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Abstract

Motivation: Malaria, a mosquito-borne infectious disease affecting humans and other animals, is widespread in tropical
and subtropical regions. Microscopy is the most common method for diagnosing the malaria parasite from stained blood
smear samples. However, this technique is time consuming and must be performed by a well-trained professional, yet it
remains prone to errors. Distinguishing the multiple growth stages of parasites remains an especially challenging task.
Results: In this article, we develop a novel deep learning approach for the recognition of malaria parasites of various stages
in blood smear images using a deep transfer graph convolutional network (DTGCN). To our knowledge, this is the first
application of graph convolutional network (GCN) on multi-stage malaria parasite recognition in such images. The
proposed DTGCN model is based on unsupervised learning by transferring knowledge learnt from source images that
contain the discriminative morphology characteristics of multi-stage malaria parasites. This transferred information
guarantees the effectiveness of the target parasite recognition. This approach first learns the identical representations from
the source to establish topological correlations between source class groups and the unlabelled target samples. At this
stage, the GCN is implemented to extract graph feature representations for multi-stage malaria parasite recognition. The
proposed method showed higher accuracy and effectiveness in publicly available microscopic images of multi-stage
malaria parasites compared to a wide range of state-of-the-art approaches. Furthermore, this method is also evaluated on a
large-scale dataset of unseen malaria parasites and the Babesia dataset. Availability: Code and dataset are available at

https://github.com/senli2018/DTGCN_2021 under a MIT license.
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Introduction

The main source of malaria is the parasites from the Plasmod-
ium group, which are transmitted to people though the bites
of infected mosquitoes. People with malaria experience fever,
chill, and a flu-like illness [1]. According to the World Health Or-
ganization, there were 228 million cases of malaria worldwide,
which resulted in ~405,000 deaths, in 2018. Approximately 94%
of these deaths occurred in the African region [2]. Moreover, the
risk of infectious disease (especially malaria) transmission was
probably increased because severe flooding inundated many re-

gions in Asia in 2020 [3]. This can make malaria, one of the most
serious public health problems, spread worldwide. This urgent
situation prompted new malaria research, and the reported re-
sults showed that the hazard of malaria illnesses and deaths
can be significantly reduced by accurate and affordable diagnos-
tic testing, enabling better disease monitoring and control inter-
ventions.

Malaria is usually diagnosed by the microscopic examina-
tion of blood films, and hundreds of millions of blood films are
examined every year for malaria diagnosis [2, 4]. Although this
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is the most commonly used technique, the process of examin-
ing films under the microscope is tedious and susceptible to er-
ror. Therefore, a considerable number of studies on computer-
aided malaria detection systems have been proposed [4, 5]. For
example, classification methods have been applied to discrimi-
nate between infected and uninfected RBCs in thin smears or to
identify parasites in thick smears, ranging from decision trees
to basic artificial neural networks [6]. Furthermore, recent stud-
ies have proven that malaria diagnosis based on deep learn-
ing architecture can significantly outperform models based on
conventional classifiers [7-10]. Liang et al. [7] applied a convolu-
tional neural network (CNN) approach to discriminate between
infected and uninfected cells in thin blood smears, resulting in
97.37% accuracy on 27,578 single-cell images. In addition, Dong
et al. [8] evaluated 3 types of well-known CNNs, including LeNet,
AlexNet, and GoogLeNet, which all achieved classification ac-
curacies of >95%. Gopakumar et al. [9] used CNN operating on
a focus stack for automated quantitative detection of malaria
parasites from blood smear samples with improved sensitivity
(97.06%) and specificity (98.50%). Hung and Carpenter [10] fur-
ther developed a faster region-based CNN approach for object
segmentation on malaria parasite images. The superior exper-
imental results on the segmentation of 40,612 images demon-
strate the effectiveness of the proposed model over the state-of-
the-art method of traditional segmentation plus machine learn-
ing. This model also classified all objects for the segmented cells,
finding that learning to distinguish features between infected
classes is very challenging: only 59% accuracy was achieved.
Thus, it falls to binary classification to identify the objects as
RBCs or not, with an accuracy of 98%. Narayanan et al. [26] pro-
posed a fast CNN architecture and compared it with AlexNet,
ResNet, VGG-16, and DenseNet models for malaria detection.
Findings showed that all tested methods achieved >96% accura-
cies. Similarly, Narayanan et al. [27] investigated the detection of
malaria by using deep neural networks (GoogLeNet and ResNet),
and obtained accuracies >96%.

The aforementioned methods are particularly useful in de-
tecting a single stage of the malaria parasite, normally the
ring form. However, the life cycle of the malaria parasites is
complicated. The entire cycle involves multiple morphologi-
cal changes in human blood. As illustrated in Supplementary
Fig. Sla, malaria parasites develop multi-stage forms with dis-
tinct microscopic presentations during the intraerythrocytic cy-
cle, including gametocytes, rings, trophozoites, and schizonts
[11]. Until now, an accurate multi-stage malaria detection sys-
tem has not been devised because of the morphological differ-
ences across multi-stage parasites and variations in images cap-
tured from different technicians, laboratories, clinics, and re-
gions. Additionally, colour variation, resulting from differences
in staining pH, time, purity of dye, duration of the staining
procedure, and sensor settings (Supplementary Fig. S1b), is an-
other challenge of multi-stage detection. All those morpholog-
ical and hardware variations degrade the performance of the
previously developed models. Therefore, simple adaptation of
existing single-stage classification models will lead to poor per-
formance in multi-stage malaria parasite recognition. Another
important problem is the lack of multi-stage parasite training
images with a balanced class distribution because of the domi-
nance of ring-stage parasites and red blood cells (RBCs) captured
under microscope.

To overcome the challenges in both variations and data im-
balance for multi-stage malaria parasite recognition, we use
a transfer learning strategy that takes advantage of the prior
knowledge from the labelled source domain (existing scenario)

to train the recognition model and apply it to an unlabelled tar-
get domain (even unseen scenario) for detection. On the other
hand, the problem of data imbalance can be addressed by imple-
menting graph convolutional network (GCN) on the established
topological correlations between source class groups and target
features to bridge the different class distribution gaps. Specifi-
cally, GCNs have been proposed whereby node features, aggre-
gated from adjacent neighbours and different nodes, can share
the same transfer function. Thus, the aggregated nodes can ex-
ploit more discriminative information according to the topolog-
ical graph structure of the node features than directly utilizing
CNN on a single image.

