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Mid-infrared spectroscopy has been developed as a reliable and rapid tool for routine
analysis of fat, protein, lactose and other components in liquid milk. However, variations
within and between FTIR instruments, even within the samemilk testing laboratory, present
a challenge to the accuracy of measurement of particularly minor components in the milk,
such as individual fatty acids or proteins. In this study we have used Analysis of
variance–Simultaneous Component Analysis (ASCA), to monitor the spectral variation
between and within each of four different FOSS FTIR spectrometers over each week in an
independent milk testing laboratory over 4 years, between August 2017 and March 2021
(223 weeks). On everyday of each week, spectra of the same pilot milk sample were
recorded approximately every hour on each of the four instruments. Overall, variations
between instruments had the largest effect on spectral variation over each week, making a
significant contribution every week. Within each instrument, day-to-day variations over the
week were also significant for all but two of the weeks measured, however it contributed
less to the variance overall. At certain times other factors not explained by weekday
variation or inter-instrument variation dominated the variance in the spectra. Examination of
the scores and loadings of the weekly ASCA analysis allowed identification of changes in
the spectral regions affected by drifts in each instrument over time. This was found to
particularly affect some of the fatty acid predictions.

Keywords: ASCA, quality control, milk testing, instrument stability, standardization, FTIR spectroscopy, analysis of
variance with simultaneous component analysis

INTRODUCTION

The goal of quantitative mid-infrared (MIR) analysis is to reproduce the analytical results achieved
with accepted standard reference methods. The quantitative analysis of milk components from MIR
spectra is based on the direct proportionality between the intensities of the absorbance bands for each
component and their concentrations and the path length through the sample. The accuracy of this
measurement requires routine calibration of the spectrometers with pre-analysed milk (with
chemical reference tests). Signal variations in the interferometer within an instrument over time,
between different instruments and between different types of instruments can alter the shapes,
intensities and relative intensities of the vibrational mode bands (Pelletier, 2003) which can affect the
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prediction accuracy, particularly of minor milk components such
as individual fatty acids. The accuracy of a predictive calibration
is affected both by instrumental factors (Smith et al., 1993) and by
the characteristics of the materials used to calibrate the
instruments (Kaylegian et al., 2006). Already in the early use
of MIR spectral techniques, inherent issues in the stability of
predictions between instruments and over time were shown
(Biggs, 1978). However, differences in results obtained from
different laboratories can also occur because of differences
between the reference methods used, and because of failure to
achieve good calibrations (Biggs, 1978). In a report on
performance of the older generation of milk analysers, it was
found that the main problems affecting calibration and accuracy
of predictions were inaccurate reference tests, air incorporation,
homogenizer inefficiency, mechanical wear, sample cell and filter
system, electronics and mechanical maintenance and operator
errors (Young, 1978). The newer milk analysers have been
engineered with improved designs to minimize these factors;
however, some still persist. The small variations in spectra caused
by variations in spectrometer parameters such as light source
intensity, detector sensitivity and laser stability, and in laboratory
environment such as temperature, vibrations, humidity, are
minimized by a procedure called Zero-setting (Foss Electric,
Hillerød, Denmark) (Hansen, 2020), and by weekly calibration
adjustment for fat, protein, lactose and total solids.
Manufacturers of other MIR spectrometers used for routine
milk analysis similarly incorporate one or more methods to
reduce variations within and between instruments.

Differences between the spectrometers, even from the same
manufacturer andmodel in the same laboratory are minimized by
routine calibration adjustments. Weekly adjustments on the
calibration models are performed to correct or adjust the
prediction models used on the different instruments in the
laboratory. These adjustments compensate for any week-to-
week changes in path length, temperature and humidity
variations, mechanical wear, sample handling and minor
changes in detector, source and the mechanical and electronic
performance. (Young, 1978). Such changes can result in changes
in peak intensity or band shape which would render the
prediction results inaccurate.

Standardization of MIR spectrometers is particularly
necessary for exchange of MIR spectral databases across
laboratories and countries. The standardization procedure
corrects for systematic variations in intensity due to random
variations in linearity of the detectors, or in the relative intensity
across the wavelength range from different instrument
manufacturers and models. Within the same instrument, the
standardization procedure also corrects for path length changes
with time, due to erosion of sample cell windows made of CaF2
and due to window contamination in the case of diamond sample
cell windows. It also corrects for shifts in frequency (or
wavenumber), however these are random and if present,
would occur on a very minor scale as this is an effect of laser
fluctuation, source variation and detector instability, all of which
are usually minor compared to other instrument variations.

For the FOSS MilkoScan™ FT1, FT2, FT120, FT + ,
MilkoScan™ 7 and FT6000 milk analysers, a patented

standardization procedure has been developed for regular use
which applies a slope and intercept adjustment to the spectra
recorded on an instrument to correct for wavenumber
(frequency) shift, changes in intensity and changes in linearity
due to instrument variations over time. The procedure involves
recording a spectrum of a standardization liquid and comparing
the intensities and wavenumber positions at two selected
wavelengths with those in a standard spectrum (“Master or
Gold equalizer spectrum”) stored on the instrument. Any
differences between the spectrum of the standardization liquid
and gold equalizer spectrum are corrected for by applying four
correction factors: A and B for intensity variation, and α and β for
wavenumber shifts (Hansen, 2014).

