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Cells have a wide range of capacities to remove extracellular hydrogen peroxide. At higher concentrations of

extracellular H2O2 (micromolar) the rate of removal can be approximated by a rate equation that is first-order

in the concentration of H2O2 and cell density. Here we present a method to determine the observed rate

constant for the removal of extracellular H2O2 on a per cell basis. In the cells examined, when exposed to

20 mM H2O2, these rate constants (kcell) range from 0.46�10�12 s�1 cell�1 L for Mia-PaCa-2 cells (human

pancreatic carcinoma) to 10.4�10�12 s�1 cell�1 L for U937 cells (human histiocytic lymphoma). For the

relatively small red blood cell kcell¼2.9�10�12 s�1 cell�1 L. These rate constants, kcell, can be used to

compare the capacity of cells to remove higher levels of extracellular H2O2, as often presented in cell culture

experiments. They also provide a means to estimate the rate of removal of extracellular H2O2, rate¼�kcell

[H2O2] (cells L�1), and the half-life of a bolus of H2O2. This information is essential to optimize experimental

design and interpret data from experiments that expose cells to extracellular H2O2.

& 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Introduction

Considerable research is now focused on the basic biology
associated with the cellular production of free radicals, related
oxidants, and antioxidants. There is a growing consensus that
these species are not just associated with various pathologies and
aging, but rather are central to the biology of normal cells and
tissues [1–5]. Unfortunately, much of what we know about
oxidants and antioxidants in biology is observational in nature
due to the high reactivity and low levels of the initial oxidative
intermediates [6]. Many popular assays provide relative changes
that may not be specific or have a linear response in the readout
[7,8]. In addition, once formed these highly reactive species can
rapidly react with multiple targets, disappearing into the cellular
milieu, resulting in a vanishingly small steady-state level, far
below lower-limits-of-detection of most analytical approaches.

Although many kinetic rate constants for the reactions of free
radicals, related oxidants and antioxidants, as well as antioxidant
enzymes are available, quantitative integration into our under-
standing of more complex biological systems has been challen-
ging and slow [2,9–14]. Modeling of complex systems with the
Published by Elsevier B.V. All righ

r the terms of the Creative

icense, which permits non-

any medium, provided the

C, Red blood cells

: þ1 319 335 8039.

uettner).
integration of physics, chemistry, and biology will allow more
thorough analyses, yielding better predictions and understanding
of fundamental redox processes and consequences in biology
[6,9–17]. Currently, most analyses are presented as qualitative
assessments with limited predictive abilities. To establish better
mathematical models of biological redox systems we need to
develop new approaches to gather quantitative information on
fundamental components of the redox circuits that comprise
biologic systems.

The integration of free radical and oxidant/antioxidant chem-
istry and biology are being addressed in the burgeoning field of
redox biology, more specifically in the newly developing field of
Quantitative Redox Biology (QRB) [17]. To gain the next level of
understanding of cellular redox processes, quantitative informa-
tion on the generation and removal of superoxide and hydrogen
peroxide by cells and tissues must be in hand. Here we address
the kinetics of the removal of extracellular H2O2 by intact cells.
For example, even though red blood cells produce a low flux of
superoxide and H2O2 intracellularly [18,19], they also efficiently
remove extracellular H2O2 [20–22]. Removal of extracellular H2O2

of course is not restricted to erythrocytes, many different types of
cells are able to remove extracellular H2O2 [23–32]. Many
different enzyme systems are involved in this removal process,
and new pathways are still being discovered. For some of the
known reactions involved in the removal of H2O2 the kinetic rate
constants have been determined with in vitro experiments using
purified enzymes. As a result there is a beginning understanding
of their potential contributions to the maintenance of a normal
steady-state level of H2O2 as well as their roles in pathological
ts reserved.
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settings. However, there is no one assay that can experimentally
determine the overall rate of removal of extracellular H2O2 by all
systems combined as described here.

Many studies on the mechanisms and consequences of expo-
sure of cells to H2O2 use a bolus addition of H2O2 to the culture
media over the cells. However, cells can remove this extracellular
H2O2; thus, the concentration of H2O2 will vary with time. The
observed consequences of exposure are not only a function of the
concentration of H2O2, but also how fast it is removed. It is
reasonable to assume that the greater the ‘‘cell density’’ the more
rapidly the added H2O2 will be removed [23,24]. Thus, the actual
cellular consequences observed may also change with cell density
[28,30,33]. The possibility of significant changes in the concentra-
tion of H2O2 with time adds another complicating factor to the
interpretation of the data from these types of experiments.

