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Simple Summary: The divergent pathway model established at least two approaches for melanoma
development. One was related to a propensity to melanocytic proliferation (nevogenic), and the other
was associated with an accumulation of solar damage (CSD). We conducted a retrospective study
to examine whether this model had a molecular support using sequencing and bioinformatic tools
on a set of cutaneous melanomas corresponding to these two groups. We found that the nevogenic
melanomas were associated with mutations in BRAF, while the CSD melanomas were associated
with mutations in NF1, ROS1, GNA11, and RAC1. We concluded that nevogenic and CSD melanomas
constitute two different biological entities.

Abstract: According to the divergent pathway model, cutaneous melanoma comprises a nevogenic
group with a propensity to melanocyte proliferation and another one associated with cumulative
solar damage (CSD). While characterized clinically and epidemiologically, the differences in the
molecular profiles between the groups have remained primarily uninvestigated. This study has used
a custom gene panel and bioinformatics tools to investigate the potential molecular differences in a
thoroughly characterized cohort of 119 melanoma patients belonging to nevogenic and CSD groups.
We found that the nevogenic melanomas had a restricted set of mutations, with the prominently
mutated gene being BRAF. The CSD melanomas, in contrast, showed mutations in a diverse group
of genes that included NF1, ROS1, GNA11, and RAC1. We thus provide evidence that nevogenic
and CSD melanomas constitute different biological entities and highlight the need to explore new
targeted therapies.
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1. Introduction

The divergent pathways model suggested the clinical classification of cutaneous
melanoma into two groups: one associated with melanocyte proliferation proneness (nevo-
genic), and the other with cumulative solar damage (CSD) [1]. Both groups share an
initiation step in which the activation of melanocytes proceeds via exposure to ultravi-
olet radiation (UVR) early in life and host factors. Afterward, the progression towards
melanoma diverges depending on exogenous and endogenous factors. The nevogenic
melanomas arise in individuals constitutively predisposed to melanocytic proliferation,
characterized by a high nevi count, with little involvement of acquired UVR damage. Those
tumors appear in young/middle-aged people on intermittently sun-exposed areas, such as
the trunk.

In contrast, the CSD melanomas occur mainly in individuals with a low number
of nevi, located on chronically sun-exposed skin, such as the head and neck, with solar
elastosis on the healthy skin surrounding the melanoma. Those tumors emerge after a
lifetime of cumulative sun exposure in older patients [2,3]. Epidemiological studies have
confirmed the divergent pathways hypothesis based on the distribution and number of
nevi, UV-related skin damage, patient age at diagnosis, and other clinical aspects [4–7].
Furthermore, these two populations would correspond to subgroups within the current
WHO classification, which differentiates between high-CSD and low-CSD melanomas but
considers, for the latter, the proneness to melanocytic proliferation [8].

The differential molecular characterization of tumors from two etiopathogenic path-
ways, despite the advanced sequencing initiative, has remained uninvestigated even two
decades later and has demonstrated clinical relevance [9,10]. The sequencing studies on
cutaneous melanoma, in general, showed that the most prevalent mutations include those
in BRAF, TERT promoter (TERTp), NRAS, NF1, ARID2, and TP53. Based on the mutational
pattern, cutaneous melanoma is classified into four molecular mutually exclusive subtypes.
The four groups are based on mutations in BRAF (“BRAF+”), NRAS/HRAS/KRAS (“RAS+”),
NF1 (“NF1+”), or the absence of those three types of mutations, referred to as triple wild
types (“3wt”) [11–13].

The big genomic data repositories can foster models to predict the relevant aspects of
molecular and patient phenotypes. Such models, based on the molecular pathways, reveal
relevant features of the disease. These novel tools allow prediction about the effects of
alterations in the modelled system in silico, with potential new therapeutic targets and
to predict the functional impact of loss-of-function (LoF) mutations on the different cell
mechanisms in complex diseases [14–16].

This study sequenced tumors from cutaneous melanoma patients developed through
two mutually exclusive routes to understand the molecular differences and similarities
using a custom gene panel covering most frequently altered genes. The data were analyzed
using comprehensive bioinformatics tools to characterize two seemingly different types
of melanoma.