An alternative and non-instrumental standardization method
called Piecewise Direct Standardization (PDS) (Wang et al., 1991)
was recently used to standardize spectra of samples measured
with different makes of instruments (Delta, Bentley, and FOSS)
inside a European dairy network. (Grelet et al., 2015a; Grelet et al.,
2015b). This standardization aimed to allow spectra from
different sources to be pooled and matched to physiological
data in a common database to create calibrations predicting
cow fertility, health and environmental and feeding indicators.
The application of PDS on spectra recorded on 21 different
instruments in ten laboratories was found to significantly
reduce the RMSE (Grelet et al., 2015b). However, this
procedure requires a large amount of post-processing of the
spectra and provides retrospective rather than time-based
monitoring of instrument performance.

In this paper we describe an innovative approach that covers a
different aspect of instrument standardization, namely the
routine monitoring of faults or discrepancies in the MIR
spectrometers in a single milk testing laboratory over time.
This would have a complementary function to the calibration
transfer and instrument standardization approaches by
monitoring with time the instrument performance. The
method relies on measuring spectral variations over time of a
pilot sample of milk that is recorded on all the instruments in the
laboratory at the same time. A spectrum of the same pilot milk
sample is recorded approximately every hour on all instruments
in the same laboratory over a period of a week; this is repeated
every week using a fresh pilot sample. The effects of day-to-day
variation within the individual spectrometers over the week and
the variations between the individual laboratory spectrometers,
are measured using ASCA (Analysis of variance - simultaneous
component analysis) of the spectra (Jansen et al., 2005; Smilde
et al., 2005). ASCA is a method used to determine which factors
within a fixed effects experimental design are significant relative
to the residual error and permits an ANOVA-like analysis even
when there are many more variables than samples, as in the case
of spectra (Smilde et al., 2005). In this study, the contributors to
variation in the spectral intensities over the week were assumed to
be instrument and weekday as the main factors, and the
interaction between them. The purpose of the study was to
explore whether ASCA could provide a useful tool for
monitoring and comparing the performance of four MIR milk
analysers in a single milk test laboratory in New Zealand. The
ability of ASCA to measure changes or differences in the actual
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spectral output from each instrument allows identification of the
source of variation on a weekly basis and thus enable timeous and
appropriate intervention.

MATERIALS AND METHODS

Pilot Milk Samples
The pilot milk sample was prepared by combining randomly
selected milk samples from three or more different farms from
different regions. Every week a new pilot sample was made up as a
fresh sample. The aim of sourcing milk samples from different
suppliers was to provide the most representative pilot sample, by
averaging out milk compositions from different regions of NZ.
The pilot sample was then preserved with bronopol and stored in
a refrigerator to be used as the single pilot sample for all
instruments over that week. For each subsequent week a new
pilot sample was prepared. Approximately every hour, a sample
of milk from the same pilot sample was introduced to each of the
instruments in use, in between measurement of the routine milk
samples. This occurred on each MIR analyzer in the laboratory
over a period of 1 week from aliquots of the same pilot milk
sample. Every week, a fresh pilot sample was prepared for the
following week’s measurements.

MIR Spectra
The MIR spectra of aliquots of the same pilot sample were
recorded on between two and four FOSS milk spectrometers
at any one time, named in this study as MS1, MS2 (FT6000
models with diamond sample cuvette windows), MS3, MS4 (FT +
models with CaF2 sampling windows), and MS7 and MS8
(MilkoScanTM 7 with CaF2 sampling windows). Although
MS1 and MS2 are the same FT6000 model type, MS3 and
MS4 are of the same FT+ model type, and similarly MS7 and
MS8 are both MilkoScanTM 7, each are individual instruments
and will show differences in variations arising from their optical
components. For example, the globar light source intensity,
detector sensitivity/noise, homogenizer function or
interferometer function. Even slight variations in these
components of the optical bench will affect the spectral
intensities to different extents. These differences are
minimized by regular (approximately 6-weekly) instrument
standardization procedures (Hansen, 2014). Variations in the
predicted milk components are minimized by weekly calibration
adjustments by the milk test laboratory of the slope and bias of fat
and protein calibration models for a calibration set.

All spectra were recorded between 929 cm−1 and 5,000 cm−1 at
spectral resolution 16 cm−1, and ratioed against a water
background. The spectra were transformed by an inverse log
from transmittance to absorbance. Although the spectrum is
measured over 929 to 5,000 cm−1, many of these regions were
not usable for measurement of milk components. This is mainly
because of the intense absorption by water at specific frequencies,
although subtracted out, results in random noise between
3,600–3,000 cm−1 and between 1,693–1723 cm−1. These regions
were exluded from the ASCA analysis. In addition, the region
between 1785 cm and 1 to 2,600 cm−1 was also excluded weak

inteference fringes are visible in the region, arising from internal
reflection between the inside windows of the samplng cuvette.
This region also includes absorption bands by atmospheric CO2.
These regions were therefore excluded in order to be able to
identify variations as being due to changes in instrument
parameters within or between instruments or due to other
factors such as laboratory environment conditions.