To maintain a constant level of H2O2 Antunes et al. developed
a new approach, the cellular steady-state titration of H2O2

[30,31,34]. In this approach a stable flux of H2O2 is produced,
e.g. by glucose/glucose oxidase. This production is balanced by
the cellular removal of this extracellular H2O2 to achieve a desired
extracellular and intracellular steady-state level of H2O2 over a
long period of time. The cellular consequences can be quite
different than experiments employing bolus additions of H2O2

and may be much more relevant to the in vivo biology of cells and
tissues [31].

Here we present a method to determine an observed rate
constant for the removal of extracellular H2O2 on a per cell basis.
This rate constant provides a quantitative means to compare the
capacity of cells to remove extracellular H2O2; results can then be
coupled with cell density to determine the rate of removal of
H2O2 in experiments, allowing for better design and interpreta-
tion of data. In addition this information is required to mathe-
matically model redox processes in systems to advance the new
field of Quantitative Redox Biology.
Methods

Cell culture and enumeration

HL-60, U937, MIA-PaCa-2, MDA-MB-231 (ATCC, Manassas, VA)
and BAEC (isolated from bovine heart [35]) were maintained in
RPMI 1640 media supplemented with 10% FBS and 85 U/mL
penicillin and 85 mg/mL streptomycin (Invitrogen, Grand Island,
NY). MCF-7 cells were maintained in MEM with 10% FBS with the
same penicillin and streptomycin levels as above. The MCF-7 p51
(GPx-4) stable overexpressing cells [36] with a selectable anti-
biotic resistance marker were grown in the same media supple-
mented with Geneticins (G418, 350 mg/mL) (Research Products
International Corp, Prospect, IL) and 30 nM sodium selenite.
All cells were cultured at 37 1C in a humidified incubator with
5% CO2.

Human RBC’s obtained from donors with informed consent
were isolated after removal of WBC’s with Histopaque (Sigma-
Aldrich, St. Louis, MO). The isolated RBC’s were washed 2� in PBS
pH 7.4, counted and then suspended in HBSS (Invitrogen).

Cells were detached with trypsin (0.25%)–EDTA (0.038%)
(Invitrogen) that had been supplemented with 0.1% disodium
EDTA. Cells were then washed in media and counted with a Z2

TM

Coulter Counters Cell and Particle Counter (Beckman-Coulter,
Miami, FL). Typically, cells were seeded with cold media (5 1C)
and allowed to attach overnight (o12 h) in 96-well tissue culture
plates incubated at 37 1C with 5% CO2. This experimental
approach allowed the cells to attach overnight with little growth.
Typically, the number of cells in a well the following day was
within 3% of the intended cell-number. Cells that grew as
suspension cultures or cell lines that typically grow as mono-
layers, but were to be used in a ‘‘detached’’ state, were washed,
suspended in HBSS, and then counted with the Z2

TM

Coulter
Counters. Cells attached as monolayers were rinsed three times
with HBSS before being used in experiments: all cells were in
wells of clear 96-well microplates (Costar, Corning, NY, or Nunc,
Roskilde, Denmark) covered with 50 mL HBSS.

pHPA extracellular hydrogen peroxide assay

Overview of assay

In this assay a known number of cells is introduced into the
wells of a 96-well plate. Then extracellular H2O2 is added to
subsets of the wells at different defined times. The cells com-
mence to remove this extracellular H2O2. The system is quenched
at predetermined times and the concentration of extracellular
H2O2 remaining is determined. The information on number of
cells, amount of extracellular H2O2 remaining, total volume of
media, and the different times of exposure of cells to extracellular
H2O2 allows the determination of the capacity of cells to remove
extracellular H2O2.

Pilot studies with the various cell lines were run to establish
the range of optimal experimental parameters, i.e. appropriate
cell-number per well required and time-frame for removal of
extracellular peroxide, which is cell-type and cell density depen-
dent. These experiments established general conditions for each
cell line, allowing cell-number and time of exposure to extra-
cellular H2O2 as variables in our determinations of the rate of
removal extracellular H2O2. For most adherent cell lines we
established the highest number of cells that can attach overnight
and cover 90% of the 96-well bottom surface. Cell size influences
this experimental parameter. Under conditions in which sus-
pended cells or freshly trypsinized cells were to be used, the cells
were counted and placed immediately in HBSS before the assay.
The protocol below is for an experiment where the cells are
exposed to 20.0 mM H2O2 in the media with a maximum total
time of exposure of 10 min. Both of these parameters can be
varied as needed. The final concentration of H2O2 in the analysis
is r10.0 mM.