In this context, DTGCN is proposed for multi-stage malaria
parasite recognition and classification, which consists of a CNN-
based feature extractor, a source transfer graph building com-
ponent, and an unsupervised GCN. A thorough review of the
literature reveals that none of the previously reported studies
have attempted to explore the advantages of deep learning for
multi-stage malaria parasite recognition. To demonstrate the ef-
fectiveness of the proposed DTGCN, we conducted experiments
on 2 public malaria parasite image datasets, which are available
from the Broad Bioimage Benchmark Collection [12] and the Na-
tional Library of Medicine [13]. We also evaluated the proposed
method on data from another parasite, Babesia, to show the ro-
bustness of the DTGCN model. Babesia is a malaria-like parasite
that infects RBCs and leads to the disease babesiosis [14]. With a
ring-like structure, the ring forms of Babesia are sometimes con-
fused with those of malaria parasites. The excellent results of
the present study show that the proposed DTGCN is not only
limited to the recognition of malaria parasites but can also ef-
fectively solve other microscopic image recognition problems.
In general, the proposed DTGCN method can overcome the data
variation and the imbalance problem in deep learning-based
malaria recognition. Importantly, this DTGCN method can trans-
fer a sufficiently trained recognition model to a completely unla-
belled target dataset with unknown differences (such as colour,
brightness, or imaging settings).

The multi-stage malaria infected cell images were captured
from blood smear samples stained with Giemsa reagent. This
image set consists in total of 1,364 images at 1,000x magnifica-
tion and is publicly available at the Broad Bioimage Benchmark
Collection (BBBC) website [10]. All of the images were manually
captured from Plasmodium vivax-infected patients in Manaus,
Brazil, and Thailand under 1,000x magnification, annotated by
3 different experts globally. This dataset contains images from
2 classes of uninfected cells (RBCs and leukocytes) and 4 classes
of parasitized cells (gametocytes, rings, trophozoites, and sch-
izonts) with Giemsa stain. Although the initial purpose of this
dataset was detection of parasitized cells rather than recogni-
tion of the various stages of malaria parasites, both bounding
box coordinates and corresponding stage labels were provided.
A total of 79,672 multi-stage parasitized and uninfected cell im-
ages were cropped from raw images according to the given box
coordinates. As shown in Supplementary Table S1, numbers of
each class are severely imbalanced—97.2% of them are 5,000 se-
lected RBC images. Because the leukocyte class only contains
103 samples, we supplemented this class with 104 self-captured
leukocyte images for testing. One hundred images were then
randomly chosen from each class to form the testing dataset



(600 samples in total) to evaluate the effectiveness of the pro-
posed DTGCN, with the rest of the images used as training data.
To avoid excessive consumption of computing resources by the
imbalanced quantity of RBCs, 5,000 random RBCs were selected
in experiments to save training time but achieve enough train-
ing efficiency. In total, this study used 7,456 microscopic images,
consisting of 6,856 images for training and 600 images for test-
ing. The details of the data distribution are provided in Supple-
mentary Table S1. In each image, there is only 1 parasite or cell.
Because the network accepts only image inputs of a certain pixel
value, the input images with different numbers of pixels have
been resized to 128 x 128 pixels before feeding into our deep
learning model.

In addition, the second malaria parasite recognition task in
this article is classification of unseen malaria parasites in a
large-scale dataset that has different parameter distributions
(such as brightness and imaging equipment settings) from the
source training dataset. The BBBC dataset was adapted as the
source domain in this multi-stage malaria parasite recognition
task, and it was transferred to 2 binary classes for recognition:
parasitized class (gametocytes, rings, trophozoites, and sch-
izonts) and uninfected class (RBCs and leukocytes). This dataset,
consisting of 13,780 testing images including both malaria par-
asites and RBCs [13], is available at the website of the National
Library of Medicine . The images contain the segmented cells
from Giemsa-stained thin blood smear slides of 150 P. falciparum-
infected and 50 healthy patients under 1,000x magnification.
Moreover, another 1,100 under-microscope Babesia and 1,100
RBC images were collected to validate the generalizability of our
proposed DTGCN model

The DTGCN framework proposed for the recognition of multi-
ple stages of malaria parasites consists of CNN feature learn-
ing, source transfer graph building, and the unsupervised graph
convolutional network (UGCN). First, CNN is used to extract mor-
phological features from images in each class. Second, a source
transfer graph building algorithm is proposed to construct the
class correlations between each source class group and target
samples by a proposed target-to-center source transfer graph
building algorithm according to the source class labels. Trans-
ferring the representatively discriminative information from the
source into the target domain solves the challenges of dealing
with parameter variations in an unfamiliar scenario. Then, the
CNN features and source transfer graph are together fed into
graph convolutional layers, which are optimized by Lcn and
Lmma losses. Finally, we can conduct a K-means clustering al-
gorithm on the final target graph feature representations and
achieve the recognition of multi-stage malaria parasites in the
target domain (Fig. 1).

An obvious crucial preliminary step for image recognition is
to extract representative morphological features. For the multi-
stage malaria parasite recognition task, we use CNN as the back-
bone network owing to its superior performance in parasite mi-
croscopic image recognition [15], with excellent capability in
dealing with challenging variations, such as illumination, back-
ground, and staining intensity. It can learn robust feature repre-
sentations by multiplying overlapped convolutional operations
with reasonable objective functions.

Mathematically, we assume the source data as Xs=
x5, %5, x,} with complete labels Y; = {y;. 5, - - - s Y h and the
targetdataas X; = {x{, x5, - -, X}, } without any labels, which con-
tains the same categories as the source domain. To extract the
appearance features by CNN, we define the backbone network
as fenn, to learn the CNN representations for source and target
images. In this article, we use ResNet50 [16] architecture as the
basic model of fenn. Then, given the ith source image x¥ and jth
target image xi, the CNN features hf and hj can be calculated by

1} = fenn (%75 fenn), (1

ht} = fcnn(XE;gcnn), (2)

where If € RY, h e R4 (d is the dimension of feature vectors), and
Ocnn 1s the learnable parameters in the backbone network fony.
These features are the vectors of pre-softmax units, which at-
tach a UGCN instead of prediction layers.