Fat, Protein, C16:0 and C18:0 MIR
Measurements in Pilot Milk Samples
In order to assess the influence of spectral variation on the MIR
predictions of the components in the pilot milk MIR
predictions, fat measurements (ranging between 3.13–6.54 g/
100 ml) and true protein (3.17–4.61 g/100 ml) were selected as
examples of major milk components. Also, two fatty acids were
selected as minor milk components: the more abundant C16:0
(ranging from 0.94 to 2.04 g/ g milk) and C18:0 (ranging from
0.33 to 0.75 g/100 ml).

Data Analysis
The first step in ASCA is a decomposition of the variation for
every variable (wavenumber) through ANOVA (Jansen et al.,
2005; Zwanenburg et al., 2011). We set up a data matrix, X, for
each week that contains the spectra of each instrument, and a
design matrix that defines the instrument and weekday for each
spectrum. An ANOVA is performed for every wavenumber in the
FTIR spectra of each pilot sample (week) to determine whether
the variation in the spectral data matrix is due to a weekday effect
(milk changing or instrument varying over the week), instrument
effect (difference between instruments), interactions between
instrument and weekday, or other reasons such as noise not
described by any of these effects (residual variation). So, for every
variable (wavenumber) we define a main effect (the mean), factor
effects (instrument and weekday), interaction effects (between
instrument and weekday) and a noise or residual term. This
results in the definition of different effect matrices:

X � Xmean + Xw + Xi + Xwi + Xres (1)

where w � weekday, i � instrument, wi � interaction between
instrument and weekday and res � residuals.

These matrices are made of identical copies of the mean
profiles calculated by averaging all the replicates at the
different levels of each factor or interaction. For instance, if a
factor has two levels, half of the rows of the corresponding effect
matrix will contain identical copies of the mean profile of the
experiments in which the factor was at level 1; the other half will
be made of the average of the remaining signals (i.e., those
corresponding to level 2).

Once this decomposition has been done, the effect of the
individual design terms is calculated as the sum of squares (SSQj)
of the corresponding effect matrix, Xj:

SSQj � ‖X 2
j‖ j � i, w, wi (2)

Accordingly, the portion of the total variance in X, after
centering, accounted for by any of the design terms can be
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calculated by dividing SSQj by the sum of squares of the mean-
centered data (X − Xmean). The contributions of a factor in the
ASCA model can be summarized by dividing the sum of squares
of a factor effect matrix by the sum of squares of the mean-
centered data.

If a factor/interaction is found to have a significant effect (e.g.,
by means of permutation tests), PCA is then performed on the
corresponding matrix Xj to correlate the effect to the variations
observed in the spectroscopic profiles.

Xj � TjP
T
j + Ej j � i, w, wi (3)

where Tj, Pj and Ej are the matrices of PCA scores, loadings and
residuals, respectively, while the superscript T indicates matrix
transposition. Additionally, to carry out multiple comparisons,
when the number of levels for a factor is higher than two or, in
general, to graphically visualize the significance of the effect of a
design term, it is customary to calculate a new set of scores
Tj+res by projecting the residual matrix onto the PC subspace of
the factor/interaction of interest:

Tj+res � (Xj + Xres)Pj j � i, w, wi (4)

For all the models, to evaluate the statistical significance of the
effects, the calculated values of the sum of squares of the
corresponding effect matrices were compared to their null
distributions, non-parametrically estimated by means of
permutation tests (Zwanenburg et al., 2011). Permutation tests
were run on the spectra from each week to evaluate the
significance of the effect of the different instruments and days in
the week, and of their interaction, with 1,000 randomization per
model; effects with p < 0.05 were deemed significant. The PCA
scores and loadings of the corresponding effectmatrices were used to
highlight differences in the spectra, or changes over time, as
influenced by instrument differences or weekday. Box plots were
used to monitor differences in values predicted by the calibration
models with time.

For each week’s worth of data, outlier removal was
performed prior to ASCA calculation, as there were often a
small number of spectra with highly anomalous behavior. After
calculating PCA models, outliers were identified based on the
values of Hotelling T2 and Q residuals using the R package
“mdatools” (Kucheryavskiy, 2020; Kucheryavskiy, 2021). A
square cutoff option was used in which samples with T2 >
T2
lim or Q > Qlim (Pomerantsev, 2008), with T2

lim were calculated
using the Hotelling T2-distribution and Qlim being calculated at
a 99% confidence level based on the corresponding null
distributions. These thresholds were chosen so as to include
enough spectra to enable comparison of the number of outliers
from each instrument, while excluding extreme values to avoid
unduly influencing the results of ASCA modeling and sum of
squares of the effects.

All computations were performed using the R programming
language version 4.0.5 (R Foundation for Statistical Computing,
Vienna) and the RStudio integrated development environment
(RStudio Team, Boston). The “MetStaT” package was used for
ASCA calculations and the package “ggplot2” was used for
generating figures.

RESULTS

ASCA
A total of 223 weeks’ worth of data comprised the full dataset
which spanned from December 2016 to March 2021. Particularly
in the winter season (June-August) when fewer milk samples
were analysed, and in other periods when one or more
instruments were under maintenance, there were not enough
instruments active or not enough days in the week with sufficient
measurements to perform ASCA. These were excluded from the
analysis so that ASCA was performed on the remaining 177 of the
223 weeks.