Solutions

Standard solutions of H2O2

Stock solutions of H2O2 standards are prepared just before use.
These stock solutions are added to the designated wells of the 96-
well plate while the cells are being exposed to H2O2. Standard
stock solutions are prepared at 0.0, 2.0, 4.0, 8.0, 12, 16, 20, 24, 32,
and 40 mM in HBSS using appropriately diluted 30% v/v (E10 M)
H2O2 (Sigma) stock in HBSS. The actual concentration of the
original stock is determined using e240¼39.4 M�1 cm�1 [37]. The
wells to be used for standards are pre-loaded with 50 mL of HBSS;
then, the standards are added to wells as 50 mL additions,
resulting in H2O2 standards of 0.0, 1.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12,
14, 16, 18, and 20 mM, (100 mL): note that at the end of the
experiment, 100 mL of the stopping solution is added producing
final concentrations in the wells of 0.0, 0.50, 1.0, 2.0, 3.0, 4.0, 5.0,
6.0, 8.0, and 10.0 mM H2O2. All standards are run in triplicate and
corrected to the 0.0 mM (blank) wells. These standard curves
allow absolute determination of the concentrations of the remain-
ing H2O2 in the wells where cells have been exposed to H2O2.

Stopping solution: The stopping solution is made as a mixture
of: 20 mL HBSS (Invitrogen); 20 mL 1 M 4(-2-hydroxyethyl)-1-
piperazineethansulfonic acid (HEPES), pH 7.2–7.5; 10 mg NaHCO3

(3 mM), 5 mg para-hydroxyphenylacetic acid (pHPA; alias
2-(4-hydroxyphenyl)acetic acid, CAS Nr 156-38-7) (0.8 mM)
(Sigma, St Louis, MO); and 2 mg HRP (horseradish peroxidase
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Type 1)(Sigma): this solution was prepared fresh immediately
before use.

