the potential energy 
of the first barrier material. This critical values is due to the strong confinement of the electronic wave function 
inside the core, which is dependent on the confinement potential of the second layer, therefore the increase of 
the confinement potential of the second barrier material leads to increase the critical value of the core radius 
such that R1 = 1.5, 2, and 3 nm for Ve

1 = 162, 250, and 343 meV, respectively. The zoom insets in Fig. 2a and b, for 
a fixed first shell confinement potential ( Ve

1=162 and 343 meV), show that the second shell confinement potential 
effect is slightly visible when the core radius R1 is close to the radius of the first shell R2 , i.e., the first shell thick-
ness is smaller ( R12 → 0 ). Therefore, the augmentation of the additive confinement ( Ve

2 ) leads to augment the 
electronic energy and it influences is negligible at high confinement core system due to the predominance of the 
quantum confinement. It is clear that, in Fig. 2c,d, the effect of the first shell confinement is more significant in 
the small core radius due to the large shell thickness, which produces the strong confinement of the electronic 
wave function. For a given value of first shell radius and core height, all curves converge to a same electron energy 
when thickness shell R12 → 0 , whatever the structure of confinement potentials.

In order to show the impact of the multi-layered on the electronic energy, we have plotted the ground state 
energy of the electron as a function of the first shell radius R2 for different potential barrier depth Ve

1 and Ve
2 and 

different CSSQD size with core radius R1 =6 and 15nm and their height H = 20 and 40 nm. The confinement 
potentials types, (A) and (B), have been presented, respectively, in Fig. 3a,d and b,c. It is clear that the varia-
tion of the electronic energy as a function of R2 remains constant when Ve

1 = Ve
2 . For a given core radius, it is 

important to note that, in the case of the confinement potential type-A (Fig. 3a,d), the confined electron energy 
is found to diminishes when the first shell radius R2 is increased until that it saturates. In contrast, in the case of 
the confinement potential type-B (Fig. 3b,c), the energy increases with the radius R2 . This is due to the thickness 
of the first shell and their energy amount added to the system from the confinement potential Ve

1 . The strongest 
confinement zone (low first shell thickness) exhibits a rapid effect of confinement potentials, whereas the weak 
confinement region exhibits a weak variation of energy growth.

The combined effect of two confinement potentials types and layer thickness R12 on the energy are presented 
in Fig. 4, in which the confinement potential effect of the outer layer on the energy decreases with increasing 
thickness of the first shell and converges to the energy described by their confinement potential.

To see the influence of the multi-layered confinement potentials, the core and first shell radius on the elec-
tronic energy, we have plotted in Fig. 5a their behavior as a function of the first layer potential for two CSSQD 
core radius ( R1 =6 and 8 nm) and three potential of the secondary layer ( Ve

2=162, 250, and 343 meV) with R2 = 
10 nm, and in Fig. 5b as a function of the second layer potential for two shell radius ( R2 =8 and 10 nm) and 
three potential of the first layer ( Ve

1 = 162, 250 , and 343meV) with R2 = 10nm and H = 20 nm. It is seen that 
the electronic energy increases monotonically with the multi-layered confinement potentials Ve

1
 and Ve

2
 . How-

ever, the confinement potential effect of the outer layer has more influence on the electronic energy when the 
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confinement potential and the thickness of the first layer are smaller. In Fig. 5b, the increase in confinement 
potential Ve

2 is more significant in the case of confinement type-A than type-B, and their effect to change the 
confinement system from type-A to type-B has been observed at Ve

1=252 meV. Thus, their effect on the electronic 
energy is much more sensitive to the weak first shell thickness and the core radius of the cylindrical CSSQD. It 
is important to note that the intersection of the electronic energy for the two core radius R2 = 8 and 10 nm is 
clearer when the potentials Ve

1 = Ve
2.

