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Introduction: Nasopharyngeal cancer (NPC) is a multifaceted disease characterized by genetic and epigenetic modifications. While 
Epstein–Barr virus (EBV) infection is a known risk factor, recent studies highlight the significant role of DNA methylation in NPC 
pathogenesis. Aberrant methylation, particularly at CpG sites, can silence tumour suppressor genes, promoting uncontrolled cell 
growth. This study aims to analyse the methylation patterns in Indonesian NPC patients through whole-epigenome sequencing.
Methods: Seven clinical nasopharyngeal cancer samples were collected and confirmed histopathologically. DNA was extracted, 
sequenced using Oxford Nanopore technology, and aligned to the GRCh38 human reference genome. Methylation analysis was 
performed using modkit and statistical analysis with R software. Enriched pathways and processes were identified using 
ClusterProfiler in R, and gene overlap analysis was conducted.
Results: The analysis identified both globally hypermethylated and hypomethylated NPC samples. Key tumour suppressor genes, 
such as PRKCB, PLCB3, ITGB3, EPHA2, PLCE1, PRKCD, CDKN2A, CDKN2B, RPS6KA2, ERBB4, LRRC4, AKT1, PPP2R5C, and 
STK11 were frequently hypermethylated and confirmed to have lower expression in an independent NPC transcriptome cohort, 
suggesting their role in NPC carcinogenesis. Enriched KEGG pathways included PI3K-Akt signalling, ECM–receptor interaction, and 
focal adhesion. The presence of EBV DNA was confirmed in all samples, implicating its role in influencing methylation patterns.
Discussion: This study provides comprehensive insights into the epigenetic landscape of NPC, underscoring the role of CpG 
methylation in tumour suppressor gene silencing. These findings pave the way for targeted therapies and highlight the need for region- 
specific approaches in NPC management.
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Introduction
Nasopharyngeal cancer development (carcinogenesis) is a complex process involving both genetic and epigenetic 
alterations.1,2 While Epstein–Barr virus (EBV) infection is a major risk factor, epigenetic changes like DNA methylation 
are now known to play an increasingly important role. These changes involve adding methyl groups (chemical modifications) 
to DNA, often in regions called CpG sites. This disrupts normal gene expression and can silence tumour suppressor genes, 
promoting uncontrolled cell growth and cancer development. Aberrant methylation patterns are particularly pronounced in 
nasopharyngeal cancer, making them promising targets for diagnosis and potentially even future therapies.
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Recent studies indicate methylation could disrupt cellular pathways critical for preventing cancer, ultimately contributing 
to nasopharyngeal carcinoma (NPC) development.3–5 One key pathway involves tumour suppressor genes, which normally 
act as brakes on cell division.6 Methylation can silence these genes, allowing cells to divide uncontrollably. Studies have 
identified frequent methylation of genes like DAPK (Death-Associated Protein Kinase) in NPC patients.7 Disabling DAPK 
through methylation disrupts a cell’s self-destruction pathway, enabling damaged or abnormal cells to survive and potentially 
progress to cancer. There are many other pathways (such as PI3K, JNK, ERK, JAK, and RAS) when expressed abnormally 
may also contribute to cancer progression.8,9

Furthermore, methylation can tamper with DNA repair mechanisms. Normally, cells have processes to fix errors in their 
DNA. However, methylation can silence genes responsible for DNA repair, such as CCND1, CDKN2A, etc. leaving mutations 
unchecked.10 This accumulation of mutations can lead to uncontrolled cell growth and eventually contribute to NPC 
formation. Studies suggest a link between EBV infection, a major NPC risk factor, and abnormal methylation patterns.9,11 

EBV may trigger or influence these methylation events, creating a favourable environment for cancer development.9

Due to the aberrant methylation in NPC, one hypothesis is using hypomethylating agents in hypermethylated NPC 
type to reactivate silenced genes through demethylation.12 It is expected that it could restore normal cellular functions 
and potentially increase the efficacy of immune or chemotherapeutic strategies. Early trials of azacitidine and similar 
agents in other hypermethylated tumours have shown promise,13 with evidence of re-expression of silenced genes and 
increased sensitivity to other treatments.14 However, studies specifically investigating the use of hypomethylating agents 
in NPC remain limited with mixed result, with some preclinical data suggesting their potential to modulate key 
oncogenic pathways and improve therapeutic outcomes, but clinical trial has not shown tangible benefit.15–17