Protocol
1.
 Standard solutions (50 mL) having ten different concentrations of
H2O2 (0.0–40 mM; 0.0, 2.0, 4.0, 8.0, 12, 16, 20, 24, 32, 40 mM) are
placed into designated wells of a clear plastic 96-well tissue
culture plate, for example wells B2–B11, C2–C11, D2–D11, for
triplicate determinations. To these wells HBSS (50 mL) is also
added, a total volume of 100 mL in each well. Final concentrations
of H2O2 in the wells for these standards are 0.0, 1.0, 2.0, 4.0, 6.0,
8.0, 10, 12, 16, 20 mM. Note: to faithfully mimic the exposure of
cells to extracellular H2O2, the freshly prepared H2O2 standards
are added to the standard wells while the cells are being exposed
to H2O2, i.e. in parallel with step 3 below.
2.
 Counted cells in 50 mL of HBSS are placed in other wells of the
clear plastic 96-well tissue culture plate; for example into
wells E2–E11, F2–F11, G2–G11 to provide triplicate determi-
nations for each time point; or for different cell lines or
treatment within a row.
3.
 Experiments are initiated by adding 50 mL of freshly prepared
40 mM H2O2 stock solution in HBSS to achieve 20 mM final
concentration of H2O2 in each well with cells; 100 mL total
volume in each well; additions and progression to new wells is
typically done in 1.0-min intervals over a 10-min exposure
period. For example, H2O2 stock solution is added to wells E2,
F2, G2, then one minute later to wells E3, F3, G3, etc. for
triplicate determinations at each time point. In some circum-
stances additions may be at 5-min intervals over 45 min, e.g.
low number of cells or low H2O2 removal capacity, or some
other appropriate combination of concentration and time.
4.
 Immediately after the addition of H2O2 to the final set of three
wells (within 10 s), i.e. the end of the experiment and the last
time point, 100 mL of a stopping solution is added to each well;
this addition is made to both sets of wells, i.e. wells with cells
and wells with standards with the aid of a 12-channel multi
pipette. The horseradish peroxidase in the stopping solution
reacts with the remaining H2O2 in the wells. The activated HRP
then oxidizes pHPA resulting in formation of the fluorescent
pHPA dimer, which is used as the readout for the amount of
H2O2 in the wells. Note: because the volume of solution in
each well is now doubled, all concentrations of H2O2 are now
halved, here 0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 10.0 mM for
the standards with the concentration of the remaining H2O2 in
wells with cells also halved.
5.
 Inhibition of catalase with 3-AT (optional): Cellular catalase
activity was irreversibly inhibited using 3-amino-1,2,4-triazole
(Sigma; CAS 61-82-5) before cells were examined in a
peroxide-removal assay [38]. Briefly, attached or suspended
cells were incubated in full media with 20 mM 3-AT for 1 h at
37 1C, the media was removed, and cells were washed three
times with HBSS before addition of the buffer for the peroxide-
removal assay: suspended cells were counted before placing
them into the peroxide-removal assay buffer and assigned
wells of the assay plate. 3-AT must be removed from the media
before initiation of the peroxide-removal assay, as it will react
with compound I of HRP, interfering with the quantitation of
the remaining H2O2.
6.
 At room temperature the assay color/fluorescence is sufficiently
developed and can be read in a fluorescence plate reader after
5 min. We routinely run the assay at room temperature and read
the plates using a Tecan SPECTRAfluor PLUS (Tecan US, Research
Triangle Park, NC) fluorescence plate reader with excitation at
345 nm while monitoring emission at 425 nm from above the
wells. Typically, the assay plate is read every 5 min over 30 min.
This ensures that the chemistry of the assay for the detection of
the remaining H2O2 in the wells has come to completion. Actually,
only one reading is needed; the additional readings are to ensure
that there are no anomalies. If an anomaly is noted in one of the
plate-readings, another can be used to arrive at a best result. Note
that both the experimental wells (with cells) and the standards
are ‘‘stopped’’ at the same time; reading of all the wells is done
essentially simultaneously, i.e. as fast as the plate reader allows;
this is essential so that all measurements are internally consistent.
This is one of the most important aspects of this assay: All samples
are treated the same and analyzed the same way, with no
temporal differences in standards and cell samples.
7.
 For the data analysis it is important to subtract the appropriate
‘‘blank’’ from all other readings, both standards and cell
samples. In our assay the blank is the mean (or median) value
of the fluorescence from the standards with no H2O2. It is
important to examine all the readings from the plate to ensure
there are no anomalies, especially the blank wells. Note that
the blank is prepared so that it matches the media over the
cells during the exposure to extracellular H2O2.
8.
 First-order rate constant calculations: The rate of removal of
extracellular H2O2 by cells under the experimental conditions
of this assay is approximated well by a first-order rate law,
d[H2O2]/dt¼�kobs [H2O2], where kobs is the observed first-
order rate constant as provided by the slope of: ln[H2O2] vs.
time (in seconds), i.e. time is the abscissa and ln[H2O2] is the
ordinate; because the removal of H2O2 is typically first-order,
the readout in arbitrary fluorescent units (corrected for the
blank) will allow determination of kobs, i.e. ln(fluorescence
units) vs. time; units for kobs are s�1. The observed rate
constant for each cell will be, kcell¼kobs/(cell L�1), where (cell
L�1) is the number of cells in the well divided by the total
volume of media in the well, in liters. This is the volume of
media during the time the cells are exposed to the bolus of
extracellular H2O2, i.e. before the addition of the stopping
solution. This rate constant, kcell, is not only a measure of the
capacity of cells to remove extracellular H2O2, but it is also a
tool to design and interpret data from experiments in which
extracellular H2O2 is employed, either as bolus or as a flux. The
rate of removal of extracellular H2O2 in an experiment with a
known cell density will be: rate¼�kcell [H2O2] (number of
cells L�1). The average contribution of one cell to this overall
rate will be: ratecell¼�kcell [H2O2] (1 cell L�1). Very useful for
both experimental design and data interpretation is the half-
life of a bolus addition of H2O2 in an experiment with a specific
cell density: t1/2¼0.693/(kcell (number of cells L�1)).

Statistics

The lower limits of detection (LLD) for standard curves were
estimated as described by Anderson [39].
Results and discussion

Standards for H2O2

Our goal was to develop a simple and flexible microplate
reader assay for measuring H2O2 reliably while being compatible
with cells in vitro. We have adapted the flexible H2O2 assay in
which pHPA in the presence of H2O2 and HRP is oxidized to a
dimeric fluorophore (pHPA)2 [40–42]. This assay is for use in
measuring H2O2 in media and not intended for measuring
intracellular generation of H2O2 or its extracellular accumulation
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in media from cells. The assay can measure H2O2 in a convenient
and flexible format utilizing clear tissue culture plates and
fluorescence microplate readers with monochromator/grating or
commonly used filter sets (Fig. 1A). The fluorescence assay for
H2O2 based on formation of pHPA dimer is linear in the range of
interest, 0–30 mM. The assay is responsive, but nonlinear at higher
levels of H2O2, i.e. 430 mM (This is the final concentration after
addition of stopping solution.), Fig. 1A and B. As seen in both
Fig. 1A and B the color/fluorescence assay continues to develop
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Fig. 1. Standard curves for the HRP/pHPA assay for H2O2 change with time
and are nonlinear at higher concentrations of H2O2. (A) Standards for H2O2