Due to the Coulomb interaction between the electron and the donor atom, the presence of impurity affects 
the quantum devices performance as well as their optoelectronic and transport properties. Therefore, we have 
interested to investigate, in Fig. 6, the electron-impurity binding energy as a function of the core to shell radius 
ratio for two first layer radius and two confinement potential types (Type-A in (a) and (d), type-B in (b) and (c)) 
with the a CSSQD height H = 20 nm. For a given first shell radius and confinement potential with finite barrier, 
the binding energy increases as the core radius decreases until reaching a maximum value and then decreases. The 
increase of the binding energy is due to an increase of the Coulombic interaction between the electron and the 
impurity and it’s decrease with decreasing the core of the CSSQD is produces by the penetration of the electron 
wave function in the barrier materials by tunneling effect. This effect leads to increases the electron-impurity 
distance, consequently EB decreases strongly. It is important to note that, in Fig. 6b–d, the effect of the confine-
ment potential controls on the critical core radius of the tunneling effect. In contrast, according to the results of 
Fig. 6a, the critical core radius for the electron penetrate into the barrier material equals R1 = 2.6 nm, whatever 
the energy of the confinement potential of the external layer. When the first layer thickness and core radius are 
smaller, the second shell confinement potential effect is more visible in Fig. 6b, due to the combined effect of 
the geometrical confinement and the potential energy. Moreover, for the two confinement types (A and B) (in 
Fig. 6c,d), it is noted that the influence of the confinement potential Ve

1 is more significant in the strong confine-
ment region, due to their layer thickness which reduces the overlap of the electron wave function. Furthermore, 
in Fig. 6b,c, it is clear that the behavior of the binding energy has oscillations when Ve

1 < Ve
2 . This behavior is 

Figure 2.   Ground state electronic energy versus the ratio core radius to first shell radius ( R1/R2 ) for different 
second shell confinement potential with Ve

1 = 162 meV (a) and Ve
1 = 343 meV (b) as well as for different first 

shell confinement potential with Ve
2 = 162 meV (c) and Ve

2 = 343 meV (d). Results are for two QD height (H=20 
and 40nm) and two first shell radius ( R2 = 10 and 15 nm).
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Figure 3.   Ground state electronic energy as a function of first shell radius R2 for different second shell 
confinement potential with Ve

1 = 162 meV (a) and Ve
1 = 343 meV (b) as well as for different first shell 

confinement potential with Ve
2 = 162 meV (c) and Ve

2 = 343 meV (d). Results are for two core height ( H = 20 and 
40 nm) and two first shell radius ( R2 = 10 and 15 nm).

Figure 4.   Ground state electronic energy as a function of the first material radius R2 for different confinement 
potentials ( Ve

1 = 162, 250 and 343 meV) and ( Ve
2 = 162, 250 and 343 meV) with core dimensions R1 = 6 nm 

and H = 20 nm.
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due in fact when the electron encounters the second potential which is superior to the first one which reinforces 
the oscillation of the electron to penetrate the second potential barrier.

The investigation of the donor atom issue in semiconductor QDs is a highly valuable model for comprehend-
ing these nanostructures vast features. Because QDs are confined in all 3D, the distance electron-impurity is 
reduced, resulting in an increase in the Coulomb interaction. it is clear that, in Fig. 7a–d, the binding energy of 
an on-center donor atom versus the first layer radius R2 keeps the same behavior as in Fig. 3a–d, for different 
potential barrier depth V1 and Ve

2 and different CSSQD size ( R1=6, 15 nm, and their height H = 20 nm). The most 
important thing is that, in the presence of an on-center impurity, the binding energy in relation to that of the 
exciton (see below) becomes more important, which produces an increase of the radiative time of the quantum 
system. Similarly, the variation of the binding energy as a function of the multi-layered confinement potentials 
V1 and Ve

2 presented in Fig. 8a and b, have the same behavior as that seen in Fig. 5, with an energy shift due to 
the Coulomb interaction.