2. Results
2.1. Mutational Distribution among Nevogenic and CSD Melanomas

A total of 119 primary melanomas provided informative sequences: 82 (68.9%) from
the nevogenic group and 37 (31.1%) from the CSD group (Figure S1). The median age of
the patients at diagnosis was 59 years, and they included 65 men (54.6%) and 54 women
(45.4%). The nevogenic group included 42 (51.2%) men and 40 (48.8%) women, whereas the
CSD group included 23 (62.2%) men and 14 (37.8%) women. A detailed description of the
demographic and clinicopathological characteristics of the cohort is displayed in Table 1.
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Table 1. Demographic and clinicopathological characteristics of the cohort.

Variables
Total Nevogenic CSD

N % N % N %

Sex
Male 65 54.6 42 51.2 23 62.2

Female 54 45.4 40 48.8 14 37.8

Phototype

1 2 1.7 2 2.4 0 0

2 32 26.9 23 28.0 9 24.3

3 68 57.1 46 56.1 22 59.5

4 15 12.6 10 12.2 5 13.5

5 1 0.8 0 0 1 2.7

Unknown 1 0.8 1 1.2 0 0

Sunburns at the area of melanoma

None 12 26.7 8 27.6 4 25.0

Mild 15 33.3 9 31.0 6 37.5

Severe 16 35.6 10 34.5 6 37.5

N/A 1 2.2 1 3.4 0 0

Unknown 1 2.2 1 3.4 0 0

Basal Cell Carcinoma
No 96 81.4 72 88.9 24 64.9

Yes 22 18.6 9 11.1 13 35.1

Multiple Melanoma
No 109 93.2 76 93.8 33 91.7

Yes 8 6.8 5 6.2 3 8.3

Familial Melanoma
No 102 87.2 67 82.7 35 94.6

Yes 15 12.8 13 16.0 2 5.4

Anatomical location

Head/Neck 30 25.2 2 2.4 28 75.7

Limb 25 21.0 18 22.0 7 18.9

Trunk 59 49.6 57 69.5 2 5.4

Acral 4 3.4 4 4.9 0 0

Other 1 0.8 1 1.2 0 0

Histological type

LMM 18 15.1 1 1.2 17 45.9

SSM 73 61.3 60 73.2 13 35.1

NM 15 12.6 11 13.4 4 10.8

ALM 3 2.5 3 3.7 0 0

Desmoplastic 2 1.7 2 2.4 0 0

Spitzoid 2 1.7 2 2.4 0 0

Other 6 5.0 3 3.7 3 8.1

Ulceration
No 99 83.2 70 85.4 29 78.4

Yes 20 16.8 12 14.6 8 21.6

Sentinel node

Negative 19 67.9 14 82.4 5 45.5

Positive 6 21.4 3 17.6 3 27.3

Unknown 3 10.7 0 0 3 27.3

Age *
<=59 59 50.0 58 71.6 1 2.7

>59 59 50.0 23 28.4 36 97.3

Breslow *
<=1.08 59 50.0 48 59.3 11 29.7

>1.08 59 50.0 33 40.7 26 70.3

* Categorized by the median of the studied population.

Overall, the most mutated genes/loci were TERTp (52.2%), BRAF (50.4%), NF1 (16.8%),
NRAS (13.4%), ROS1 (11.8%), and TP53 (10.9%), with the remaining genes investigated
having a mutational frequency of <10% (Table 2). Of the total, 106 (89.1%) melanomas were
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classified into the four major groups: 48/119 (40.3%) “BRAF+”, 15/119 (12.6%) “RAS+”,
10/119 (8.4%) “NF1+”, and 33/119 (27.7%) “3wt”; however, 13 (10.9%) patients, due to
mutations in overlapping genes, eluded classification: 3/119 (2.5%) melanomas showed
both a BRAF and RAS mutation, 9/119 (7.6%) showed both a BRAF and NF1 mutation, and
1/119 (0.8%) showed a mutation in both RAS and NF1 (Table 2). A graphical representation
of the mutational concurrence can be found in Figure S2.

Table 2. Mutational prevalence in our cohort and classification into molecular subtypes.