(5–100 mM, final concentration in the wells) in the HRP/pHPA-based assay were

read at 5, 10, 15, 20, and 25 min after addition of the stopping solution; see

Methods. Assays were run in clear 96-well tissue culture plates (200 mL total

volume) and monitored for fluorescence with band-pass filters for lex¼345 nm,

lem¼425 nm; (B) The initial linear portion of the standard curves from 0 to 30 mM

H2O2 shown at 5 and 25 min. Each reading of the plate produced a linear response.

This demonstrates that for this assay, standards and samples must be run in

parallel to ensure the same timeframe. This is a representative assay from one

experiment, plotting the average from the triplicate wells of each concentration. It

is important in the analysis to subtract the ‘‘blank’’, i.e. wells with no cells and no

H2O2, but all other components the same as in the wells that contain cells.
over time and doesn’t reach a true end point until at least 30 min.
However, the assay is linear from 0 to 30 mM of H2O2, whether
read at 5 or 25 min after the addition of the stopping solution;
valid estimates of H2O2 concentration are possible at any time
between 5 and 30 min. The assay protocol demonstrated the
potential for broad applicability: especially in timing with multi-
ple samples in a 96-well plate format.

We further explored the usefulness of the assay with cultured cells
by demonstrating that the assay is linear at low H2O2 concentrations,
i.e. at levels that can be reliably measured, while low enough to
prevent rapid and overt cellular toxicity. Fig. 2A is a standard curve
from a representative experiment with 0.5 to 10 mM H2O2 (final
concentration in the wells), using our standard protocol. The assay
shows linearity when read at either 5 or 25 min with a lower limit of
detection (LLD) of 0.4 mM at 25 min. The H2O2 concentration range
we have used is the range anticipated for most of our cell experi-
ments. As seen in Fig. 1A, standard curves are initially linear with
increasing slopes over time; Fig. 2B presents this quantitatively. This
demonstrates that the assay does not reach a true end point at the
temperatures and times we have employed, and that a low level,
systemic oxidation occurs. This low rate of background oxidation
highlights and enforces the importance that standard curves and
experimental samples must be developed and analyzed simulta-
neously. Additionally, the assay could be modified and is applicable
to kinetic-based assays for estimates of H2O2 concentration based on
rates of (pHPA)2 fluorescent dimer formation.

pHPA, caveats

The upper limit of H2O2 concentration that can be used in the
96-well plate reader assay is 30 mM (final concentration; 60 mM
during cell-exposure), which is a limit similar to the 40 mM, using
fluorimeters, as reported by Hyslop and Sklar [41]. The loss of
linear responses above 30–40 mM H2O2 in standards curves is
probably due to the absorbance of (pHPA)2, which will affect
excitation intensity [41] as well as other photo-induced fluores-
cence reactions [43]. The lower limit of detection (LLD) can
approach 0.4 mM: this of course varies depending on the quality
of the standard curve produced when running the assay.

There is a background oxidation of pHPA that occurs in standard
curves (Fig. 2A and B) as well as cell samples. Using the protocol
presented here overcomes this issue in quantitation due to the
simultaneous development and analysis of the produced pHPA
fluorophore. Erroneous results will occur if this background oxidation
is not accounted for in experiments where samples and standards are
not assayed and run simultaneously. This low level oxidation would
be misinterpreted in samples in which cells are being evaluated as
the apparent generation or accumulation of H2O2 from cells.

To simplify the analysis of an experiment the number of cells in
each well of the 96-well plate should be the same. The observed
kinetics for the rate of removal of extracellular H2O2 is approxi-
mated by a first-order rate equation. Thus, the actual concentration
of the H2O2 remaining in each of the wells with cells, in principle,
need not be known. The value of kobs can simply be determined by a
plot of ln(net fluorescence, in arbitrary units) vs. time, where net
fluorescence¼(fluorescence in well)–(fluorescence of blank). The
standards are run because: they take very little extra time; the cost
of reagents is minimal; the actual concentration in the wells is
known and can be reported with confidence; but most important,
the standards provide quality control as many (but not all) possible
abnormalities can identified.