Importantly, to guarantee that the CNN features can obtain
the identity information for source images, source feature vec-
tors can be constrained by a contrastive loss function, denoted
as CON loss,

1 Ne o oo 2
Leon = TNSZ‘-J"] + (1 —1)max (m—d,0)?, €)

where d = ||h} — hj ||, represents the Euclidean distance between
2 source features, | =1 when y’ == y;, otherwise | =0, and m
is the margin setting among the distances. The contrastive loss
is to maintain the representative information across different
categories by learning a distance metric.

By this constraint, the backbone network fenn can learn dis-
criminative feature representations only for source images. The
remaining unmet challenge with major significance of this part
is how to transfer the learnt knowledge into the target domain
to bridge variations in the target scenario. To overcome this
problem, a widely used strategy, maximum mean discrepancy
(MMD), is introduced to constrain the learnt source and target
features,

1 Ns g 1 Ny 2
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To further conduct the transfer learning and solve the prob-
lem of data imbalance, this article proposes a UGCN, in which
the losses of contrastive classification and MMD are switched to

create the constraint, rather than the aforementioned CNN fea-
tures.

()

Generally, GCN provides an effective solution to simulate the
correlations between objects in different distributions [17].
Thus, this article applies the transfer learning on GCN to allevi-
ate the distribution gap between source and target domains, and
to leverage the imbalanced data in the source domain to exploit
the topological structure in the feature space. GCN can exploit
the multi-stage malaria-infected cells by forwarding the mes-
sage according to the node correlations-based adjacent matrix,
which is one of the most important steps in GCN. This section
aims to formulate the topological correlation graph as the base
of the graph convolution layers.

Considering the imbalanced data in the source domain, the
network transfers the class groups that contain the most repre-
sentative information by class features. It will be recalled that
there exist inherent correlations between the target images and
the class groups in the source domain because they belong to
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Figure 1: The schematic representation of DTGCN. First, the CNN-based feature extractor is in charge of learning representations from source and target data. Next,
the source transfer graph building component connects target sample features to the source class groups by a proposed target-to-center source transfer graph building
algorithm to formulate the graph topology correlations. Finally, the UGCN learns the graph representations by feeding CNN features and the formulated source transfer
graph, which is jointly optimized by a contrastive classification loss in the source domain, and a maximum mean discrepancy (MMD) constraint for the feature-level

transfer learning across 2 domains.

the same classes. Inspired by this point, a source transfer graph
building mechanism is designed by introducing the source class
groups into the target domain.

By the CNN feature learning, the source and target image fea-
tures (Hs = {h{, h3,--- . h} }, Hy = {hi, hs, - ,hﬁq[}) are obtained by
Eqg. 1 and 2, respectively. For the features of the source images,
the N; class centers {h! € [Rd\f:’;l} are calculated for each class by
the following equation:

1 Nq .
M= 3 OF ==k )

After computing the above, the network can obtain N, class
centers of H, = {h}, h%,--- , h?, ... h} for source image features,
which are deployed into the graph construction. Meanwhile, this
model implements K -means clustering on target feature vectors
H;. Assume an adjacent matrix A € RMN+N)x(N+N) representing
the correlations between the source and target samples. This
framework uses the distance between target sample features
and the source class center as the connected metrics. Specifi-
cally, given a target feature hj, it is connected to the source class
group when it has the smallest distance among all the source
class groups,

0, ifargmin d(h{, W) £ ys(1 <n
Ay = 1, ifargmnin d(h{, ) == Vel <n<N)
where d(-) is the Euclidean distance between target feature hi
and source class center h!!. This formulation ensures that each
target feature is connected with the nearest class group, and
the framework can obtain the source transfer graph without any
overlapped samples and connecting each other, as illustrated in
Fig. 1.

Compared with other existing graph-building methods, the
most significant difference is the first iteration of graph building.
The traditional methods create the first graph on the basis of the
CNN features, while the proposed method uses the features to
iteratively formulate the new graph within each batch. The rea-
son for this setting is that the learnt CNN feature provides dis-
criminative information to the GCN, overcoming the imbalance
problem in the image data.

To strengthen the transfer learning ability of our model, we use
a GCN to extract representation of each target feature and group
source class groups in an unsupervised manner. It consists of a
graph convolution stage and an unsupervised clustering objec-
tive function, which is in charge of malaria parasite recognition
without any target annotation.

Given the source transfer graph in this article, the complete
graph G(V, A) can be formulated, where V = {v1, v, - -+ , vy, } de-
notes the collection of the nodes with |V| = (Ns+N;) x (Ns+N),
and A e RM:+N)x(N:+N) jg the source transfer graph. Importantly,
each node in this article contains a feature vector from the CNN
backbone fun, where the nodes can be replaced by an inte-
grated feature set H; of Hy = {h{, h, .-, h§; hi, hj, -, hi, }, which
is composed by N; source and N; target feature vectors. Thus, the
graph can be redefined by G(H;, A). Because the GCN applied in
a semi-supervised framework [17] has achieved a series of suc-
cesses, the graph convolutional layers are optimized by the clas-
sification cross-entropy loss, which needs several labelled sam-
ples. However, the target data without any labels cannot work.
Hence, the UGCN is proposed on the graph G without utiliz-
ing any target labels. The primary components in UGCN are the
graph convolution layers in Fig. 1,

Hy' = fgen(Hy " &) = o(DV2ADV2HOWO), ™

wherel =1,2,---, L denotes the Ith graph convolution layer and
L is the number of layers, and H(-Y and H® are the input and
output graph features for the Ith layer. In addition, A repre-
sents the symmetrically normalized adjacent matrix with self-
connections (A+ I), where I denotes the identity matrix. D is the
diagonal matrix of A, W' denotes the trainable weight parame-
ters in the Ith layer, and o is the non-linear activation, which is
the ReLU function in this article. According to previously pub-
lished work on GCN [18], the deeper GCN with multiple layers
may be harmful to the graph feature learning. Therefore, this
article also uses 2 graph convolutional layers to represent the
final GCN features for each node, and the integrated CNN fea-
tures are evolved as Hy = {h,hj, - ,h?\,s;h%SH, hgw’ s hd )
The final representations for malaria parasite images are ob-



tained by graph convolutions on the source transfer graph. To
conduct the unsupervised recognition on the target GCN fea-
tures, K-means clustering algorithm [19] is implemented to
learn N. clusters {C1,---,Cg,---,Cy} with N feature collec-
tions {S;,---, S, -+, Sn.}, and to partition the learnt Hy, which
is trained by L con, and Lmmg instead of the former CNN features;
and the UGCN objective function for each cluster of K-means
algorithm is as follows:

1 Ns+N¢ 2
Jugen®) = 1 D iy 1 D s, 1N = Cal” (8)
where Cy can be calculated by,
Chm — n 9
b= g Lopes ©)

It should be emphasized that the K-means clustering algo-
rithm has excellent capability in calculating cluster centers in
Euclidean distance space, and it can aggregate similar features
by their Euclidean metrics. Here, we also train the whole net-
work (CNN and GCN) by Lcon and Lmmg jointly after the feature
extraction of GCN, rather than working on the former CNN fea-
tures. In detail, the updating of K-means is conducted on the
learnt GCN features (Supplementary Algorithm S1). Thus, this
network can achieve a satisfactory unsupervised classification
on the learnt graph features after being fully trained.