Gene Mutation Prevalence Gene Mutation Prevalence

TERTp 52.21 RB1 4.20

BRAF 50.42 PIK3R1 4.20

NF1 16.81 GNA11 4.20

NRAS 13.45 CDK4 3.36

ROS1 11.76 PPP6C 3.36

TP53 10.92 PTEN 2.52

ARID2 9.24 HRAS 1.68

CDKN2A 7.56 MAP2K2 1.68

RAC1 5.88 GNAQ 0.84

IDH1 5.04 KRAS 0.84

KIT 4.20 PIK3CA 0.84

Molecular subgroup % within cohort Molecular subgroup % within cohort

“BRAF+” 40.3 “BRAF+RAS+” 2.5

“RAS+” 12.6 “BRAF+NF1+” 7.6

“NF1+” 8.4 “RAS+NF1+” 0.8

“3wt” 27.7

The nevogenic tumors had a higher frequency of BRAF mutations than the CSD melanomas,
although the difference was not statistically significant (46/82, 56.1% vs. 14/37, 37.8%;
p = 0.077). In contrast, the CSD melanomas had a higher frequency of mutations than the
nevogenic melanomas in NF1 (14/37, 37.8% vs. 6/82, 7.3%; p < 0.001), ROS1
(10/37, 27.0% vs. 4/82, 4.9%; p = 0.001), GNA11 (4/37, 10.8% vs. 1/82, 1.2%; p = 0.032),
and RAC1 (6/37, 16.2% vs. 1/82, 1.2%; p = 0.004; Table 3; Figure 1; Figure S3). The dif-
ferences were further assessed by univariate logistic regression, and, after adjustment,
only the mutations in NF1 and ROS1 remained independently associated with the CSD
melanomas (Figure S4).

Table 3. Prevalence of mutations according to etiopathogenic group and molecular subgroups.