The total sum of squares (TSSQ) for each of the 177 weeks,
obtained from the ANOVA calculation of the ASCA algorithm
are plotted in Figure 1 over the time period December 2016 to
March 2021. The TSSQ was adjusted for sample size to TSSQ
(adj), as the number of samples over the measurement period
varied each week between 202 and 1,324, depending on time of
year (fewer samples in winter season) or whether instruments
were undergoing maintenance. The plot of TSSQ (adj) in
Figure 1 shows the overall variance for every week for all
the instruments in the laboratory and serves as a useful
monitor of instrument performance and/or laboratory
stability.

The shaded regions in the plot indicate changes in which
laboratory instruments were used. Between weeks 1 and 83, the
four instruments MS1, MS2, MS3, and MS4 were active, while
over weeks 84–142 only instruments MS3, MS4 and MS7 were
active. From weeks 143–223, the four instruments MS3, MS4,
MS7, and MS8 were active. The dashed lines indicate the
thresholds for one (0.0022), two (0.0044) and three (0.0066)
standard deviations of all 177 weeks’ TSSQ (adj) values. These
thresholds can be selected to flag when the overall spectral
variance deviates from the norm. The mean TSSQ (adj)
(0.0015) is also indicated on Figure 1 as a green dotted line.

For 130 of the 177 weeks (74%) the TSSQ (adj) was below the
mean. In 28 of the 177 weeks (15%) the TSSQ (adj) was above one
SD (σ) of the 177 weeks’ TSSQ (adj) values. Of these 28 weeks,
seven exceeded two SD’s (4% of the 177 weeks) and six exceeded
three SD’s (3% of the 177 weeks), with 15 exceeding only one SD
(8% of the 177 weeks). The weeks with TSSQ (adj) exceeding one,
two or three SD’s are labelled according to the major contribution
from one or more of weekday effect (W), instrument effect (I), or
residual effect (R). There was no correlation between the TSSQ
(adj) exceeding one, two or three times the SD of the 177-weeks
TSSQ (adj) values with time of year or with season.

Figure 2 shows the percentage contribution to the total SSQ
(representing the total variance) for each week, by the instrument
effect (black trace), weekday effect (green trace), weekday/
instrument interaction (blue trace) and residual factors/noise
(grey trace). Evident from the graph is that weekday changes
originating from the sample itself or within each instrument, and
weekday/instrument interactive effects contribute very little to
the overall variance. Differences between instruments and
residual variations form the major contributions; only three of
the 177 weeks showed greater contribution from weekday
variation than instrument effects. 53 of the weeks have
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residual effects contributing more than either instrument or
weekday effects to the TSSQ (adj).

In all 177 weeks measured with ASCA the contribution of the
instrument effects to the TSSQ (adj) was significant, having p <
0.05. The weekday effects were also significant except for two of
the weeks: with only weeks 137 and 188 having p > 0.05.

Interaction effects between weekday and instrument were
significant for all weeks except for 43 and 177. Those weeks
exceeding one, two and three standard deviations of the
177 weeks’ TSSQ (adj) values are listed in Table 1, with the
number of SD’s indicated in the fifth column from the right. Also
listed are the total number of samples (N) for each week and the

FIGURE 1 | Total sum of squares adjusted for sample size (TSSQadj), for instruments MS1, MS2, MS3, and MS4 from weeks 1–83 (green shaded region), for
instrumentsMS3,MS4, andMS7 over weeks 84–142 (orange shaded region) and for instrumentsMS3, MS4,MS7, andMS8 over weeks 143–223 (blue shaded region).
Weeks in which the TSSQ (adj) exceeded thresholds of one, two and three times the SD (σ) of the 177 weeks TSSQ (adj) values are labelled with the main contributing
effects. The mean TSSQ (adj), labelled as µ, is represented by a green horizontal dotted line.

FIGURE 2 | Weekly percentage contribution of instruments (black trace), weekdays (green trace) and weekday/instrument interactions (blue trace), to the total
variance (TSSQ, adjusted for sample numbers) in the pilot sample spectra. Also plotted is the residual effect (grey).
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ASCA output of percentage contribution from each of the effects:
weekday (SSQ day), instrument (SSQ instr), weekday/instrument
interaction (SSQ inter), and the residual variance due to other
factors and noise (SSQ resid).

Of interest is how the TSSQ (adj) affects the accuracy of the
milk component MIR predictions of fat, true protein, C16:0 and
C18:0. The columns on the right-hand side of Table 1 give the
number of SD’s by which each of the MIR predicted values of fat,
protein, C16:0 and C18:0 exceed the average 177-weeks SD of
each component: i.e., by one, two or three SD’s. Of the 25 weeks
shown in Table 1 having TSSQ (adj)>1SD, the number of weeks
in which the SDs of the fat predictions overall exceed one or more
SDs is 10. For true protein, 24 of the 25 weeks have predicted
values with SD’s exceeding the average SD by one or more, while
for C16:0 and C18:0 this occurs in all 25 weeks. This is not
unexpected, as predictions of more minor components would be
expected to be more sensitive to variations between instruments
or within each instrument through the week, whether this is due
to changes in the pilot sample, other effects such as laboratory
environment or instrument variations.