In general, nasopharyngeal cancer (NPC) is a cancer with a relatively low frequency of somatic mutation compared to 
other solid cancer.18 However, NPC has a higher frequency of aberrant methylation.18 It was found that NPC is generally 
globally hypermethylated, but recent findings suggested that there are also globally hypomethylated subtypes of NPC.19 

The environmental factors are known to influence DNA methylation patterns.20 Thus, NPC methylation signatures from 
a certain geographical region may differ with other regions. Here, we reported the Indonesian clinical NPC whole- 
epigenome sequencing and an in-depth analysis focus on CpG island methylation.

Method
Biospecimens
Seven clinical nasopharyngeal cancer samples were collected from the Radiation Oncology Cipto Mangunkusumo National 
General Hospital biobank. All samples were fresh frozen nasopharyngeal cancer biopsy tissue. The tissue collection was done 
through nasoendoscopy biopsy procedure for suspected nasopharyngeal cancer patients. Macroscopically apparent tumour was 
biopsied with some portion of it being stored in the fresh frozen tissue form in the biobank, and another portion was processed for 
histopathological examination. All seven samples were confirmed histopathologically to be undifferentiated non-keratinized 
nasopharyngeal carcinoma. This study was conducted in accordance with the principles of the Declaration of Helsinki. Ethical 
committee approval (KET-149/UN2.F1/ETIK/PPM.00.02/2023) from Faculty of Medicine, Universitas Indonesia ethical board, 
was obtained before the specimen collection. Inform consent was obtained before the biopsy procedure, and it was clearly stated 
that some portion of their biopsy tissues would be stored in the biobank for further molecular and genomic examination.

DNA Extraction
Fresh frozen samples were processed by thawing at room temperature. A minimum of 25 mg of tissue was used. The 
specimens were then mechanically dissected until very small pieces. DNA extraction was done using the Qiagen DNA 
Mini kit. The extraction protocol was followed in adherence to the manufacturer’s protocol for tissue DNA extraction. 
The extracted DNA was then measured for concentration and purity by using Qubit fluorometers and NanoDrop 
Microvolume Spectrophotometers, respectively. A minimum DNA of 1 µg was required for further library preparation 
and NGS sequencing. DNA purity was between A 260/280 of 1.8–2.0.
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Library Preparation and NGS Sequencing
Library preparation protocol used was Ligation sequencing DNA V14 (SQK-LSK114) from Oxford Nanopore. Library 
preparation was carried out in strict adherence to manufacturer protocol. The extracted DNA was further sequenced using 
Promethion 2 Solo NGS device from Oxford Nanopore. One promethion flow cell was used for each sample. The DNA 
was sequenced in its native form, and no PCR step is involved to preserve the modified bases (methylation information). 
The sequencing ran for 96–120 hours or until all pores from the flow cell was used up. In between the sequencing run, 
the flow cells were washed and reloaded with the library when the pore occupancy dropped to below 20%. The 
sequencing output was in the form of POD5 raw data.21

Basecalling and Alignment
After sequencing, the raw data was further basecalled using MinKNOW software powered by Dorado from Oxford 
Nanopore.22 Basecalling was done in super accuracy mode with dna_r10.4.1_e8.2_400bps_sup@v5.0.0 basecalling 
model with 5mC and 5hmC detection mode.23 Minimum sequencing quality score was 10, any bases below a quality 
score of 10 were excluded. Alignment was performed toward GRCh38 human reference genome. Minimum read depth 
required for further methylation analysis was 5.24 All bases below read depth 5 were excluded from methylation analysis. 
A separate alignment toward NC_007605 human gammaherpesvirus 4 (Epstein–Barr virus) was done. This was to 
confirm the presence of EBV DNA within our nasopharyngeal cancer specimen.