Gene Status Total Nevogenic CSD
p-Value

N % N % N %

TP53
WT 106 89.1 76 92.7 30 81.1

0.108
Mutated 13 10.9 6 7.3 7 18.9

NF1
WT 99 83.2 76 92.7 23 62.2

<0.001
Mutated 20 16.8 6 7.3 14 37.8

BRAF
WT 59 49.6 36 43.9 23 62.2

0.077
Mutated 60 50.4 46 56.1 14 37.8

ROS1
WT 105 88.2 78 95.1 27 73.0

0.001
Mutated 14 11.8 4 4.9 10 27.0
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Table 3. Cont.

Gene Status Total Nevogenic CSD
p-Value

N % N % N %

NRAS
WT 103 86.6 70 85.4 33 89.2

0.773
Mutated 16 13.4 12 14.6 4 10.8

CDK4
WT 115 96.6 79 96.3 36 97.3

1
Mutated 4 3.4 3 3.7 1 2.7

ARID2
WT 108 90.8 77 93.9 31 83.8

0.094
Mutated 11 9.2 5 6.1 6 16.2

CDKN2A
WT 110 92.4 76 92.7 34 91.9

1
Mutated 9 7.6 6 7.3 3 8.1

KIT
WT 114 95.8 80 97.6 34 91.9

0.173
Mutated 5 4.2 2 2.4 3 8.2

RB1
WT 114 95.8 79 96.3 35 94.6

0.646
Mutated 5 4.2 3 3.7 2 5.4

PPP6C
WT 115 96.6 79 96.3 36 97.3

1
Mutated 4 3.4 3 3.7 1 2.7

PTEN
WT 116 97.5 80 97.6 36 97.3

1
Mutated 3 2.5 2 2.4 1 2.7

IDH1
WT 113 95.0 78 95.1 35 94.6

1
Mutated 6 5.0 4 4.9 2 5.4

GNA11
WT 114 95.8 81 98.8 33 89.2

0.032
Mutated 5 4.2 1 1.2 4 10.8

GNAQ
WT 118 99.2 82 100.0 36 97.3

0.311
Mutated 1 0.8 0 0 1 2.7

RAC1
WT 112 94.1 81 98.8 31 83.8

0.004
Mutated 7 5.9 1 1.2 6 16.2

KRAS
WT 118 99.2 81 98.8 37 100.0

1
Mutated 1 0.8 1 1.2 0 0

HRAS
WT 117 98.3 81 98.8 36 97.3

0.527
Mutated 2 1.7 1 1.2 1 2.7

MAP2K2
WT 117 98.3 82 100.0 35 94.6

0.095
Mutated 2 1.7 0 0 2 5.4

PIK3CA
WT 118 99.2 82 100.0 36 97.3

0.311
Mutated 1 0.8 0 0 1 2.7

PIK3R1
WT 114 95.8 80 97.6 34 91.9

0.173
Mutated 5 4.2 2 2.4 3 8.1

TERTp
WT 54 47.8 41 51.9 13 38.2

0.220
Mutated 59 52.2 38 48.1 21 61.8

Pathogenic mutations
<=2 74 62.2 55 67.1 19 51.4

0.108
>2 45 37.8 27 32.9 18 48.6

Mutational subtype *

“BRAF+” 48 45.3 39 52.0 9 29.0

<0.001
“RAS+” 15 14.2 12 16.0 3 9.7

“NF1+” 10 9.4 1 1.3 9 29.0

“3wt” 33 32.4 23 30.7 10 32.3

* 13 tumors showing concurrent mutations from different subtypes were excluded.
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Figure 1. Mutational prevalence and mutational association for etiopathogenic pathways. Mutational
distribution between nevogenic and CSD melanomas. Frequency of mutations in the different genes
for the nevogenic and CSD groups (A); Graphical representation of the association of mutations in
the different genes with either group based on their p-value (B).
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The mean comparison showed a statistically significant difference in the total number
of pathogenic mutations between the nevogenic and CSD melanomas (1.9 vs. 3.4; p = 0.029),
but no differences were found in the number of UV-induced mutations.

The distribution of the molecular subtypes among the described major etiopathogenic
groups was the following: the “BRAF+” subtype was significantly associated with the
nevogenic melanomas (39/75, 52.0% vs. 9/31, 29.0%), while “NF1+” was related to the
CSD melanomas (1/37, 1.3% vs. 9/31, 29.0%) (p < 0.001) (Table 3).

2.2. Mechanistic Analysis of Pathways

The mechanistic analysis based on the mutational profiles to predict the effect on
normal skin showed that 67 circuits were significantly dysregulated in the nevogenic
melanomas (66 upregulated; 1 downregulated), and 122 circuits were dysregulated in the
CSD melanomas (109 upregulated; 13 downregulated). Fifty-one circuits were statistically
significantly higher in the CSD than in nevogenic melanomas (Figure S5). A radar plot was
visualized with the altered pathways in the context of the annotated hallmarks of cancer
(Figure 2). The plot showed that the mutational profiles from the CSD melanomas had a
higher number of dysregulated circuits (counts; “Cs”) annotated to hallmarks of cancer than
those from the nevogenic melanomas, especially when considering proliferative signaling
(26 vs. 50 Cs), replicative immortality (14 vs. 20 Cs), resisting cell death (16 vs. 28 Cs),
and genome instability and mutation (11 vs. 15 Cs). The enrichment analysis based on
simulated circuit activity data from normal skin showed that dysregulations in proliferative
signaling and replicative immortality were statistically significant in the nevogenic (p = 0.01;
p = 0.002) and CSD (p = 0.0004; p = 0.0002) melanomas compared to their corresponding
normal skin (Figure S6).

Cancers 2021, 13, x FOR PEER REVIEW 9 of 16 
 

 

 

 

Figure 2. Radar plot of cancer hallmarks. This graphical representation shows the distribution of dysregulated circuits for 

each group. Percentages are used as an approximation to reflect the differences in the overall number of dysregulated 

circuits per hallmark found in each group. 

3. Discussion 

Cutaneous melanoma is a complex disease sorted by different characteristics. How-

ever, a clinical classification represents a helpful approach given the disease’s etiology, 

evolution, and mutational status. The divergent pathways model confirmed through clin-

ical and epidemiological studies posits two different cutaneous melanoma groups (nevo-

genic and CSD). In this study, based on the molecular characterization of the two diver-

gent groups, we show a higher frequency of mutations in different genes in the CSD mel-

anomas than in the nevogenic melanomas except for BRAF mutations. 

Although UV-radiation is crucial to the initiation in both melanomas, the CSD type, 

predicated on chronic sun exposure leading to the accumulation of mutations, reflects the 

etiology through a typical corresponding mutational signature. The role of UVR on mela-

nocyte proliferation and melanoma development involves direct and indirect mutagene-

sis processes, including the formation of photoproducts and free radicals resulting from 

the biochemical interaction of UVA and melanin [17]. Chronic exposure to sun damage 

Figure 2. Radar plot of cancer hallmarks. This graphical representation shows the distribution
of dysregulated circuits for each group. Percentages are used as an approximation to reflect the
differences in the overall number of dysregulated circuits per hallmark found in each group.