Removal of extracellular H2O2

The kinetics of the removal of extracellular H2O2 is approximated
well by a simple first-order rate equation, first-order in [H2O2],



Fig. 3. Removal of extracellular H2O2 by cells grown in suspension culture or as
adherent monolayers is a first-order process. (A) U937 cells (5.0�104 cells well�1)

in HBSS were incubated with 20 mM H2O2 for 0–10 min (100 mL total volume) at room

temperature and then assayed for the remaining extracellular H2O2 using the pHPA

assay. The observed first-order rate constant for the loss of extracellular H2O2 in this

experiment was determined to be kobs¼3.0�10�3 s�1. The cell density in this

experiment was 5.0�108 cells L�1. This yields kcell¼kobs/(5.0�108 cell L�1)¼

6.0�10�12 s�1 cell�1 L. (B) MDA-MB-231 human breast cancer cells

(2.1�105 cells well�1) were allowed to attach overnight to the bottom of the tissue

culture well, rinsed of old media, and washed with HBSS and covered with 50 mL HBSS.

The cells were then treated with 20 mM H2O2 (100 mL total volume); because of their

much lower capacity to remove extracellular H2O2 the time of maximum exposure was

40 min. The observed first-order rate constant for the loss of extracellular H2O2 in this

experiment was determined to be kobs¼1.2�10�3 s�1. The cell density in this

experiment was 2.1�109 cell L�1. This yields kcell¼kobs/(2.1�109 cell L�1)¼0.57�

10�12 s�1 cell�1 L. Both experiments are representatives of typical observations seen

in greater than 50 experiments with various cell lines.

y = 28.3x + 6.7 
R  = 1.0 

y = 39.1x + 7.4 
R  = 1.0 

0

100

200

300

400

0 2 4 6 8 10

Fl
uo

re
sc

en
ce

 In
te

ns
ity

 

 [H2O2]/µM

25 min 

5 min 

y = 0.5x + 25.4 
R  = 1.0 

25

30

35

40

0 5 10 15 20 25

Sl
op

e 
of

 S
ta

nd
ar

d 
C

ur
ve

s 

time/min

Fig. 2. A typical standard curve performed under the conditions of the assay
for removal of extracellular H2O2 by cells. (A) Representative standard curve

from a HRP/pHPA-based assay for H2O2 read with a fluorescence plate reader. The

data are the average of triplicate samples on a plate read 5 and 25 min after

addition of the stopping solution. The lower limit of detection (LLD) for the 25-min

standard curve was 0.43 mM. (B) The slope of a standard curve changes linearly

with time. Here the plate with the standard samples was read at five different

times (5–25 min) after addition of the stopping solution. Again, this demonstrates

that standards and samples must be run in parallel with steps in the protocol

being congruent as appropriate.
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Figs. 3 and 4. However, as seen in Fig. 3, the capacity of cells to
remove extracellular H2O2 varies drastically between different cell
lines; note that the observed first-order rate constant for the removal
of extracellular H2O2 by the human histiocytic lymphoma suspension
cell line U937 is approximately three times larger than the attached
monolayer of human mammary adenocarcinoma MDA-MB-231 cells,
despite there being approximately four times more MDA-MB-231
cells in the experiment than U937 cells; also note the difference in the
time-scale for each abscissa of Fig. 3A and B. U937 cells grow as a
suspension culture and were exposed to extracellular H2O2 while in
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suspension, whereas the MDA-MB-231 cells are cultured as a mono-
layer and were exposed to extracellular H2O2 as attached cells. The
difference in this physical aspect of cell culture may contribute to the
very different capacities of these cells to remove extracellular H2O2.
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Fig. 4. The physical setting of cells affects the rate of extracellular H2O2

removal. Bovine aortic endothelial cells were allowed to attach overnight or were

freshly trypsinized, counted, and then assayed for their ability to remove

extracellular H2O2. The same cell densities (1.0�105 cells well�1) were used for

the assays for both attached and detached cells. The cells were exposed to a bolus

addition of 20 mM H2O2 (100 mL total volume yielding a cell density of

1.0�109 cells L�1). Because of the low capacity of BAECs to remove extracellular

H2O2 the maximum time of exposure was increased to 40 min, before addition of

stopping solution. Insets demonstrate the pseudo-first-order kinetics observed for

H2O2 removal by BAECS. In these sets of experiments kcell¼0.50�10�12 s�1

cell�1 L for attached cells and kcell¼1.3�10�12 s�1 cell�1 L for suspended cells.

Table 1
Rate constant, kcell, for removal of extracellular H2O2 by cells.