Methylation and Statistical Analysis
Methylation information of 5mC (5-methylcytosine) from all NPC specimens was piled up using modkit tool from Oxford 
Nanopore. A normal nasopharyngeal epithelium whole-epigenome methylation information was obtained in bigwig formats 
as a comparison from public GEO database (Biosample SAMN18923230, sample dataset GSM5270798_WGBS0024, 
available from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM5270798). The data was converted to non-binary 
BED format using BigWigToBedGraph tool from UCSC. The normal nasopharyngeal epithelium CpG sequences were 
originally aligned toward the hg19 normal human reference genome. Therefore, a conversion was done from hg19 to GRCh38 
normal human reference genome using Lift Genome annotation from UCSC to enable a comparable region because all our 
cancer samples were aligned toward GRCh38 normal human reference genome.

The individual sequencing position with methylation information from the normal nasopharynx and all NPC samples 
were further processed using R software. The methylation value in each position was in the percentage, and then a match 
of chromosome and position coordinate was made between the normal nasopharynx and each NPC sample. Global 
methylation was calculated by averaging the methylation value of all NPC samples and one normal sample. Then, an 
independent t-test of the mean between normal and each NPC sample was used to determine the statistical significance 
with p value less than 0.05 considered statistically significant. Global average methylation below the normal sample, 
which was statistically significant, was considered hypomethylated and vice versa. Visualization of the methylation 
analysis was done globally for all matched CpG regions across all NPC samples and normal sample in a heatmap by CpG 
region clustering. Heatmap visualization was done using Complex Heat Map package in R.25,26

The whole CpG region in entire human genome was extracted from UCSC table browser. This CpG region was used 
to calculate the average methylation value in normal and NPC samples. An independent t-test was performed to calculate 
the statistical significance of the average methylation value between normal and each NPC sample. A significant level of 
p-value less than 0.05 was used to indicate a real difference in methylation value. A computation extracting the 
methylation value of cancer sample subtracted to normal sample methylation value was done to determine which CpG 
regions were more hypermethylated or hypomethylated relative to the normal sample. Then, filtering was done to 
separate hypermethylated and hypomethylated CpG regions.

The hypermethylated CpG regions were further processed to compute for overlap toward all known genes using the 
R package TxDb.Hsapiens.UCSC.hg38.knownGene database. Then, the hypermethylated gene sets were extracted and 
processed for methylation enrichment analysis using ClusterProfiler in R.27 Methylation enrichment analysis was done by 
utilising pathways and processes from Kyoto Encyclopaedia of Genes and Genomes (KEGG) database and Gene Ontology 
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(GO) database for biological process (BP), molecular function (MF), and cellular component (CC). Methylation enrichment 
hierarchical network analysis map was visualized using hierarchical plot from R package ClusterProfiler.27 Each KEGG 
enrichment pathway analysis from all enriched samples was analysed for gene overlaps and visualised using upset plot.

The enriched genes, pathways and processes were extracted, and genes overlap computation was done using R to pinpoint 
which genes had the highest intersection among all hypermethylated pathways and processes. If a hypermethylated gene is 
found to be involved in many hypermethylated pathways and processes, it is more likely to be more important biologically. 
The hypermethylated genes were checked whether they are known tumour suppressor genes or not toward Tumour Suppressor 
Gene database (TSGene) from University of Texas.28 Furthermore, those enriched hypermethylated tumour suppressor gene 
were validated using independent nasopharyngeal cancer transcriptome profiling (data obtained from European 
Bioinformatics Institute, available from https://www.ebi.ac.uk/gxa/experiments-content/E-GEOD-12452/resources/ 
DifferentialSecondaryDataFiles.Microarray/normalized-expressions).29,30 The hypermethylated tumour suppressor genes 
with significantly lower expression in NPC tissue relative to normal nasopharyngeal tissue (p value <0.05 and FDR value 
0.05) were reported as likely to the driver of carcinogenesis in NPC.

Result
All 7 samples were successfully mapped against EBV genome, confirming the presence of EBV in all these NPC 
specimens. EBV 5mC methylation in sample 1, sample 2, and sample 4 was remarkably higher than the other samples. 
The statistics of the EBV methylation value is presented in Table 1. The EBV methylation value distribution across all 
samples is presented in the violin plot in Figure 1.