The donor atom can be placed anywhere on the nanostructures, and its movement in the axial and lateral 
directions is thought to be a significant role in the binding energy variation. To show the displacement effect 
along the main directions of cylindrical CSSQD, we have presented in Fig. 9, the ground state binding energy 
behavior for type-A in Fig. 9a,b and for type-B in Fig. 9c,d. The electron-impurity binding energy dependence 
on the ratio of the axial (radial) impurity position to the core height zi/H (radius ρi/R ) is plotted in Fig. 9a,c 
(Fig. 9b,d). Due to the largest probability density of electron in the core of CSSQD, as shown in Fig. 9a–d, the 
binding energy reaches its maximum value when the impurity is positioned at the gravity center of the nano-
structures. As a result, the electron-donor bound is more stable. When the donor is displaced from the edge to 
the edge of CSSQD, the binding energy increases until it reaches its maximum value, then it gradually diminish. 
As a consequence, when the impurity is near to the CSSQD walls, the electron-donor interaction is less coupled 
and the influence of confinement potentials ( Ve

1 and Ve
2 ) is negligible. For this reasoning, we have focused on the 

donor atom position zi = H/2 and ρi = 0 in the previous figures. For a given shell thickness ( R12 = 2 and 4 nm), 
the figures show that the confinement potentials effects ( Ve

1 and Ve
2 ) on the binding energy is more significant 

when the impurity position is near to the center ( zi = H/2 and ρi = 0 ), especially in the case of type-A confine-
ment potential. Furthermore, for a fixed core radius, we can see from the Fig. 9a,b that as the first shell confine-
ment potential (type-A case) augments, the reduction of their thickness leads to enhance the binding energy, 
and the thickness effect is clearer for Ve

1 = 162 meV than for 250 and 343 meV, due to the strong confinement of 
the electronic wave function. Moreover, in Fig. 9c,d, the combined effect of second shell confinement potential 
and first shell thickness on the binding energy is weaker in the type-B confinement system, this is due to the 
predominance of the confinement potential of the first layer ( Ve

1 = 343 meV) than the second layer.
Studying the binding energy of a single electron-hole pair, i.e. exciton, leads to characterize the optical proper-

ties of the nanostructures. In Fig. 10, we have illustrated the behavior of the exciton binding energy as a function 
of the core to the first shell radius ratio (R1)/(R2) of the GaAs/Ga1−x1Alx1As/Ga1−x2Alx2 As nanostructure for 
two radius values R2 and two confinement potentials type-A and type-B, which is presented in Fig. 10a,d and 
b,c, respectively. The appearance of a very well maximum limit for a finite potential model may be seen in these 
figures. For a given nanostructure confinement potential type and shell radius, when the core radius reduces, the 
exciton binding energy increases until it reaches a maximum value, at it collapses to the 3D-limit of exciton as the 
structure’s dimensions decrease to zero. Due to the finite confinement potentials used in our system, by the tun-
neling effect, the penetration of the excitonic wave function into the barrier materials increases with decreasing 

Figure 5.   Ground state electronic energy as a function of (a) first confinement potential Ve
1 for different core 

size ( R1 = 6, 8 nm, and H = 20, 40 nm) and three values of external confinement potential depth ( Ve
2 = 162, 250, 

and 343 meV) with a fixed first shell radius R2 = 10 nm, (b) external material confinement potential Ve
2 for two 

radius R2 and three confinement potential of first shell material ( Ve
1 = 162, 250, and 343 meV) with a fixed core 

size ( R1 = 6 nm and H = 20 nm).
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core radius of the CSSQDs, resulting in a decrease in their binding energy. Generally, the first particle that feels 
the existence of the barriers materials is the electron, because the electron effective mass is lower than that of the 
hole effective mass. From the Fig. 10a,b, we notice that the increase of the external confinement potential Ve,h

2  
leads to an increase of the binding energy mainly when the first layer thickness tends to zero R1/R2 = 1 , and 
their influence is more remarkable in the low dimensional confinement systems R2 = 10 nm than in intermediate 
confinement systems R2 = 15 nm. Furthermore, the binding energy is rather resistant to the impact of second 
confinement potential in the strong spatial confinement situation, i.e. for a wide first shell thickness. The com-
bined effect of first shell potential and their thickness on the exciton binding energy are illustrated in Fig. 10c,d. 
For a given first shell thickness, it can be seen that the binding energy enhances with increasing the first shell 
potential as well as their thickness, specially, when the core radius is smaller, which leads to adjust the optical 
coefficients such as linear and nonlinear optical rectifications, second-harmonic and third-harmonic generations.