PCA of Weeks Exceeding Three Standard
Deviations
The instrument scores and loadings plots from the ASCA can
provide more information about the spectral variations over

the weeks with TSSQ (adj) exceeding one or more standard
deviations (SD). Of particular interest are the weeks showing
TSSQ (adj) exceeding the three SD threshold. The scores and
loadings of three of these weeks with such TSSQ (adj):
weeks 50, 86, and 217, are shown as examples in Figure 3
(week 50), Figure 4 (week 86), and Figure 5 (week 217). Also
plotted are the spectra after mean centering and boxplots for
the MIR-predicted components fat, true protein, C16:0 and
C18:0. The mean and standard deviations are indicated in the
boxplots for each component for that week, with a number of
asterisks that indicate the number of SDs by which each
predicted component exceeds the SD of the 177 weeks TSSQ
(adj) values (* for 1 SD, ** for 2 SDs and *** for 3SDs). Breaks
in the plots of the spectra and loadings show the spectral
regions excluded from the ASCA analysis. The scales of the
intensity axis of the box plots have been expanded over
reduced regions to exclude extreme outliers, in order to
more clearly compare the medians inter quartile ranges
(IQR) and whiskers.

According to Table 1, the instrument effect in week 50
contributed 72.6% of the TSSQ (adj). The mean centered
spectra in Figure 3A show clear differences in the spectral
intensities, particularly between the MS3, MS4 instruments
and MS1, MS2 instruments, and particularly in the spectral
region 930–1,200 cm−1. The PCA scores in Figure 3C show
clear separation along PC1 for the two sets of instruments.

TABLE 1 | List of weeks in which the TSSQ adjusted for sample number [TSSQ (adj)] exceeded one, two or three times the standard deviation of the 177 weeks, given in the column
fifth before the last. N is the total number of samples in eachweek. The percentage that each of the factors contribute to eachweekly total SSQ [TSSQ (adj)] are given as SSQ (day),
SSQ (instr) and SSQ (inter) (weekday/instrument interaction). The residual variance due to other factors is SSQ (resid). The number of standard deviations (SDs) by which the SD’s in
each of MIR predicted values of fat, protein, C16:0 and C18:0 exceed the SD’s of the 177 weeks by 1, 2, or 3 SD’s are given on the four rightmost columns of the table.

Week No No.
samp

SSQ (day) SSQ (instr) SSQ (inter) SSQ (resid) TSSQ TSSQ
(adj)

No of
SDs

SDsa

(fat)
SDsa

(prot)
SDsa

(C16:
0)

SDsa

(C18:
0)

4 853 0.8 87.2 1.35 11.46 1.92 0.0023 1 1 3 3 3
5 712 0.88 90.65 1.17 8.17 1.57 0.0022 1 − 1 2 3
6 765 1.39 86.65 2.53 11.1 1.82 0.0024 1 − 1 3 3
8 907 0.71 88.44 0.82 10.61 2.12 0.0023 1 1 1 2 3
17 578 6.67 63.58 4.5 30.9 1.69 0.0029 1 1 1 2 3
18 725 3.36 67.46 2.7 28.01 9.48 0.0131 3 − 3 3 3
22 252 5.46 29.55 4.81 60.75 0.71 0.0028 1 3 1 3 3
43 1125 4.89 58.81 9.67 27.24 3.63 0.0032 1 − 2 2 3
48 1164 2.87 72.83 4.93 19.81 4.06 0.0035 1 − 2 3 3
50 1306 3.03 72.61 8.24 16.91 24.18 0.0185 3 − 3 3 3
61 469 6.86 36.08 4.57 52.6 2.42 0.0052 2 1 3 1 2
86 514 76.04 0.37 0.39 23.3 8.69 0.0169 3 3 1 3 3
99 1122 1.72 56.96 2.63 40.03 3.75 0.0033 1 1 1 1 3
100 1002 3.41 40.05 2.7 55.25 3.95 0.0040 1 1 1 2 3
116 848 2.21 40.25 2.96 55.26 2.87 0.0034 1 3 1 3 3
141 671 3.76 63.54 10.86 23.3 1.77 0.0026 1 − 1 1 3
164 747 2.24 35.11 4.03 58.76 2.22 0.0023 1 1 2 2 3
174 512 18.28 10.49 9.51 61.35 2.6 0.0051 2 − 1 2 3
176 504 5.16 42.66 6.79 49.39 1.94 0.0039 1 − 1 2 3
177 372 22.71 15.09 2.85 61.74 1.11 0.0030 1 − − 2 3
178 334 24.32 1.35 0.75 73.85 0.94 0.0028 1 − 1 1 3
204 1144 3.12 79.21 5.77 13.06 3.34 0.0029 1 − 1 3 3
217 793 1.32 83.94 1.07 13.74 6.13 0.0077 3 − 2 3 2
220 749 9.16 11.72 8.14 71.66 2.13 0.0028 1 − 1 2 3
221 578 17.37 21.05 7.97 54.69 1.89 0.0033 1 − 1 2 3