All the NPC methylation data are stored and made available in GEO database with accession number GSE272926. 
The global CpG methylation profile underwent unsupervised clustering using the Complex Heatmap R package to 
determine the methylation cluster relative to the normal nasopharyngeal epithelium. Among seven NPC samples, there 
were four samples that were globally hypermethylated, and the other three samples exhibit global methylation profile 
comparable to normal nasopharyngeal epithelium. The statistics of all the NPC samples and normal nasopharynx 
methylation value is presented in Table 2. The methylation value distribution across all NPC samples and normal 
nasopharynx is presented in the violin plot in Figure 2. The global CpG methylation heatmap of all NPC samples and 
normal sample is shown in Figure 3.

Analysis of Methylated KEGG Pathways and GO Processes
Methylation enrichment analysis based on the KEGG pathway identified enriched KEGG pathways for five NPC samples 
(S1, S2, S3, S5, S6) from the hypermethylated CpG regions. There were 53, 11, 52, 21, and 54 KEGG enriched pathways 
for samples S1, S2, S3, S5 and S6, respectively. The complete list of enriched pathways for all those samples is available 
in Supplementary Data 1. The most common CpG hypermethylated enriched KEGG pathways include calcium signalling 

Table 1 EBV Methylation Value Statistics in Percentage Across All 
Samples

Sample Min Q1.25% Median Mean Q3.75% Max SD

S1 0 94 97.44 90.14 98.81 100 21.62

S2 0 83.33 93.75 82.15 100 100 27.97

S3 0 0.35 1.57 21.37 22.12 100 35.06

S4 50 83.77 92.31 89.74 100 100 12.19

S5 0 0 0 22.20 28.57 100 35.74

S6 0 0 1.71 20.72 21.82 100 34.09

S7 0 0 0 20.89 18.18 100 35.80
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pathway, ECM–receptor interaction, morphine addiction, neuroactive ligand–receptor interaction, nicotine addiction, 
Rap1 signalling pathway, and signalling pathways regulating pluripotency of stem cells which are enriched in all five 
NPC samples.

The second most commonly enriched CpG hypermethylation KEGG pathways, which are present in four out of five 
NPC hypermethylated enriched KEGG pathways, are axon guidance, cAMP signalling pathway, cholinergic synapse, 
circadian entrainment, Cushing syndrome, focal adhesion, glutamatergic synapse, GnRH secretion, hippo signalling 
pathway, MAPK signalling pathway, maturity-onset diabetes of the young, phospholipase D signalling pathway, retro-
grade endocannabinoid signalling, and transcriptional misregulation in cancer. The frequency of all KEGG pathways that 
are enriched among all five NPC samples is available in Supplementary Data 2. From the hierarchical clustering analysis 
of the enriched hypermethylated KEGG pathways, there were five clusters of enriched KEGG pathways in all 
hypermethylated KEGG pathway samples. The hierarchical clustering is shown in Figure 4.

Figure 1 EBV Methylation value distribution across all samples (filtered for coverage above 5x).

Table 2 Methylation Value Statistics in Percentage Across All NPC and 
Normal Nasopharynx Samples

Sample Min Q1.25% Median Mean Q3.75% Max SD

S1 0 0.65 0.86 0.76 1 1 0.27

S2 0 0.58 0.83 0.72 0.93 1 0.29

S3 0 0.60 0.83 0.73 1 1 0.29

S4 0 0.54 0.78 0.69 0.90 1 0.30

S5 0 0.64 0.83 0.74 0.92 1 0.26

S6 0 0.64 0.83 0.75 1 1 0.27

S7 0 0.50 0.77 0.69 0.88 1 0.29

normal 0 0.65 0.84 0.74 0.93 1 0.27
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From the KEGG pathway interaction analysis, it was found that PI3K-Akt signalling, focal adhesion, and ECM 
receptor interaction have the most overlapping hypermethylated pathways in sample S1. While the most overlapping 
hypermethylated KEGG pathways in sample S2 are focal adhesion and ECM receptor interaction pathways. In sample 
S3, the most overlapping hypermethylated KEGG pathways are proteoglycans in cancer, Wnt signalling pathway, 

Figure 2 Methylation value distribution across all NPC samples (sample 1–7) and normal (sample 8) nasopharynx sample (filtered for coverage above 5x).