Cancers 2021, 13, 5219 8 of 14

3. Discussion

Cutaneous melanoma is a complex disease sorted by different characteristics. How-
ever, a clinical classification represents a helpful approach given the disease’s etiology,
evolution, and mutational status. The divergent pathways model confirmed through
clinical and epidemiological studies posits two different cutaneous melanoma groups
(nevogenic and CSD). In this study, based on the molecular characterization of the two
divergent groups, we show a higher frequency of mutations in different genes in the CSD
melanomas than in the nevogenic melanomas except for BRAF mutations.

Although UV-radiation is crucial to the initiation in both melanomas, the CSD type,
predicated on chronic sun exposure leading to the accumulation of mutations, reflects
the etiology through a typical corresponding mutational signature. The role of UVR
on melanocyte proliferation and melanoma development involves direct and indirect
mutagenesis processes, including the formation of photoproducts and free radicals resulting
from the biochemical interaction of UVA and melanin [17]. Chronic exposure to sun damage
leads to multiple alterations affecting the cell’s normal functioning and increases the chance
of melanomagenesis. Several prominent genes mutated in CSD melanomas included NF1,
ROS1, GNA11, and RAC1. NF1 encodes a GTPase-activating protein that downregulates
RAS activity, so loss-of-function mutations activate the MAPK pathway upstream of the
RAS. ROS1, a receptor tyrosine kinase of the insulin receptor family, is constitutively
activated when mutated and also leads to the activation of the pathway; mutated RAC1
increases the GDP/GTP nucleotide exchange rate, and GNA11 is a subunit of a G protein-
coupled receptor responsible for mediating GTP-binding and limiting the activation of the
pathway, and the activating mutations result in the constitutive activation of MAPK [18–22].
Our findings align with the crucial role of the activated MAPK pathway in melanoma
for uncontrolled cell proliferation. Based on our in silico simulation analyses using the
expression data from normal skin as a reference, the higher number of dysregulated
circuits within the proliferation pathway found in CSD melanomas could suggest a more
relevant role of this pathway in carcinogenesis than in nevogenic melanomas. Moreover,
this dysregulation was more significant in the CSD than in the nevogenic melanomas
when compared with their corresponding normal tissue. However, a difference in the
number of dysregulated circuits might not translate into actual differences in the individual
gene expression levels, so further studies on these two groups should be performed to
elucidate whether the proliferation levels are more elevated in the CSD than nevogenic
melanomas or not.

Many studies have described that melanomas with a higher tumor mutation burden
(TMB) would have a better outcome than those with a lower TMB [23,24]. A higher tumor
mutation burden leads to increased potential neoantigens and an improved response to
immunotherapy [25–27]. Even though our study did not assess TMB, the higher frequency
of mutations in the CSD melanomas indicates the trend. Our molecular characterization of
the CSD melanomas draws attention to the fact that there are genes specific to this group
where mutations have not yet been explored as therapeutic targets. Given the revolution
that targeted drugs constituted as inhibitor-based drugs against melanomas harbouring
mutations in BRAF, MEK, and KIT [28,29], studies like the present one contribute to the
identification of potential lines of work aimed at improving the medical attention of
these patients.

Alternatively, the development of melanoma in the absence of accumulated UVR
in occasionally exposed anatomical sites remains intriguing, and here we have shown
how these nevogenic melanomas were associated with BRAF mutations. Multiple studies
have shown this association in young nevus-prone patients with melanomas arising at
intermittently exposed sites [30,31]. However, this alone does not explain the development
of melanoma since BRAF mutations have been widely reported in benign melanocytic
nevi, which do not necessarily transform into melanoma [32–34]. Additional contributing
factors are reflected in the literature, with pigment pheomelanin being extensively studied.
Compared to eumelanin, pheomelanin has an inherent genotoxic effect via the production
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of reactive oxygen species (ROS) or consumption of antioxidants, enhancing carcinogenesis
independently of UVR [35,36].

Moreover, some studies in rodents suggested additional factors that might contribute
to melanomagenesis in similar conditions to nevogenic melanomas. For instance, BRAF
mutations seem to enhance carcinogenesis resulting from UVB, meaning fewer exposures
might be required for melanocyte progression into melanoma [37]. Moreover, previous
studies have suggested that the susceptibility to UV might vary through the different
sequence regions in the human genome depending on nucleosome structure or bound
transcription factors or other factors [38,39]. Hence, a more in-depth sequencing approach
covering both coding and non-coding regions could be beneficial to elucidate the real
prevalence of UV-signature mutations. Complementarily, germline alterations have not
been checked in our study, and they could further explain the development of this group
of melanomas, with this missing impetus coming from normal germline variants in RNA-
binding proteins or DNA repair genes [40].