We present the details of network training, evaluation metrics,
and compared models in Supplementary Fig. S4.

To demonstrate the superior effectiveness of our DTGCN
models, we chose 3 widely used deep learning networks, Visual
Geometry Group Network (VggNet) [20], the GoogLe Inception
V3 Network (GoogLeNet) [21], and the deep Residual Network
(ResNet) [16], to be the contrasts. In addition, we adopted 4 re-
cently proposed malaria parasite recognition methods [22, 23,
24, 25] with fine-tuning in our experimental datasets to conduct
efficient comparison, and the proposed DTGCN was also modi-
fied to evaluate the core components of feature learning, graph-
building algorithm, and the UGCN. The modifications were used
to build 2 updated models: (i) removing the GCN by directly at-
taching graph features to the K-means algorithm on the target
CNN features (denoted as Baseline), and (ii) using a common
K-nearest neighbours (KNN) algorithm to formulate the graph
(Ours+KNN). On the other hand, this study also evaluates the
influence of the deeper CNN in feature learning, which is ex-
plored by changing the depth of ResNet: ResNet18, ResNet34,
and ResNet50 were tested individually. Thus, we evaluated 2
more models (Ours+ResNet18 and Ours+ResNet34).

To validate the effectiveness of the DTGCN, this study first im-
plemented extensive experiments on multi-stage malaria para-
site recognition. We report the training and evaluation of several
different models (VggNet, GoogLeNet, ResNet, Quinn et al. [22],
Rajaraman et al. [23], Vijayalakshmi [24], Umer et al. [25], and
DTGCN) in this section, and their performance is presented in
the first 12 lines of Table 1. As for the baselines of recent papers,
Quinn et al. [22] designed a deep learning model trained from
annotated cell images with 4 hidden layers consisting of 2 con-
volution layers, 1 pooling layer, and a fully connected layer. The

performance of the deep neural networks was evaluated on the
detection of malaria parasites in thick blood smear samples, re-
vealing an average precision of 97%. Rajaraman et al. [23] used
pre-trained CNN-based deep learning models as feature extrac-
tors to classify parasitized and uninfected cells, obtaining 95.7%
classification accuracy on single-stage malaria detection. Vijay-
alakshmi [24] developed a novel transfer learning approach to
identify cells infected with malaria parasite, which is powered
by combining VggNet and support vector machine. The results
on malaria digital corpus images achieved a classification ac-
curacy of 93.1%. Umer et al. [25] applied pre-processing steps
for re-sampling and normalizing input microscopy images and
then utilized stacked CNN by fine-tuning it along with max-
pooling and dropout layer. The performance of this model was
evaluated on single stage malaria parasite detection, resulting
in 99.98% accuracy. Specifically, these baseline methods were
re-trained on the BBBC dataset and tested on the multi-stage
malaria parasite images. The results show that the proposed
DTGCN achieves an excellent performance, with overall accu-
racy of 98.3%; moverover, the precision, recall, and F1-score are
all >98%. Comparing with other CNN models that have been
used, the proposed DTGCN had clearly superior performance be-
cause the best among the other 3 models (GoogLeNet) only re-
alized ~83% accuracy in the same task. Compared to DTGCN,
recent publications have tested their methods only for single-
stage malaria parasite recognition, leaving these methods vul-
nerable to the variations in multi-stage malaria parasite recog-
nition. The variations degrade the performance of the previ-
ously developed models, restricting them to a maximum recog-
nition accuracy of 66.3%. Therefore, a technique consisting of
simple adaptation of existing single-stage classification mod-
els into multi-stage malaria parasite recognition will perform
poorly. In a practical scenario, non-RBC images are often cap-
tured at a small scale, which is a result of the complicated image-
capturing operations involved. This is one of the most challeng-
ing problems in deep learning applications because deep learn-
ingrequires a large amount of data. In this article, our model can
train a robust feature learning network with only small num-
ber of non-RBC images, while existing deep learning methods
cannot handle this challenging problem. This reveals the excel-
lent capability of our model on the multi-stage malaria parasite
recognition task.

In addition, DTGCN classification of each stage of the intra-
erythrocytic cycle of malaria is reported in the lower part of
Table 1. For single-stage classification, this model has the best
performance in classifying most stages, and all the indicators
are >99%. Meanwhile, the classification of the schizont stage
is slightly worse than the others but still ~90.8%; the schizont
stage is more likely to be misclassified. This might be because
the schizont is similar to the gametocyte, as illustrated in Fig.
S1.

Additionally, the 2D t-distributed stochastic neighbour em-
bedding (t-SNE) plot is deployed to show the clustering per-
formance in Fig. 2h to visualize the capacity of the models
in distinguishing multi-stage malaria parasites and uninfected
cells. The t-SNE can be used to visualize high-dimensional data
in 2 dimensions, maintaining local structures. In t-SNE, pairs
of points are given joint probabilities based on their distance,
and the Kullback-Leibler divergence between the probabilities
is minimized [10]. The t-SNE plots of 8 models are shown in
Fig. 2. Generally, the difference between multi-stage malaria
parasites in infected and uninfected cells is clear and easy to
distinguish. Specifically, Fig. 2h shows that the proposed DT-
GCN can learn the features that have less intra-class distance



Table 1: Performance on multi-stage malaria parasite recognition

Method Accuracy Precision Recall F1-score
Performance overall (%)