Figure 3 Heatmap of all 7 samples based on CpG regions, the global average methylation was compared toward normal nasopharynx epithelium.
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signalling pathways regulating pluripotency of stem cells, Cushing syndrome, hepatocellular carcinoma, hippo signalling 
pathway, breast cancer, gastric cancer, melanogenesis, and basal cell carcinoma pathway. In sample S5, cytoskeleton in 
muscle cells and ECM receptor interaction are the most overlapping hypermethylated pathways. In sample S6, Wnt 
signalling pathway, signalling pathways regulating pluripotency of stem cells, proteoglycans in cancer, gastric cancer, 
Cushing syndrome, hepatocellular carcinoma, hippo signalling pathway, breast cancer, melanogenesis, and basal cell 
carcinoma are the most overlapping hypermethylated KEGG pathways. The details of the pathway interaction analysis in 
the upset plot are available in Supplementary Data 3.

Methylation enrichment analysis based on GO biological process identified enriched GO BP processes for all NPC 
samples from the hypermethylated CpG regions. There were 901, 277, 1071, 235, 637, 962 and 2 enriched biological 
processes for samples S1, S2, S3, S4, S5, S6, and S7, respectively. The embryonic skeletal system morphogenesis and 
homophilic cell adhesion via plasma membrane adhesion molecules are two biological processes that are enriched in all 7 
NPC hypermethylated CpG samples. The complete list of enriched GO biological processes for all those samples is 
available in Supplementary Data 4. The frequency of all GO BP processes that are enriched among all 7 samples is 
available in Supplementary Data 5.

Methylation enrichment analysis based on GO molecular function identified enriched GO MF processes for 6 out of 7 
NPC samples from the hypermethylated CpG regions. There were 88, 29, 119, 21, 58, and 106 enriched molecular 
function processes for samples S1, S2, S3, S4, S5, and S6, respectively. The most common enriched GO molecular 
function processes are DNA-binding transcription activator activity, DNA-binding transcription activator activity RNA 

Figure 4 Hierarchical clustering of hypermethylated KEGG pathways across all samples with enriched KEGG pathways. (a) sample S1; (b) sample S2; (c) sample s3; (d) sample 
s5; (e) sample s6.
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polymerase II-specific, DNA-binding transcription repressor activity, DNA-binding transcription repressor activity RNA 
polymerase II-specific, gated channel activity, monoatomic ion gated channel activity, and neurotransmitter receptor 
activity which are enriched GO MF processes in all 6 NPC samples. The complete list of enriched MF for all those 
samples is available in Supplementary Data 6. The frequency of all MF processes that are enriched among all 6 samples 
is available in Supplementary Data 7.

Methylation enrichment analysis based on GO cellular component identified enriched GO CC processes for 6 out of 7 
NPC samples from the hypermethylated CpG regions. There were 87, 40, 82, 40, 77, and 88 enriched cellular component 
processes for samples S1, S2, S3, S4, S5, and S6, respectively. The most common enriched GO cellular component 
processes are adherens junction, asymmetric synapse, axon terminus, cell cortex, cell leading edge, collagen-containing 
extracellular matrix, dendritic spine, distal axon, excitatory synapse, GABA-ergic synapse, glutamatergic synapse, 
monoatomic ion channel complex, neuron projection terminus, neuron spine, neuron to neuron synapse, neuronal cell 
body, perikaryon, postsynaptic density, postsynaptic membrane, postsynaptic specialization, presynaptic active zone, 
Schaffer collateral - CA1 synapse, and synaptic membrane which are enriched GO CC processes in all 6 NPC samples. 
The complete list of enriched CC for all those samples is available in Supplementary Data 8. The frequency of all MF CC 
processes that are enriched among all 6 samples is available in Supplementary Data 9.