Cell (Vol/pL)b State

HL-60 Human promyelocytic leukemia (0.64) Suspended

U937 Human histiocytic lymphoma (0.93) Suspended

MDA-MB-231 Human mammary adenocarcinoma (1.53) Monolayer

MCF-7 Human mammary adenocarcinoma (1.70) Monolayer

MCF-7p51 Human mammary adenocarcinoma (1.84) Monolayer (GPx-4 Overex

MIA-PaCa-2 Human pancreatic carcinoma (2.03) Monolayer

PC3 human prostate cancer cell line (2.93) Monolayer

BAEC Bovine Aortic Endothelial Cells (0.93) Monolayer

BAEC Bovine Aortic Endothelial Cells (0.93) Detached

RBC’s Human red blood cell (0.09) Suspended

RBC’s mouse red blood cell (0.05) Suspended

Jurkatd Clone E6�1 (0.78) Suspended

a The rate of removal of H2O2 will be: rate¼�kcell [H2O2] (number of cells L�1

approximately t1/2¼0.693/(kcell (number of cells L�1)).
b Cell volumes are from Ref. [57]; Jurkat volume from [58].
c n is the number of independent experiments. Each experiment had, as minimum
d This value of kcell was estimated from the data in Ref. [30]. Note that kcell of Ant
Physical constraints on removal of extracellular H2O2

Cells in an adherent culture will have proportionally less surface
area available for the diffusion of extracellular H2O2 into the cell, and
thus a possible slower rate of removal of extracellular H2O2. To
address this possible physical constraint we examined the rate of
removal of extracellular H2O2 by attached and detached bovine aortic
endothelial cells (BAEC). BAECs that were attached as a monolayer or
detached as a suspension were assayed simultaneously with equal
cell numbers per well. The data of Fig. 4 demonstrate that detached
BAECS remove bolus additions of extracellular H2O2 at a rate 2.6 times
greater than the same cells when attached as a monolayer at the
bottom of tissue culture wells; see also Table 1. In this experiment the
cellular first-order rate constants (kcell) for the removal of extracel-
lular peroxide-removal by BAECs were 0.50�10�12 s�1 cell�1 L for
attached cells and kcell¼1.3�10�12 s�1 cell�1 L for suspended cells
(Fig. 4 inset). Thus, the ‘‘available’’ surface area influences the removal
of extracellular H2O2.
Inhibition of catalase

In preliminary studies to explore the contribution of different
peroxide-removal enzymes responsible for the removal of extracel-
lular H2O2 in our experimental configuration, we treated cells with
the catalase inhibitor 3-aminotriazole. This treatment specifically
inhibits catalase irreversibly through a suicide inactivation mechan-
ism dependent on H2O2 [44]. Because aminotriazole requires H2O2 to
inactivate catalase it can also be used to detect H2O2 in vitro and
in vivo [45–49]. In general we have found that cellular catalase
activity can be inhibited to less than 20% of its original activity when
incubated for 1 h with 20 mM 3-aminotriazol and that intracellular as
well as extracellular H2O2 can facilitate this inactivation [49].

The inhibition of catalase decreased the rate of peroxide-
removal from all the cells tested, but to varying degrees,
Table 1. Other peroxide-removal enzymes and mechanisms exist
and their contributions are apparent as kcell with 3-AT is420% of
kcell in the absence of 3-AT. These observations with 3-AT not only
demonstrate that extracellular H2O2 can penetrate into the
cytoplasm of cells but additionally into organelles such as
peroxisomes, where catalase is located. Changes in kcell following
inhibition of catalase demonstrate that the assay and methodol-
ogy reflect real and measurable changes in the ability of cells to
remove extracellular H2O2.
kcell/10�12 s�1 cell�1 La kcell/10�12 s�1 cell�1 L with
3-aminotraziole

Mean 7 Std err nc Mean 7 Std err nc

1.8 0.4 5 0.64 1

10.4 1.7 6 2.7 1

0.47 0.03 8 0.32 0.04 5

0.64 0.06 5 0.49 0.06 4

pressor) 3.7 1.5 5 1.7 0.5 3

0.46 0.04 5 0.38 0.03 5

2.0 0.3 9

0.72 0.16 11 0.42 0.09 5

1.9 0.2 13

2.9 0.7 10 1.1 1

2.4 2

1.0 0.1 16

). The half-life of H2O2 in an experiment upon bolus addition of H2O2 will be

, triplicate determinations at each time point and for each standard.

unes et al. is kobs here. Their cell density was 1.0�109 cell L�1.
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Differences in cellular capacity to remove extracellular H2O2