VggNet 77.3+0.53 81.0 +0.44 77.3+0.28 76.8 +0.23
GoogLeNet 82.7 £0.31 85.9+0.29 82.7 £0.25 83.0+0.18
ResNet 81.0+0.28 87.7+£0.21 81.0 +0.19 81.5+0.20
Quinn et al. [22] 60.3 +£0.48 77.1+£0.36 60.3 +£0.30 55.1+0.34
Rajaraman et al. 61.5+0.35 78.0 £0.28 61.5+0.31 56.9 +0.20
[23]

Vijayalakshmi 66.3 +0.29 79.0 +£0.26 66.3 +0.23 63.0 +0.23
[24]

Umer et al. [25] 30.0 +0.32 43.1+0.37 30.0 +0.42 16.4 + 0.30
Baseline 80.9 + 0.42 86.3 +£0.42 81.4 +£0.10 81.9+0.18
Ours+KNN 78.7 +3.58 729 +£3.21 78.7 +£2.94 744 +3.21
Ours+Res18 95.0 £ 0.08 95.1+0.11 95.0 £0.14 95.0 £ 0.09
Ours+Res34 96.7 £ 0.09 97.2 £0.10 96.7 £ 0.04 96.6 £+ 0.05
Ours+Res50 98.3 +£ 0.03 98.5 + 0.02 98.3 £ 0.02 98.3 £ 0.03

Performance of Ours+Res50 on each stage (%)

Gametocyte 99.6 £ 0.04 91.7 £ 0.05 99.8 £ 0.02 95.6 £ 0.04
Leukocyte 99.8 £ 0.02 99.9 £ 0.01 99.7 £0.01 99.8 £ 0.02
RBC 99.9 £ 0.01 99.9 £ 0.01 99.9 £+ 0.02 99.9 + 0.04
Ring 99.9 £ 0.01 99.8 £ 0.02 99.7 £0.03 99.7 £0.02
Schizont 90.8 £ 0.05 99.9 £ 0.03 90.8 £ 0.05 95.1 £ 0.06
Trophozoite 99.8 £ 0.02 99.8 £ 0.02 99.9 £ 0.01 99.8 £ 0.02

Note: Proposed DTGCN method with the best results is boldfaced.
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Figure 2: t-SNE performance on malaria parasite recognition. The t-SNE plots of VggNet (a), GoogLeNet (b), ResNet (c), and Baseline (d) are compared to various DTGCN
approaches, including replacing the graph building graph by KNN algorithm (Ours+KNN) (e) and replacing the CNN backbones of ResNet18 (Ours+Res18) (f), ResNet34
(Our+Res34) (g), and ResNet50 (Ours+Res50) (h). t-SNE plots provide a method to evaluate and refine clustering of each class of sample images. Data points are coloured
according to their categories, and many points are overlapped in (f-h). DTGCN achieves the best t-SNE plot performance compared to other baselines. The t-SNE plot

shows that Ours+Res50 is the best discriminated.

and larger cross-class distance, which means that the same-
class samples are clustered and the margins between multi-
ple stages and uninfected samples are far enough to be distin-
guished easily by the following classifying procedure. However,
the other-models-learnt features have insufficient cross-class
distances. For example, the Vgg model (Fig. 2a) has especially
unclear clusters and this model has the worst performance in
classification.

To better reveal the recognition result on the 600 testing im-
ages, this study uses the confusion matrix to visualize the ac-
curacy of the multi-stage malaria parasite recognition in Fig. 3h.
The confusion matrix reveals the variation in misclassification
between each class, and each column of the matrix represents
the predicted class, where the summation of the column is equal
to the predicted number of images in this class. Each row in this
matrix denotes the true classes, and their summation is the to-



Predicted Labels
Gametocyte Leukocyte  RBC ___Ring

Predicted Labels

Schizont_Trophozoite Gametocyte Leukocyte  RBC_ Ring __ Schizont_Trophozoite

Lietal. | 7

Predicted Labels
Gametocyte Leukocyte RBC __Ring
T T T T

Predicted Labels

Schizont_Trophozoit Gametocyte Leukocyte  RBC _ Ring__ Schizont_Trophozoite

Gametocytef 56 3 0 0 12 oo

0.3 o 0 0
ReCE 0 0.000

Ringt- () 0 O] 71 0 20

Gametocyte 71 0 0 0 8 2

Bl 0 o0
0.000

Ringl- () 0 11 2 0 17

Leukocyte| Leukocytef ()

RBCE ()

True Labels
True Labels

Schizontf= 17 3 1 0 45 34 Schizontf- 5 0 0 0 68 27
Trophozoite} 2 1 0 0 2 . Trophozoite[ 3 0 2 3 3 .
(A) VggNet (B) GoogleNet
Predicted Labels Predicted Labels
Gametocyte Leukocyte  RBC Ring Schizont_Trophozoit Gametocyte Leukocyte  RBC Ring. Schizont_Trophozoite
Gametoeytel () 0 0 0 8 Gametocye| 0 0 0 10 0

Leukocyte| Leukocyte [

True Labels
=
&
.
o
o
o
o
o

True Labels
=
&
g
o

Rt 21 0 0 Rk 0 0

Schizontf () 0 0 0 . 7 Schizontf 2() 0
Trophozoitef () 0 0 0 0 . Trophozoite} () 0
(E) Ours+KNN (F) Ours+Res18

Gametocytef 54 2 0 0 4 40

ol 0 0

0 0

Gametocyte - 60 0 0 0 S 35

Leukocyte| Leukocytef-

True Labels
=
&
3
S
o
o

True Labels

Ring () 0 . 75 0 18 Ringk () 0 7 68 0 25

Schizont () 1 1 0 64 34 Schizontf | 1 0 0 o 22

Trophozoitef | Trophozoite () 0 0

(C) ResNet (D) Baseline
Predicted Labels Predicted Labels
Gametocyte Leukocyte  RBC Ring __ Schizont_Trophozois Gametocyte Leukocyte  RBC Ring  Schizont Trophozoite
Gametocyte| 0 0 0 0 0 Gametocyte 0 0 0 0 0

Leukocyte Leukocyte

=
&
3

o

o

o

o

S
True Labels

=

2

o

True Labels

Ring|-

Ringk () 0

Schizont- Schizontk 10 0 0 0 . 0
Trophozoite | Trophozoite - () 0 0 0 0 .
(G) Ours+Res34 (H) Ours+Res50 (DTGCN)