aNumber of standard deviations exceeding the average SD of 177 weeks, by theMIR-predicted values of fat, protein, C16:0 andC18:0 in each of the 25 weeks having TSSQ (adj) > 1 SDof
the 177 weeks.
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This can be explained by differences in FOSS instrument
models; MS3 and four are FT6000 models with CaF2
windows while MS1 and MS2 are FT + models with
diamond windows. Additionally, along PC2, MS1 and MS2
are more separated than MS3 and MS4. Ideally all four scores
should overlap as the six-weekly standardization procedure
adjusts the slave spectra of each instrument to match a master
spectrum. The PC1 loading in Figure 3B shows that the main
difference between the two spectrometer models are overall
intensity, possibly due to pathlength differences, with the
CaF2 windows in MS3 and MS4 possibly eroded at this point
to a slightly wider pathlength. The regular wavelike features
in the loadings may be due to interference patterns from
internal reflectance in the cell windows. These interference
patterns were also seen in the spectral regions between 1730
and 2,650 cm−1 which were excluded from the analysis for
this reason (besides this region displaying atmospheric CO2

bands).
The boxplots of the MIR predicted components in Figure 3D,

however, do not correspond with the PCA observations of higher
fat for MS3 and MS4 compared with MS1 and MS2. This may be
because the weekly calibration adjustments for fat have
compensated for the spectral differences. The instrument

differences for week 50 do, however, result in the true protein,
C16:0 and C18:0 values for this week showing SDs three times
higher than the 177-weeks average SD, while the fat predictions
were not affected.

The results for week 86 are given in Figure 4. In week 86, the
weekday effect contributed 76% to the TSSQ (adj). Being the
winter season, only two spectrometers, MS3 and MS4 were active
in this week.

The mean-centered spectra clearly show a subset of spectra
from three of the weekdays that markedly differ from the
others. This is also seen in the weekday scores plot. PC
loading 1 is mostly represented by fat bands (C-H
stretching of lipids 2,550–2,962 cm−1, C�O stretching of
fatty acids at 1745 cm−1 and C-O-C stretching of fatty acid
esters at 1,160 cm−1) (Grelet et al., 2015b). The separation of
the scores according to these differentiates some of spectra in
weekdays 1, 2, and three from the rest of the spectra in days 1,
2, and 3, and all the spectra in days 4–7. The weekday effect
accounted for 76% of the variance compared to around 0.4%
from instrument effects and weekday/instrument
interactions. This implies that all both instruments, MS3
and MS4 underwent changes in weekdays one to three that
resulted in a bigger effect than any differences between the

FIGURE 3 | Mean centered spectra (A), instrument loading plots (B) and scores (C) for pilot spectra from week 50, in which the TSSQ (adj) exceeded 3 standard
deviations. Boxplots (D) show the predicted fat, protein, C16:0 and C18:0 values from each instrument and their mean values and standard deviations (SDs), marked *
for 1SD, ** for 2SDs and *** for 3SDs greater than the SD of the 177 weeks TSSQadj values.
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instruments. These weekday differences result in the MIR-
predictions of fat, C16:0 and C18:0 having SD’s more than
three times the SD of the 177-weeks TSSQ (adj). The protein
was less affected, exceeding only one SD this week; this is also
evident in the loadings which represent mainly fat and
fatty acids.

The results for week 217 are shown in Figure 5. During
week 217 three instruments were active and the instrument
variation contributed 83.9% to the TSSQ (adj). The separation
of instrument scores in the scores plot in Figure 5C shows that
the spectra of instrument MS3 are consistently different from
those of the MS4 and MS7 instruments. All three instruments
are the same model, however, the higher negative PC1 spectral
loadings appear to show that MS3 has generally higher spectral
intensities than the other two (Figure 5A). This difference
translates into higher predicted values for fat and C16:0 as
shown in the boxplots (Figure 5D), but the MS3 C18:0 values
are lower. The differences in the spectra have likely been
compensated for by the weekly fat and protein calibration
adjustments, given that the SDs for fat and protein are below
one SD of the 177-weeks average. The MS3 spectral differences
do affect the variation in measurement for true protein,
however, and also affect the C16:0 and C18:0

measurements, with the SD at three times and twice the
177-weeks average, respectively.

PCA of a Series of Four Successive Weeks:
193 to 196
Of interest for routine monitoring of instrument performance are
changes in contribution from instrument effect on TSSQ (adj)
over successive weeks. An example of such a change is seen in the
sharp increase in instrument effect (black trace) on the TSSQ
(adj) in Figure 2 between weeks 193 and 196. These weeks were
selected as an example because over this period, the same four
instruments were in use and the TSSQ (adj) was well below the
mean. A PCA could show useful insight into the observed
increase in instrument effect, while the corresponding boxplots
would show how this affects the MIR-predicted component
values. The PCA scores and loadings are plotted for
weeks 193–196 in Figure 6, and the corresponding boxplots
for the four MIR-predicted components are given in Figure 7.

The scores can be seen to drift slightly over the first 3 weeks,
with the biggest change between instrument scores and loadings
occurring between weeks 194 and 195, while those for weeks 195
and 196 are similar. Differences in scores between week 193 and

FIGURE 4 |Mean cenered spectra (A), instrument loading plots (B) and scores (C) for pilot spectra from week 86, in which the TSSQ (adj) exceeded 3 standard
deviations. Boxplots (D) show the predicted fat, protein, C16:0 and C18:0 values from each instrument and their mean values and standard deviations (SDs), marked *
for 1SD, ** for 2SDs and *** for 3SDs greater than the SD of the 177 weeks TSSQ (adj) values.
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194 are mainly along PC1 and mainly for MS3 (Figures 6A,C),
with the main difference in the PC1 loadings between weeks 193
and 194 being in the relative intensities of the lipid C-H stretch
modes at 2,856 and 2,926 cm−1 (Figures 6B,D), and the protein
amide II band intensity around 1,550 cm−1. This is consistent
with an increase in the instrument effect from 31.5% in week 193
to 53.7% in week 194, and an increase the weekday effect from
3.1% in week 193 to 8.5% in week 194. The difference observed in
the loadings affect the protein prediction by MS3 (Figure 7B),
however, it does not result in a SD above the 177-weeks average.