On the other hand, Fig. 11 presents the exciton binding energy as a function of the first layer radius R2 for 
different potentials barriers depth Ve,h

1  and Ve,h
2  and different CSSQD size with core radius R1 =6 and 15nm and 

their height H = 20 nm. It is clearly seen that the binding energy of exciton versus layer radius R2 , for differ-
ent confinement potential types and core radius R1 , keeps the same behavior in the case of electron-impurity, 
which is presented in Fig. 7. The comparison between Figs. 7 and 11 indicate that, for a fixed CSSQD size and 
confinement potential, the binding energy of on-center donor atom is more important than of exciton. This is 
due to the large spatial separation of electron and hole towards the extremes and the fact that small distance 
|
−→r e −

−→r i| that |−→r e −
−→r h| in the case that the impurity is located in the center of the dot. On the other hand, 

in the inset of Fig. 11b the binding energy of the ground state is included for different donor atom position. For 
a CSSQD characterized by R1 = 6 nm, R2 = 10 nm, and H = 20 nm with Ve

1 = Ve
2 = 343 meV, the binding energy 

Figure 6.   Ground state binding energy of a single donor atom as a function of the core to shell radius ratio R1
/R2 for different second shell confinement potential with Ve

1 = 162 meV (a) and Ve
1 = 343 meV (b), as well as for 

different first shell confinement potential with Ve
2 = 162 meV (c), and Ve

2 = 343 meV (d). Results are for two first 
shell radius ( R2 = 10 and 15 nm) and CSSQD height H = 20 nm.
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Figure 7.   Electron-impurity binding energy as a function of first shell radius R2 for different second 
shell confinement potential with Ve

1=162 meV (a) and Ve
1 = 343 meV (b), as well as for different first shell 

confinement potential with Ve
2 =162 meV (c) and Ve

2 = 343 meV (d). Results are for two first shell radius ( R2 = 10 
and 15 nm) and CSSQD height H = 20 nm.

Figure 8.   Binding energy of an on-center donor atom versus (a) first confinement potential Ve
1 for different 

core size ( R1 = 6, 8 nm, and H = 20 nm) and three values of external confinement potential depth ( Ve
2 = 162, 

250, and 343 meV) with a fixed first shell radius R2 = 10 nm, (b) external material confinement potential Ve
2 

for two radius R2 and three confinement potential Ve
1 of first shell material with a fixed core size ( R1 =6 nm and 

H = 20 nm).
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of the impurity is equal to 17.3 meV and 14.1 meV when the impurity is located at the radial and axial edge of 
our nanostructure, which is lower than the binding energy of the exciton EB = 24.8 meV.

To better understand the effect of finite multi-layer confinement potentials on the exciton binding energy, we 
have plotted the exciton ground state binding energy simultaneously as a function of the confinement potential of 
the electron and hole for the first layer in Fig. 12a and the second layer in Fig. 12b. In Figure 12a, several second 
potential depths and CSSQD core radius have been considered, whereas in Fig. 12b, three first layer confine-
ment potential depth are combined with their thickness effect; the results are for H = 20 nm. In Fig. 12a, we can 
observe that increasing the confinement potential of the first layer ( Ve

1 and Vh
1  ) increase the binding energy. For 

a small values of the first barrier material potential, we notice that the effect of the second barrier material on the 
binding energy is more significant, and their influences is important when the thickness gets weaker R12 = 2 nm. 
For a given nanostructure confinement potentials, this figure indicates that the binding energy increases as the 
core radius decreases, and it is more pronounced for higher first confinement potential. This means that the 
reduction of the CSSQD leads to reinforce the charge carriers interaction and compressing the exciton wave func-
tion in all directions. On the other hand, for a given value of the first confinement potential, Fig. 12b shows that 
in a large thickness ( R12 = 4 nm) the binding energy is not significant when the external confinement potential 
increases and becomes obvious and more pronounced in small first shell thickness ( R12 = 2 nm).