Figure 3: Confusion matrixes for the multi-stage malaria parasite classification. The confusion matrices of VggNet (a), GoogLeNet (b), ResNet (c), and Baseline (d)
are compared to various DTGCN approaches, including replacing the graph-building graph by KNN algorithm (Ours+KNN) (e) and replacing the CNN backbones by
ResNet18 (Ours+Res18) (f), ResNet34 (Our+Res34) (g), and ResNet50 (Ours+Res50) (h). Confusion matrix reveals the variation in misclassification between the predicted
and true labels. The diagonal cells correspond to samples that are correctly classified. The off-diagonal cells correspond to incorrectly classified samples. It is easy to
see that Ours+Res50 (DTGCN) presents the best classification results on the confusion matrix.

tal number of real images in this class. From Fig. 3h, it can be
observed that the proposed DTGCN only misclassifies 10 out of
600 total images tested. To sum up, DTGCN identifies malaria
parasites effectively in multiple stages, and the DTGCN would
be especially useful for humans.

Performance on a large-scale dataset of malaria
parasite recognition

To further validate the DTGCN'’s performance on a larger malaria
parasite dataset, the trained models of first 7 comparative meth-
ods from the previous subsection were directly tested on a
larger-scale dataset that consists of 13,780 testing images with
an equal amount of infected and uninfected images. The task
was binary classification. To keep the classes consistent, the ga-
metocyte, ring, schizont, and trophozoite stages were grouped
as the parasitized cells, and leukocytes and RBCs were con-
sidered uninfected cells to conduct the experiment. All mod-
els trained on the multi-stage malaria parasite images were di-
rectly transferred and tested on the large-scale malaria recog-
nition dataset without further training. As reported in Table 2,
our DTGCN achieved ~95% in accuracy, F1-score, precision, and
recall, compared to VggNet (72.4%), GoogleNet (74.4%), ResNet
(72.3%), Quinn et al. [22] (51.1%), Rajaraman et al. [23] (67.1%),
Vijayalakshmi [24] (66.0%), Umer et al. [25] (61.9%). These meth-
ods keep consistency with our DTGCN on Jaeser dataset follow-
ing transfer learning strategy, i.e., we train them only on source
dataset and directly apply the models on target datasets. And
VggNet still has the relative worse performance, which is consis-
tent with the previous experiment. In addition, there is a clear
separation between infected and uninfected cells in the t-SNE
plot Fig. S2 h. Contrarily, the VggNet has the most mixed t-SNE
with the worst classification results. This illustrates that the sep-
arable features benefit the classification and this is exactly the

operation that the proposed DTGCN completes. Importantly, DT-
GCN does not require any target image labels. This property ef-
ficiently solves the problem of the lack of large-scale labelled
data, which is caused by the high time consumption of sufficient
under-microscope labelling, which is a labor-intensive process
that can only be performed by well-trained professionals. The
corresponding confusion matrixes are also displayed in Fig. S3.
This binary classification task based on large-scale data
demonstrates that the DTGCN method not only has superior
performance in recognizing multi-stage malaria parasites but
also works well in an unseen large-scale malaria dataset. This
extraordinary capacity saves the expensive labelling work in
biomedical image analysis and provides a novel method for un-
labelled biomedical image classification. This part shows that
DTGCN outperforms other alternative methods on the unseen
large dataset of malaria parasites and it further demonstrates
the generalizability of DTGCN in malaria parasite recognition.

Performance on babesia parasite recognition

As mentioned in the Introduction, Babesia infects RBCs and
leads to the disease babesiosis. Because the clinical and labora-
tory presentations of babesiosis and malaria are similar (ring-
like structure), the ring forms of Babesia are sometimes con-
fused with those of the malaria parasite. Thus, a Babesia parasite
recognition test was conducted in this study to distinguish be-
tween Babesia parasites and RBCs to evaluate the discriminant
ability of the proposed model for other parasites. With the sim-
ilar ring shapes within infected RBCs, the recognition task was
also challenging for transfer learning. Surprisingly, the proposed
DTGCN achieved 99.0% accuracy, 99.01% precision, 99.0% recall,
and 98.99% Fl-score when training the model on 600 Babesia
and 600 RBC images. The reason that this model can distinguish
Babesia parasites and RBC might be the fact that DTGCN can suc-



Table 2: Performance on the large-scale malaria parasite dataset

Method Accuracy Precision Recall F1-score
Performance overall (%)

VggNet 724 +0.23 74.2 +£0.19 724 +£0.22 71.8 £0.27

GoogLeNet 74.4 +£0.22 81.0+£0.18 74.4 +£0.23 729+0.21

ResNet 72.3+0.16 81.6 +£0.18 72,2 £0.18 70.1+0.17

Quinn et al. 51.1+0.28 55.0 +£0.25 51.19 £ 0.29 39.2+0.23

[22]

Rajaraman et 67.1+0.31 67.6 £0.29 37.1+0.33 66.8 +£0.30

al. [23]

Vijayalakshmi 66.0 £ 0.27 339+0.21 66.0 £ 0.24 65.3 £0.25

[24]

Umer et al. 61.9+0.31 64.8 +£0.28 61.9+0.29 43.8 +£0.22

[25]

Baseline 749 +£0.17 74.9 + 0.25 749 +0.17 749 +£0.19

Ours+KNN 86.4 +£2.35 87.3+£3.10 86.4 +2.84 86.3 +£2.64

Ours+Res18 91.9+0.10 92.1 £ 0.09 91.9 £ 0.08 91.9+£0.12

Ours+Res34 93.6 £0.08 93.6 £ 0.07 93.6 £0.09 93.6 £ 0.08

Ours+Res50 95.4 + 0.05 95.4 + 0.07 95.4 + 0.06 95.4 + 0.07
Performance of Ours+Res50 on each class (%)

Parasitized 96.1 £+ 0.06 94.8 + 0.07 96.1 £ 0.05 95.4 + 0.06

Uninfected 94.7 £ 0.04 96.0 £ 0.07 94.7 £ 0.07 95.4 + 0.07

Note: Proposed DTGCN method with the best results is boldfaced.

cessfully overcome the problem of insufficient and imbalanced
training data. This experiment shows that the proposed DTGCN
is effective, flexible, and scalable when presented with a chal-
lenging microscopic object recognition task.