The role of TERTp mutations in the development of melanoma has been widely studied
since the stabilization of telomeres in cells is one of the hallmarks of cancer [41,42]. In our
study, CSD melanomas showed a higher prevalence of mutations within the promoter
region of TERT, albeit without statistical significance. The lack of association could be
due to limited sample size since previous reports had suggested a UVR influence on these
mutations, with TERTp alterations more frequent in CSD melanomas [43,44]. The TERT
promoter mutations in previous studies have been shown to associate with markers of poor
prognosis, increased tumor growth, hematogenous dissemination, and define the subsets
of melanoma patients with poor disease-free and disease-specific survival [45–48].

Finally, there are some limitations in the present study. The use of a custom gene panel
instead of a whole-exome or a whole-genome approach results in some potentially relevant
genes being left out (e.g., MAP2K1, CTNNB1) [49,50]. Moreover, our analysis has focused
on SNV and indels and did not include copy number variants, which are relevant as well
when characterizing tumors [51].

4. Materials and Methods

We designed a retrospective study using the mutational data obtained from next-
generation sequencing (NGS) and the information included in our melanoma databases.
These contained prospectively collected data from all melanoma patients treated at the
Instituto Valenciano de Oncología (IVO) since 2000 and the Hospital General Universitario
de Alicante (HGUA) since 1995. Clinical, pathological, and epidemiological data assessed
by expert dermatologists and pathologists were included [52]. The study had the approval
of the IVO ethics committee.

4.1. Patient Selection and Classification

Tumor samples were collected after informed consent and stored as formalin-fixed
paraffin-embedded (FFPE) blocks at the corresponding Biobanks after confirmation of
melanoma diagnosis by a single pathologist per institution. Patients were classified based
on the total number of melanocytic nevi and the histological presence/absence of solar
elastosis in the healthy skin surrounding the melanoma. The latter was graded according
to a previously described score (11 degrees; range: 0 to 3+) [53]. We selected patients
from the two mutually exclusive groups: nevogenic, characterized by the presence of
more than 50 nevi and no solar elastosis, and CSD, which included patients with less than
20 melanocytic nevi and moderate to severe solar elastosis.

4.2. Sample Preparation

FFPE blocks were retrieved from the corresponding Biobanks, and glass slides were
prepared for hematoxylin and eosin staining to guide the macrodissection of the tumor.
Either three unstained sections of 10 µm thick tissue were manually scraped, or three
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0.6 mm needle biopsies were taken from every sample to ensure a high tumor content,
depending on tumor cellularity below or above 70%, respectively.

DNA extraction was performed using the QIAamp® DNA Investigator kit (QIAGEN,
Hilden, Germany) with minor modifications. An overnight incubation step at 56 ◦C for
the proteinase K was set to assure complete digestion of the skin, and an optional RNA
carrier was added to maximize the extraction yield. Moreover, the NEBNext® FFPE Repair
Mix (New England Biolabs, Hertfordshire, UK) was used to repair the DNA, hence mini-
mizing sequencing artifacts due to C:G > T:A changes induced by nucleotide deamination,
usually present in FFPE samples. DNA concentration was quantified using the Quant-iT™
PicoGreen™ dsDNA (ThermoFisher, Waltham, MA, USA) fluorimetric assay, and those
samples with >2.5 ng/uL continued the process.

4.3. Gene Panel and Library Construction

A Custom GeneRead™ DNAseq Targeted Panel V2 (QIAGEN®, Hilden, Germany)
was designed including coding regions for 21 genes involved in melanomagenesis: ARID2,
BRAF, CDK4, CDKN2A, GNA11, GNAQ, HRAS, IDH1, KIT, KRAS, MAP2K2, NF1, NRAS,
PIK3CA, PIK3R1, PPP6C, PTEN, RAC1, RB1, ROS1, and TP53 (Figure S7). The panel
consisted of 633 amplicons distributed in 3 primer pools with an average size of 200 bp
(range: 120–275 bp) and an average coverage of 98.2% (range: 75.3–100%). Barcoded li-
braries were generated from 7.5 ng of DNA per primer pool according to the manufacturer’s
instructions, reducing the PCR volume to 12 µL to minimize sample usage. After purifi-
cation with AMPure beads (Beckam Coulter, Brea, CA, USA), libraries were checked for
appropriate size using Genomic DNA ScreenTape in a 4200 TapeStation (Agilent Technolo-
gies, Santa Clara, CA, USA). The mutational status of the TERT promoter was determined
by Sanger sequencing, as described previously [43].