Analysis of Individual Methylated Genes
From all the hypermethylated CpG regions of each sample, they were matched with the known genes, and a list of genes 
was obtained. The gene lists underwent methylation enrichment analysis based on KEGG pathways and GO as described 
above. The enriched pathways and GO were extracted, and the hypermethylated genes were counted for those involved in 
multiple pathways and GO. The hypermethylated gene with the involvement of ten or more pathways and GO were 
reported. The greater the gene involvement in multiple pathways or processes, then the higher the possibility of that gene 
to affect the NPC carcinogenesis whenever methylated. The tumour suppressor gene was highlighted due to greater 
probable suppression of gene expression by methylation to cause loss of function. Validation of hypermethylated tumour 
suppressor genes was done using independent NPC transcriptome profiling.29,30

The PRKCB and PLCB3 were the most common hypermethylated tumour suppressor genes among KEGG enriched 
pathways that intersected with 10 or more pathways and had a confirmed lower RNA expression in the transcriptome 
data. Other common hypermethylated tumour suppressor genes enriched in the KEGG pathways were ITGB3, EPHA2, 
PLCE1, PRKCD, CDKN2A, CDKN2B, RPS6KA2, ERBB4, LRRC4, AKT1, PPP2R5C and STK11. They all had lower 
expression in NPC compared to normal in the transcriptome data. The complete list on the number of intersected 
hypermethylated genes across all hypermethylated KEGG pathways, along with the tumour suppressor annotation and 
confirmed lower expression from independent validation toward transcriptome data for all samples are available in 
Supplementary Data 10.

Based on GO BP enrichment analysis, the WT1 gene is found to be highly methylated in the NPC samples and had 
a confirmed lower expression in nasopharyngeal cancer sample compared to normal sample from transcriptome data. 
Other common hypermethylated tumour suppressor genes that intersected with 10 or more biological processes and had 
confirmed lower expression include TBX5, PRKCB, ITGB3, RARB, PPARG, ERBB4, EPHA2, STK11, PPARA, and 
EPHA2. From the GO BP analysis, there were relatively high number of hypermethylated genes that were involved in 
(up to 100) enriched GO BP processes.

The high number of overlapping enriched GO BP is likely due to the nature of this biological analysis where normally 
not all human biological processes are expressed in a cell type. Only the required processes are expressed, so this infers 
that methylation does likely play a role in suppressing unnecessary gene expression. The complete list on the number of 
intersected hypermethylated genes across all hypermethylated GO BP processes, along with the tumour suppressor 
annotation and confirmed lower expression from independent validation toward transcriptome data for all samples are 
available in Supplementary Data 11.

In the GO MF enrichment analysis, the common hypermethylated tumour suppressor genes were PPARA, EPHA2, 
EPHB3, PRKCB, PPARG, ADAMTS8, EPAS1, and FOXO1. They were validated to have lower nasopharyngeal cancer 
expression compared to normal nasopharynx from transcriptome data. They were generally involved in only 5–13 
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molecular functions. The complete list on the number of intersected hypermethylated genes across all hypermethylated 
GO MF processes, along with the tumour suppressor annotation and confirmed lower expression from independent 
validation toward transcriptome data for all samples are available in Supplementary Data 12.

The ERBB4, LRRC4, ITGB3, NEURL1, PRKCB, EPHA2, HOMER2, PTPRT, and MAL tumour suppressor genes were 
found to be hypermethylated, involved in 5–15 GO CC processes across multiple NPC samples from enriched GO CC 
analysis, and validated to have lower expression in NPC transcriptome data. The complete list on the number of 
intersected hypermethylated genes across all hypermethylated GO CC processes, along with the tumour suppressor 
annotation and confirmed lower expression from independent validation toward transcriptome data for all samples are 
available in Supplementary Data 13.

Discussion
The study on nasopharyngeal cancer (NPC) presented here marks a significant advancement in understanding the 
epigenetic modifications involved in this malignancy. By conducting the first whole-epigenome sequencing of NPC 
samples from Indonesian patients, we have identified key tumour suppressor CpG methylation patterns that may play 
a crucial role in the pathogenesis of NPC. Our analysis revealed varying patterns of global methylation across the NPC 
samples. Specifically, we observed both global hypermethylated and normomethylated states, which suggest a complex 
interplay of epigenetic modifications in NPC. The presence of globally hypermethylated samples aligns with previous 
findings that NPC exhibits a high frequency of aberrant methylation,19 despite its relatively low frequency of somatic 
mutations compared to other cancers. This observation in global methylation status indicates that they could have 
a distinct biology and carcinogenesis process that contribute to NPC development.