The proposed DTGCN for multi-stage malaria recognition is
composed of 3 major modules: CNN feature learning, target-
to-center source transfer graph building, and the UGCN. In this
section, we discuss the capacities of each main component of
this model and explore the reasons why this collaborative model
works so well.

Analysis of CNN feature learning module

To analyse the contribution of CNN feature learning and evalu-
ate the influence of CNN depth, we extracted CNN features by
different ResNets with 18, 34, and 50 layers. The relative recog-
nition results are summarized in Tables 1 and 2 for multi-stage
malaria parasites and large-scale binary malaria parasite im-
ages, respectively; t-SNE and confusion matrices are also illus-
trated in Figs 2 and 3 and Supplementary Figs S2 and S3, respec-
tively. Here, DTGCN achieved the best accuracy when the model
used ResNet50, rather than the shallow networks of ResNet18
and ResNet34, as the CNN feature extractor because the deeper
network usually has better feature learning ability for image
classification. Taking multi-stage malaria parasite recognition
as an example, DTGCN (Ours+Res50) obtained 98.3% accuracy,
while Ours+Res18/34 achieved 95.0%/96.7%. It is easy to see
that the deeper CNN generates the higher accuracy and shal-
lower CNNs achieve weaker performance (ResNet50 > ResNet34
> ResNet18).

Analysis of source transfer graph building module

As the major step of GCN, the graph-building algorithm is ex-
tremely important to establish a natural and topological struc-
ture for GCN. This article involves a novel graph-building mecha-
nism, named "target-to-center source transfer graph building al-

gorithm,” which connects the target image features to the source
class groups by measuring the distance between each sample’s
cluster and source class centers.

To show the contribution of the proposed graph-building al-
gorithm for multi-stage malaria parasite recognition, we deploy
a well-known KNN graph-building algorithm, which is usually
used in GCN, to replace our module. This modified method,
named "Ours+KNN” in Tables 1 and 2, produced accuracies of
only 78.7% and 86.4% for multi-stage and binary malaria para-
site recognition. The absolute superiority of the performance on
t-SNE and confusion matrixes in Figs 2 and 3 and Supplementary
Figs S2 and S3 of the proposed source transfer graph-building
algorithm proves that the established GCN is a reasonable and
robust topological method for solving the transfer learning prob-
lem in microscopic image recognition.

Analysis of unsupervised graph convolutional network

The crucial module of DTGCN is the proposed unsupervised
GCN, which aims to explore the correlations between the un-
labelled target samples given the inputs of CNN features and
graph. To comprehensively evaluate the contribution of UGCN,
we removed this module from DTGCN and directly utilized the
K-means algorithm on the target CNN features, which were ex-
tracted from the sufficiently trained CNN feature learning mod-
ule. This modification is defined as the Baseline of the proposed
DTGCN, and the detailed results on BBBC datasets are reported
in Table 1. From the comparison of DTGCN and Baseline, the
UGCN improves the accuracy by 17.4% (from 80.9% to 98.3%),
as well as greatly increasing in other metrics. From that, the
proposed DTGCN appears to result in an overall preponderance
over Baseline, because of the contribution of UGCN. To further
demonstrate the benefit from UGCN, this article also visualizes
the t-SNE of Baseline on multi-stage malaria parasite recogni-
tion (Fig. 2d) and large-scale malaria parasite data (Supplemen-
tary Fig. S2d), as well as confusion matrices (Fig. 3d and Sup-
plementary Fig. S3d). In terms of the recognition results and the
visualization comparison, the significant contribution of UGCN



on exploiting the discriminant topological correlations is fully
presented and proved.

Influence of the training data size (in source domain)

In general transfer learning tasks, the source data play an im-
portant role in the domain adaptation, and the efficacy of the
transferred model is most reliant on the scale of the source data.
To evaluate the influence of training data size in our DTGCN,
different data sizes from the source domain were randomly se-
lected from each class with equal percentages (20%, 40%, 60%,
80%, 100%) to conduct transfer learning on the target multi-stage
malaria parasite dataset. In Supplementary Fig. S4, the box plot
visualizes the accuracy results by conducting 5 randomly re-
peated iterations. The plot shows that DTGCN realizes 89.3% and
97.7% accuracy when utilizing 20% and 40% source data, respec-
tively. Furthermore, DTGCN achieves an acceptable accuracy of
97.7% when using 60% of source data, instead of using the en-
tire source dataset. This demonstrates that the proposed DTGCN
is trainable with limited data. This analysis concludes that the
more source training data, the better the transfer learning per-
formance that will be achieved. And this result suggests that re-
searchers should use as much source data as possible to support
the transfer learning on the target domain.

To our knowledge, this study is the first to investigate multi-
stage malaria parasite recognition with the use of a deep trans-
fer graph convolutional network (DTGCN) approach. In this arti-
cle, the DTGCN consists of 3 major components: CNN for feature
learning, source transfer graph building, and unsupervised GCN.
We designed the source transfer graph building and UGCN
for multi-stage parasite recognition, aiming to solve the prob-
lems of data variations and imbalanced data. With this knowl-
edge, the transfer learning between labelled source data and
unlabelled target data can work in many scenarios. The pro-
posed model first learns the CNN features by a ResNet architec-
ture with constraints of MMD and contrastive losses. It then uti-
lizes the target-to-center-based source transfer graph-building
algorithm to connect the source class groups with target sam-
ples, to leverage the imbalanced data. After CNN feature learn-
ing and graph building, DTGCN uses UGCN to further alleviate
the feature distribution gap between source and target domains
with a K-means algorithm. Thus, the proposed framework can
achieve multi-stage malaria parasite recognition results by the
K-means algorithm on the final graph feature representations
from the target domain. What needs to be emphasized is that
the proposed DTGCN not only works out the supervised multi-
stage malaria parasite recognition task but also does not require
any microscopicimage labels in the target domain, which means
that this model can be transferred to solve an unseen scenario
to conduct recognition tasks. The proposed DTGCN can also be
applied to other biomedical image recognition tasks that have
complicated procedures for data collection and annotation.
Through experiments on publicly available multi-stage and
binary microscopic malaria parasite images, this article has suc-
cessfully demonstrated that a DTGCN model can extract in-
formation to boost the accuracy of deep learning. Results on
malaria-like Babesia parasites show that a DTGCN model can
also be used for detecting other parasites under microscope.
The proposed method for multi-stage malaria parasite mi-
croscopic image analysis can be immensely helpful in the de-
velopment of a low-cost, automated malaria diagnostic solution.