Between weeks 194 and 195 there is a noticable drift in the
scores for MS4 away from those of the other instruments, and
further up PC2 (Figures 6E,G). The loadings show that these
differences are due to clear changes in relative intensities between
the C-H stretching region at higher wavenumbers
2800–3,000 cm−1 typical for fat and the C-O stretching and
C-H deformations at lower wavenumbers between
1,000–1,100 cm−1, representing mostly lactose (Figures 6F,H).
These changes result in a slight increase in fat prediction for MS3
relative to the other instruments (Figures 7K,L), and an increase
in SD from one to two SD’s above the 177-weeks mean in
predicted values for C16:0, indicated by single asterisks in the
boxplots in Figures 7K,L for weeks 195 and 196. These changes

also correspond with a small increase in instrument effect, from
53.6% in week 194 to 56.1% in week 195 (Figure 2). At the same
time the weekday effects decrease from 8.5% in week 194 to 6.3%
in week 195, corresponding with reduced spread of scores for
MS3 along PC1 (Figures 6C,E). The changes in scores plots and
loadings from weeks 195–196 are small, however, the
contribution of instrument effects increases from 56.1 to
66.1% between weeks 195 and 196, while the weekday effects
decrease from 6.3 to 2.3%. The change in relative contribution of
these effects can be seen in a small decrease in spread over PC1 of
the scores in Figure 6G for week 196.

DISCUSSION

Plotting the TSSQ (adj) for each week with time (Figure 1)
presents an overview of the overall variance of the active
instruments in the laboratory over the time period December
2016 to March 2021. This 4 year time record enables a robust
measure of the SD expected over all seasons, and can be used to
monitor instrument performance and/or laboratory
environment stability with time. When the TSSQ (adj) is
flagged as exceeding one, two or three times the SD of the

FIGURE 5 |Mean centered spectra (A), instrument loading plots (B) and scores (C) for pilot spectra from week 217, in which the TSSQ (adj) exceeded 3 standard
deviations. Boxplots (D) show the predicted fat, protein, C16:0 and C18:0 values from each instrument and their mean values and standard deviations (SDs), marked *
for 1SD, ** for 2SDs and *** for 3SDs greater than the SD of the 177 weeks TSSQ (adj values.
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FIGURE 6 | Instrument scores and loading plots, respectively, for pilot spectra from four successive weeks: (A) and (B) week 193, (C) and (D) week 194, (E) and
(F) week 195 and (G) and (H) week 196.
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177 week period, the contribution of instrument, weekday,
interaction between these or residual effects can be examined
to identify the source of variation. The plot showing the
contribution from these effects in Figure 2 shows that over
the 4 years, the major contributions to the TSSQ (adj) of each
week are differences between instruments and residual effects.

Factors contributing to residual effects include ground
vibrations, electronic gain settings, cell temperature,

instrument temperatures and operator changes (Young, 1978).
Controlling the lab temperature and humidity aims to minimize
variations in these. Instrument effects have multiple sources of
variations. The detectors used in the MIR milk instruments are
DTGS (deuterium triglyceride sulphate) thermal detectors that
convert thermal energy to electrical signal; they respond to
temperature by changing their capacitance which is measured
as a voltage change. Again, controlling the lab temperature and

FIGURE 7 | Boxplots for fat, true protein, C16:0 and C18:0 predicted from pilot spectra using instruments MS3, MS4, MS7, and MS8, over successive weeks that
had low TSSQ: week 193: (A) Fat, (E) True protein, (I) C16:0, (M) C18:0; week 194: (B) Fat, (F) True protein, (J) C16:0, (N) C18:0; week 195: (C) Fat, (G) True protein,
(K) C16:0, (O) C18:0 and week 196: (D) Fat, (H) True Protein, (L) C16:0, (P) C18:0. The plots for each week show the median, IQR and variability outside the upper and
lower quartiles for each component. Asterisks represent the number of SD’s, marked * for 1SD, ** for 2SDs and *** for 3SDs, by which the predicted component
exceeds the average of all 177-weeks average SD.
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humidity minimizes variations in these detectors, however, noise
from the IR source due to random photons and thermodynamic
noise in interaction with these photons can also affect both the
intensity of, and noise in the signal (King et al., 2004) and so
contribute to residual variation. In addition, pathlength changes
are commonly caused by build-up of protein and foreign material
on the windows of diamond sample cells, or gradual erosion of
sample cell windows made of CaF2. This results in changes in path
length, which also greatly affect the IR signal/noise ratio in aqueous
systems, (Jensen and Bak, 2002), and can cause a calibration shift.

The homogenizers on each individual instrument wear at
different rates, depending on the number of samples through
each instrument. The effects of variations in these instrument
components on the spectra are minimized by routine
standardization procedures, typically every 6 weeks, and by
monitoring a homogenizer index which measures the
efficiency as an approximate prediction of one of the fat
globule distribution parameters (FOSS, private communication).