The EBV genome detected from our sequencing experiment found that EBV was also methylated in NPC samples. 
Previous finding reported that EBV methylation pattern was consistent with the host methylation pattern.19 There were 
specific EBV differentially methylated region between hypermethylated and hypomethylated EBV. Those EBV differ-
ential methylated regions have been tested by us and we found some samples where there was discordance between EBV 
methylation pattern and host methylation pattern. It was likely that the Southeast Asian EBV in NPC was not so similar 
with those reported in China and Hong Kong. Recent NPC and EBV epigenome study from Malaysian NPC sample also 
found this kind of methylation discordance pattern.31 This finding worth further exploration to understand the biology of 
EBV methylation and host genome.

The comprehensive analysis of hypermethylated CpG regions in NPC samples by mapping hypermethylated CpG 
regions to known genes and performing methylation enrichment analysis, and we identified key genes involved in 
multiple pathways and biological processes. A critical finding of our study is the frequent hypermethylation of known 
tumour suppressor genes such as PRKCB, PLCB3, ITGB3, EPHA2, PLCE1, PRKCD, CDKN2A, CDKN2B, RPS6KA2, 
ERBB4, LRRC4, AKT1, PPP2R5C, and STK11 from KEGG pathway analysis. These genes were also found to have 
lower RNA expression compared to normal nasopharynx in another independent transcriptome analysis.30

Among those genes identified, PRKCB and PLCB3 emerged as the most prominent hypermethylated tumour 
suppressor genes, particularly within KEGG pathways. PRKCB encodes the beta isoform of protein kinase C (PKC), 
a family of serine/threonine kinases involved in various cellular processes, including proliferation, differentiation, 
apoptosis, and angiogenesis. PLCB3 encodes a member of the phospholipase C (PLC) family, enzymes that play 
a vital role in intracellular signalling by generating second messengers like inositol trisphosphate (IP3) and diacylglycerol 
(DAG).32 These molecules are critical for the regulation of calcium signalling, which influences various cellular 
functions such as cell growth, differentiation, and apoptosis.

In various cancers, PRKCB has been reported to play both oncogenic and tumour-suppressive roles, depending on the 
cellular context. For example, in some types of leukaemia and lymphoma, PRKCB activation is associated with 
oncogenic signalling, promoting cell survival and proliferation through the activation of pathways like NF-κB.33,34 

However, in solid tumours, including NPC, hypermethylation and subsequent downregulation of PRKCB could con-
tribute to tumorigenesis by disrupting normal cell cycle regulation and apoptotic responses.35,36 The loss of PRKCB 
function may lead to unchecked cell growth and resistance to apoptosis, facilitating the progression of cancer.
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Furthermore, PRKCB has been linked to the regulation of angiogenesis, a process critical for tumour growth and 
metastasis.37,38 Its downregulation could alter the tumour microenvironment, potentially promoting an aggressive cancer 
phenotype.39 Given these multifaceted roles, the hypermethylation and reduced expression of PRKCB in NPC may 
represent a significant epigenetic alteration contributing to the malignancy’s progression.

PLCB3 has been recognized for its role in modulating the signalling pathways that control cell proliferation and 
survival. Dysregulation of PLCB3 has been observed in several cancer types,40,41 where altered calcium signalling can 
contribute to malignant transformation and tumour progression.42 In particular, PLCB3 has been shown to interact with 
signalling pathways like the PI3K/AKT pathway, which is frequently activated in cancer and plays a pivotal role in 
promoting cell survival and growth.42

In the context of NPC, the hypermethylation of PLCB3 and its reduced expression may disrupt these signalling 
pathways, leading to aberrant cell behaviour that supports carcinogenesis. Additionally, the role of PLCB3 in modulating 
immune responses and inflammation could further influence the tumour microenvironment,43 potentially contributing to 
immune evasion and sustained tumour growth.