4.4. Next-Generation Sequencing

Libraries were diluted to a final concentration of 13 pM and sequenced using v3-600 cycles
plates on a MiSeq® sequencer (Illumina, San Diego, CA, USA). Raw sequences from samples
with coverage of 300X in ≥70% of the regions were filtered and processed. SNV and indel
variants with a variant allele frequency >5% were annotated using VariantStudio 3.0
(Illumina, San Diego, CA, USA) and Varsome [54] software (Saphetor, Boston, MA, USA).
All pathogenic, likely pathogenic, and predicted pathogenic variants were visually checked
with the Integrative Genome Viewer (IGV 2.3.32, Broad Institute, Cambridge, MA, USA).

4.5. Mechanistic Analysis of Pathways

To evaluate the functional implications of the individual mutational profiles, gene
expression data of skin normal tissue were downloaded from GTEx data portal [55]. Using
the normalized expression data from individuals, in silico knockdowns were simulated
by multiplying the expression value by 0.01. Using KEGG signaling pathways topology
information [56], each signaling pathway was decomposed in its functional circuits as
described elsewhere [57], and the activation levels of each circuit were obtained for each
mutational profile using tissue expression values after applying a re-scaling transformation
of the rank of the matrix to (0, 1). An equal number of samples was randomly selected from
GTEx skin tissue data to account for the different mutational profiles, obtaining a dataset
of circuit activation levels from all samples, corresponding to each mutational profile.

Then, the differences in the circuits’ activation levels between the groups (CSD vs. nevogenic,
CSD vs. normal tissue, and nevogenic vs. normal tissue) were evaluated. A linear
model fit was performed and computed moderated t-statistics and log-odds of differential
expression by empirical Bayes moderation using limma package from R/Bioconductor [58].
All p-values were adjusted for multiple comparisons using Benjamini and Hochberg FDR
method. To account for random sample selection, a bootstrap of 50 iterations was performed
and combined the statistical results using Fisher’s p-values combination method. We
selected those circuits with an adjusted p-value < 0.05 and with a level of concordance of
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Fold Change values of 70% (meaning that at least 70% of the bootstraps showed a level
of concordance in the sign of the fold change), obtaining a list of differentially activated
circuits characteristic of each group (nevogenic and CSD).

These selected circuits were further annotated with the hallmarks of cancer using
the Cancer Hallmarks Annotation Tool (CHAT) based in text-mining searching [59]. For
each circuit, only those hallmarks with a score higher than the ninetieth percentile (0.18)
were selected. To evaluate the impact over each hallmark of each group, the ratio of the
number of significant circuits for each hallmark and the total of circuits annotated for each
hallmark were calculated. Moreover, to evaluate the impact of the mutational profile over
the whole pathway, a Fisher test was done to combine the individual values obtained
from the independent circuits within the pathway in order to obtain the overall level of
dysregulation of the whole signaling pathway.

A univariate enrichment analysis was ultimately performed to elucidate whether
a hallmark was significantly enriched in each group with respect to normal skin. The
t-statistic and the adjusted p-values obtained from both nevogenic vs. normal skin, and
CSD vs. normal skin limma models were taken to obtain a ranking of the circuits together
with the circuits annotated to hallmarks. Then, an analysis similar to a gene set enrichment
analysis (gsea) was performed using Bioconductor msgsa R package to fit a logistic regres-
sion model relating the probability of circuits belonging to the functional hallmark set with
the value of the ranking statistic.

4.6. Statistical Analysis

Clinical variables and mutational status for the analyzed genes were categorized. A
chi-square test was applied to evaluate differences among the groups. Univariate and
adjusted logistic regression models were used to establish the association between variables.
A value of p < 0.05 was set to define significance. The statistical analyses were performed
using IBM Corp. released 2011 (IBM SPSS Statistics for Macintosh, IBM Corp, version 20.0.
Armonk, NY, USA).

5. Conclusions

We presented a detailed cohort of cutaneous melanoma patients classified into
etiopathogenic groups showing distinct molecular profiles. These data provide further
corroboration that the nevogenic and CSD melanoma subtypes, defined by the divergent
pathway theory of melanoma, reflect the disease’s specific biology.
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amplicon panel.
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