Considering these possible sources of variation, instrument
differences would therefore be expected to have the greatest effect
on variations in the pilot milk spectra over the week, with residual
effects also contributing to a large extent. The p-values>0.05
confirming significance of the instrument effects throughout all
177 weeks confirms this, while the weekday variations within
each instrument were significant for only two of the 177 weeks.
Recent work on minor milk components such as milk urea has
also shown the impact of inter instrument differences on IR
predicted results (Wood et al., 2020; Portenoy et al., 2021).

Of the 25 weeks in Table 1 with TSSQ (adj) exceeding one or
more of the 177-weeks average SD, only two of the 177 weeks (1% of
the time) hadTSSQ (adj) values above 2SD’s and in only four (2%) of
the time) the TSSQ (adj) exceeded 3SD’s (Table 1). The TSSQ (adj)
in the other 19 weeks the exceeded only one SD above the 177-weeks
mean (11% of the time). This is a relatively low rate which shows that
the weekly calibration adjustments and regular instrument
standardization procedures are effective in adjusting for
instrument drift and maintaining the inter-instrument and intra-
instrument variances below one SD of the 177-weeks mean, during
152 of the 177 weeks (86% of the time). Of the 25 weeks in Table 1,
the instrument effect dominated the TSSQ (adj) in 13 weeks (52%),
while the weekday effect dominated once (4% of the time) while
residual effects dominated in 11 weeks (44% of the time).

The 25 week period in which the TSSQ (adj) > 1SD of the 177-
weeks average was found to affect the mean and SD of the four
components fat, protein, C16:0 and C18:0 to different extents. In
this period, the predicted fat SD exceeded the 177-weeks average by
one or more in only 10 of the 25 weeks, while for the true protein
this occurred in 24 of the 25 weeks. The prediction of the less
abundant fatty acids, C16:0 and C18:0, was affected in all 25 weeks,
with C18:0, the least abundant consistently showing SD’s three
times higher than the 177-weeks average. Predictions of other fatty
acids, not discussed here, were also found to show differing extents
of SD’s over this period, and greater than those shown by the major
milk components fat, protein, lactose and total solids.We thus note
the relevance of this more sensitive monitoring approach
considering the recent trend towards deployment of predictive
models focused on greater use of IR data of milk (Grelet et al.,

2017). Recent work on minor milk components such as milk urea
has also shown the impact of inter instrument differences on IR
predicted results. (Wood et al., 2020; Portenoy et al., 2021).

The PCA scores and loadings obtained from the ASCA analysis
of the spectra are useful for monitoring instrument drift with time.
This was shown in the example of four successive weeks 193–196,
during which a marked increase in instrument effect from 31 to 66%
was observed, while at the same time the residual variation
contribution decreased from 53 to 29%, while weekday or within-
week variations showed no trend, instead signaling spread of
weekday scores along PC1. The scores and loadings can be
monitored to signal drifts beginning to occur in individual
instruments week by week. Weekly calibration adjustments of the
instruments allow adjustment of bias and slope of the fat, protein,
total solids and lactose calibrations in the laboratory and thus
compensate for differences in all the milk component predictions
that may arise through weekly changes in instrument performance.
The ASCA scores are especially sensitive to differences in spectral
intensities of the different instruments on different weekdays, and to
changes with time in relative intensities over the spectral region.
Monitoring the ASCA scores and loading plots could provide a
useful indicator of the extent of instrument drift, and signal when
standardization of the instruments would be necessary rather than
adjusting the calibration to compensate for these changes. We
suggest such an approach could be used in conjunction with
recent advances in instrument standardization that have allowed
calibrations to be deployed across networks of instruments from
different manufacturers (Grelet et al., 2021).

Monitoring the boxplots of predicted components could be useful
for testing the effectiveness of the calibration adjustments of the
major components andwhether these improve the predictions of less
abundant components such as individual fatty acids or indirectly-
measured traits. Comparison of the boxplots with the score plots and
loadings are also useful for evaluating when calibration adjustments
are compensating for instrument differences to an extent that
instrument signal standardization is necessary.

CONCLUSION

We have described the novel use of ASCA on the spectra of pilot test
milk samples over time as a new approach for routine monitoring of
instrument performance in a milk testing laboratory. Plotting of the
scores and loadings derived from the ASCA effect models, the mean
centered spectra and boxplots of the MIR-predicted components
provides a useful overview of the weekly performance of the
spectrometers in the laboratory, in terms of day-to-day variations
in spectral intensities, differences arising between spectrometers and
to what extent the spectral variance shows residual effects, not
explained by these two effects, such as changes in laboratory
environment or unexplained noise. This can be particularly useful
to flag unexpected laboratory environment changes or weekly
instrument changes that may affect the accuracy of the MIR-
predicted milk components. Weekly monitoring of these plots
can also serve as an indicator for when instrument
standardization of one or more instruments is necessary, and can
evaluate when the weekly calibration adjustments may be
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compensating for instrument differences. Comparison of the
boxplots with the score plots and loadings is also useful to signal
the effectiveness of instrument standardization and the weekly
calibration adjustments, especially with the trend towards greater
use of IR data for predicting milk components and other relevant
traits present in lower levels.
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