This can significantly improve efficiency and reduce the need for
dedicated pathologists in areas with limited resources.

The P. vivax (malaria) infected human blood smear data are avail-
able in the BBBC repository and can be accessed with accession
No. BBBC041. The large scale malaria dataset consisting of 13,780
both malaria parasites and RBCs testing images are available in
the National Library of Medicine (NLM) respository and can be
accessed with accession No. PUB9932. Snapshots of our code and
other data further supporting this work are openly available in
the GigaScience repository, GigaDB [28].

Project name: Deep Transfer Graph Convolutional Network
Project home page: https://github.com/senli2018/DTGCN_2021
Operating system(s): Windows 10 with Nvidia Geforce 2080Ti
GPU

Programming language: Python 3.6.0

Other requirements: Pytorch 1.0.0 or higher, Torchvision 0.4.1 or
higher, Scipy 1.1.0 or higher, and Numpy 1.17.4 or higher
License: MIT

RRID:SCR_020976

Biotools: deep_transfer_graph_convolutional network

BBBCO041: https://data.broadinstitute.org/bbbc/BBBC041
PUB9932: https://lhncbc.nlm.nih.gov/publication/pub9932

Supplementary Figure S1. The life cycle of malaria parasites.
(a) The intra-erythrocytic cycle of malaria parasites. (b) Exam-
ples of multi-stage malaria parasites. Malaria parasites undergo
several stages in their complex life cycle. The malaria parasites
undergo repeated rounds of asexual multiplication (the intra-
erythrocytic developmental cycle). During the intra-erythrocytic
cycle, parasites go through the ring, trophozoite, and schizont
stages. In each cycle, a small proportion of parasites begin to
develop into the sexual form of the parasite, which is known as
a gametocyte.

Supplementary Figure S2. t-SNE performance on large-scale
malaria parasite binary classification. The t-SNE plots of Vg-
gNet (a), GoogleNet (b), ResNet (c), and Baseline (d) are compared
to various DTGCN approaches, including replacing the graph-
building graph by KNN algorithm (Ours+KNN) (e) and replacing
the CNN backbones with ResNet18 (Ours+Res18) (f), ResNet34
(Our+Res34) (g), and original ResNet50 (Ours+Res50) (h). The t-
SNE plots provide a method to evaluate and refine the clustering
of each class of sample images. Data points are coloured accord-
ing to their categories. The performance on large-scale malaria
parasite classification is similar to the multi-stage parasite clas-
sification, showing that Ours+Res50 is the best discriminated.
Supplementary Figure S3. Confusion matrices for the multi-
stage malaria parasite classification. The confusion matrices of
VggNet (a), GoogLeNet (b), ResNet (c), and Baseline (d) are com-
pared to various DTGCN approaches, including replacing the
graph building graph by KNN algorithm (Ours+KNN) (e) and
replacing the CNN backbones with ResNet18 (Ours+Res18) (f),
ResNet34 (Our+Res34) (g), and ResNet50 (Ours+Res50) (h). The
confusion matrix reveals the variation in misclassification be-
tween the predicted and true labels. The diagonal cells corre-
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spond to samples that are correctly classified. The off-diagonal
cells correspond to incorrectly classified samples. It is easy to
see that Ours+Res50 (DTGCN) presents the best classification re-
sults on the confusion matrix.

Supplementary Figure S4. The impact of source data size for
recognition accuracy. The DTGCN model is trained by increas-
ing the numbers of source examples as reported in percent of
original size (6,856). Note that the percentage of used images
preserves equivalent ratios of RBC to non-RBC images. For ev-
ery reported training data size, 5 repeat trainings are performed.
The accuracies are calculated and reported as box plots (n = 5).
The results of this study support the fact that a large number of
training images (>40%) are necessary for good performance (ac-
curacy >90%). This visualization reveals that dataset size plays
an important role in achieving high accuracy in classification.
Supplementary Figure S5. Visualization of several convolutional
feature maps learned by the top 3 layers of DTGCN. To show
the evidence of feature detection in more challenging use case
examples, we randomly visualize their feature maps from the
top 3 convolutional layers. A feature map generated from con-
volutional layers can reveal the detailed feature-learning pro-
cedure in the deep learning method. The feature map visualiza-
tion demonstrates that our DTGCN can extract clear morpholog-
ical features from these selected challenging images, which can
prove that our DTGCN has excellent capability in feature repre-
sentation for challenging multi-stage malaria parasite recogni-
tion.

Supplementary Table S1. The details of the multi-stage malaria
parasite images used in this study. The training images of multi-
stage parasites had imbalanced class distribution, where most
images captured under the microscope were red blood cells. This
table illustrates the numbers of training and test data.
Supplementary Table S2. Experimental settings of the compared
methods on multi-stage malaria parasite recognition. Details re-
garding maximum epoch number, batch size for source/target
data, learning rate, and optimizer are summarized. The learn-
ing rates of each method are initialized with the value in Ta-
ble S2 and will multiply by 0.1 in each of 50 epochs along with
the training. In the modified methods of DTGCN, the maximum
epoch number is 50, learning rate is 1e—5, and optimizer is Adam
for our network.

Supplementary Table S3. Experimental settings of the compared
methods on large-scale malaria parasite recognition. Details re-
garding maximum epoch number, batch size for source/target
data, learning rate, and optimizer are summarized. The learn-
ing rates of each method are initialized with the value in Ta-
ble S3 and will multiply by 0.1 in each of 50 epochs along with
the training. In the modified methods of DTGCN, the maximum
epoch number is 50, learning rate is 1e—5, and optimizer is Adam
for our network.

Supplementary Algorithm S1. Deep Transfer Graph Convolu-
tional Network Algorithm. This algorithm uses a DTGCN to al-
leviate the domain gap between the source and target domains
to solve the class-imblance problem. This algorithm employs Xs,
Y; as input source data and X; as target data. Then the network
is optimized using losses of CON and MMD with the initializa-
tion of parameters in M iterations. Finally, the target images X;
is tested by conducting K -means algorithm on the learned GCN
features.

CNN: convolutional neural network; GCN: graph convolutional
network; GPU: graphics processing unit; KNN: K-nearest neigh-

bours; MMD: maximum mean discrepancy; RBC: red blood cell;
t-SNE: t-distributed stochastic neighbour embedding.
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