As seen in Table 1, kcell for removal of extracellular H2O2, as
determined using our assay protocol, varies widely in the set of
cells examined. The human pancreatic cancer cell line MIA-PaCa-
2 and the human mammary adenocarcinoma cell line MDA-MB-
231 have the lowest values of kcell. In contrast the human
histiocytic lymphoma cell line U937 has 20 times greater capacity
to remove H2O2 as estimated by kcell. Interestingly, the MCF-7
human breast cancer cell line that overexpresses GPx-4 [50,51]
removes H2O2 at a rate 3.5 times faster than the normal wild-type
MCF-7 counterpart. This difference is not due to changes in
catalase, GPx1, or attributable to differences in GSH levels, as
the GPx-4 over-expresser has similar levels to the parental MCF-7
wild type cell line [50]. As seen with lipid hydroperoxides [52],
GPx-4 may be a major contributor to removal of H2O2.

Erythrocytes have a remarkable capacity to remove extracellular
H2O2, kcell¼2.9�10�12 s�1 cell�1 L, despite their relatively small
size (0.090 pL) compared to the other cells examined (0.64–2.93 pL).
Because RBCs do not have mitochondria, meeting their needs for
ATP through glycolysis, the principal intracellular source of oxidants
is thought to be the very slow autoxidation of oxyhemoglobin,
producing methemoglobin and superoxide. The rate constant of
this reaction for human oxyhemoglobin is estimated to be
E1�10�7 s�1 [53,54]; if the concentration of oxyhemoglobin in
RBCs is 5 mM, then the rate of superoxide production will be
5�10�10 M s�1 yielding a rate for production of H2O2 of
2.5�10�10 M s�1, assuming SOD reacts with the vast majority of
superoxide produced. The flux of H2O2 in each RBC would then be
0.023 zmol s�1 or 13 molecules of H2O2 RBC�1 s�1. In our experi-
ments to determine kcell cells were exposed to 20 mM H2O2; the
initial rate of removal of this extracellular H2O2 by a cell would
be: rate¼�(2.9�10�12 s�1 cell�1 L) (20�10�6 M) (1 cell L�1)¼
�58�10�18 M s�1 or for each cell 58 amol s�1 (36�106

molecules cell�1 s�1). Thus, the capacity to remove H2O2 by RBCs
greatly exceeds the rate of intracellular production. The biconcave
shape of RBCs yields a large surface-to-volume ratio that supports
rapid exchange of oxygen and carbon dioxide; this also allows rapid
diffusion of extracellular H2O2 into the RBC where the peroxide-
removal system has a great capacity to remove this H2O2. In whole
blood the density of RBCs is about 5�1012 cells L�1; this would
yield an estimate of kobs¼(2.9�10�12 s�1 cell�1 L) (5�1012

cells L�1)¼15 s�1, yielding a half-life of H2O2 in whole blood of less
than 50 ms.

This high capacity for removal of extracellular H2O2 by RBCs is
thought to be a means for red blood cells to remove localized
pulses of very high fluxes of H2O2, such as generated by activated
immune cells, thereby protecting other cells and tissues from
oxidative damage and yet not suffer extensive damage them-
selves that would cripple their function [55].

There are several peroxide-removal systems in cells, e.g.
peroxiredoxins, glutathione peroxidases, catalase, and others. It
must be kept in mind that the fraction of the flux of extracellular
H2O2 removed by any one of these systems depends on the flux of
H2O2 entering the cell and the availability of co-factors required
for their individual function [11,12,18,23,24–27,56]. In addition,
the biological response observed upon exposure will be a function
of the exposure/dose (mole cell�1) or flux (mole cell�1 s�1)
[28,31,32], and references therein. There are literally hundreds
of reports where the exposure to a bolus of extracellular H2O2 is
presented as concentration without information on the volume of
media or cell density; because in a laboratory most experiments
employ the same protocol, i.e. same number of cells and the same
volume of media, the results reported are only relative within that
protocol. Such results may not be universally interpretable or
translatable to other experimental results that used different
protocols. We encourage researchers to provide more quantitative
information on the exposure of cells to extracellular H2O2, i.e.
mole cell�1 or mole cell�1 s�1. We suggest information be pro-
vided on a per cell basis (a biophysical normalization) as well as
per mg cell protein (a biochemical normalization). Use of both
normalizations will maximize potential information from experi-
ments. Expressing cell density in cell L�1 and the use of seconds
as the unit for time (SI unit) allows direct use when connecting to
standard chemical kinetics and mathematical modeling [57]. This
also allows direct quantitative comparisons between different cell
types, a goal of quantitative redox biology [17,57].
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