GO Biological Processes (GO BP) enrichment analysis highlighted significant findings, with the WT1 gene showing 
high levels of hypermethylation and reduced expression in NPC samples. WT1 is classified as tumour suppressor gene. 
However, this WT1 tumour suppressor gene can turn out to have somehow dual role as a tumour suppressor and as an 
oncogene.44 For instance, the WT1 gene is recognized as a tumour suppressor gene, primarily associated with Wilms 
tumour.44–46 It plays a critical role in regulating cell growth and maintaining normal cellular functions. Nevertheless, 
studies have also indicated that WT1 may also act as an oncogene in certain contexts, adding complexity to its role in 
tumour biology.45

In the context of nasopharyngeal cancer (NPC) and epigenetic modifications, we observed significant hypermethyla-
tion of WT1 across all NPC samples analysed. This hypermethylation corresponds with lower RNA expression levels, as 
confirmed by transcriptome data. If in the context of NPC, if it is considered an oncogene, then the suppression of WT1 
due to hypermethylation suggests a downregulation of its oncogenic potential, which could be beneficial in the context of 
cancer treatment. Our methylation analysis result can act as a guide on which genes are worthy to be further explored to 
determine its precise biological role.

Furthermore on the pathway analysis, there are some pathways such as WNT and TGFβ pathways where lower 
expression in NPC is associated with better prognosis.47 It was found that alterations in the WNT signalling pathway 
were prevalent in certain TME-based subtypes of NPC,47 consistent with our finding, further implicating this pathway in 
the disease’s molecular landscape.48 These findings suggest that the WNT pathway not only plays a role in epigenetic 
regulation but is also critical in defining the biological behaviour of NPC tumours.

Additionally, our methylation enrichment analysis identified several KEGG pathways and GO processes that were 
significantly enriched in the hypermethylated CpG regions. Notably, pathways such as the PI3K-Akt signalling pathway, 
ECM–receptor interaction, and focal adhesion were frequently enriched, highlighting their importance in NPC. The 
overlap of these pathways in hypermethylated samples underscores the potential mechanistic roles they play in tumour 
suppression and NPC progression.

The significance of the PI3K-Akt pathway in NPC is further corroborated by studies showing its involvement in cell 
survival, growth, and metabolism.5 In particular, methylation changes in genes related to this pathway, such as FANCI 
and POSTN, have been linked to NPC progression. FANCI, a crucial player in DNA repair,49 when hypermethylated, can 
lead to genomic instability and contribute to carcinogenesis. Similarly, POSTN, which is involved in the remodelling of 
the extracellular matrix,50 plays a role in tumour metastasis and is also influenced by epigenetic changes. The involve-
ment of ECM–receptor interaction and focal adhesion pathways suggests that changes in cell-matrix interactions are 
critical in NPC pathogenesis, potentially affecting cell migration, invasion, and metastasis.

Another significant aspect of our findings is the confirmed presence of Epstein–Barr virus (EBV) DNA in all NPC samples. 
This supports the established link between EBV infection and NPC.51–53 EBV is known to contribute to NPC by influencing 
methylation patterns, which could explain the aberrant methylation observed in our samples. This connection suggests that 
EBV may trigger or exacerbate epigenetic alterations, creating a favourable environment for NPC development.
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The identification of specific methylation patterns in tumour suppressor genes and key pathways offers potential 
biomarkers for early diagnosis and therapeutic targets for NPC.10,54 Our findings underscore the importance of considering 
not only the presence of hypermethylation but also the involvement of these genes in multiple pathways and processes, as this 
may highlight their significance in the carcinogenic process. The distinct methylation signatures associated with NPC can be 
used to develop diagnostic tools that detect these epigenetic changes.55 Additionally, targeting the methylation machinery or 
the affected pathways could provide new avenues for NPC treatment, potentially improving patient outcomes.

Conclusion
In conclusion, this study provides comprehensive insights into the epigenetic landscape of NPC, emphasizing the significant 
role of CpG methylation in tumour suppressor gene silencing and pathway dysregulation. The findings underscore the 
complexity of NPC epigenetics and pave the way for further research to explore the therapeutic potential of targeting these 
epigenetic alterations. The regional methylation signatures also suggest the need for tailored approaches in the diagnosis and 
treatment of NPC, considering the geographical and environmental context of the patients.
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