Conclusions
The present work focuses on the theoretical analysis of the electron, off-center donor atom, and exciton confined 
in cylindrical CSSQD with finite confinement potentials. The electronic energy, electron-donor, and exciton bind-
ing energy are studied in detail by considering the effects of core size, first shell thickness, and shells confinement 
potentials, V1 and V2 . The confinement potential types A and B have been investigated. The numerical resolution 
of the 3D Schrödinger equation has been made by using the variational method within the effective mass and 

Figure 9.   Binding energy of an off-center donor atom as a function of (a) the normalized axial impurity 
position ( zi/H ), and (b) the normalized radial impurity position ( ρi/R ) in the type-A confinement potential, 
(c) the normalized axial impurity position ( zi/H ), and (d) the normalized radial impurity position ( ρi/R ) in the 
type-B confinement potential. Results are with a fixed core size ( R1 = 6 nm and H = 10 nm) for two first shell 
radius ( R2 = 8 and 10 nm).
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parabolic band approximations. The results of the theoretical calculations show that the effect of the external 
layer confinement potential ( Ve

2 ) on quasiparticles energies are more significant for the small shell thickness 
R12 . With the increase of external potential, the ground state energies of charge carriers increase and their effect 
becomes negligible when the first shell thickness gets greater. Also, the effect of the first shell confinement is 
more significant in the small core radius, i.e., in the large shell thickness. For a fixed shell thickness, the electron 
energy, electron-donor atom, and exciton binding energies increase with the decrease the core radius and the 
height of CSSQD. Furthermore, the effect to change the confinement system from type-A to type-B has been 
observed when the potentials Ve

1 = Ve
2 . The motion of the donor atom in the main axes of the CSSQD has been 

studied, which shows that their binding energy takes the maximum value when it is localized in the dot gravity 
center. The confinement potentials effect Ve

1 and Ve
2 on the donor binding energy is more significant in the case 

of type-A confinement potential that in type-B confinement potential when the impurity position is localized 
near to the center. The comparison between the properties of the donor atom and the exciton indicates that the 
binding energy of an on-center (off-center) donor atom is greater (lower) than that of the exciton. The findings of 
numerical modeling revealed that the electronic, with and without impurity, and excitonic features of type-A and 
type-B CSSQD may be used in further experimental investigation with optimal qualities in laboratory processes.

Figure 10.   Exciton binding energy as a function of the core to shell radius ratio R1/R2 for different second shell 
confinement potential with Ve

1 = 162 meV and Vh
1  = 84 meV (a), Ve

1 = 343 meV and Vh
1  = 178 meV (b) as well as 

for different first shell confinement potential with Ve
2 = 162 meV and Vh

2  = 84 meV (c), Ve
2 = 343 meV and Vh

2  = 
178 meV (d). Results are for two first shell radius R2 =10 and 15nm with core height H = 20 nm.
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Figure 11.   Exciton binding energy as a function of first shell radius R2 for different second shell confinement 
potential with Ve

1 =162 meV and Vh
1  = 84 meV (a), Ve

1 = 343 meV and Vh
1  = 178 meV (b), as well as for different 

first shell confinement potential with Ve
2 =162 meV and Vh

2  = 84 meV (c), Ve
2 = 343 meV and Vh

2  = 178 meV (d). 
Results are for two first shell radius R2 = 10 and 15 nm and CSSQD height H = 20 nm.



17

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14854  | https://doi.org/10.1038/s41598-022-19118-3

www.nature.com/scientificreports/

Data availability
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