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Simple Summary: Breast cancer (BC) is the most frequent tumor in women worldwide. A minority
of BC patients have a family history of the disease, suggesting the importance of environmental and
lifestyle factors. Human papillomavirus (HPV) infection has been detected in a subset of tumors,
suggesting a potential role in BC. In this review, we summarized relevant information in respect to
this topic and we propose a model of HPV-mediated breast carcinogenesis. Evidence suggests that
breast tissue is accessible to HPV, which may be a causal agent of BC in a subset of cases.

Abstract: Breast cancer (BC) is the most commonly diagnosed malignancy in women worldwide as
well as the leading cause of cancer-related death in this gender. Studies have identified that human
papillomavirus (HPV) is a potential risk factor for BC development. While vaccines that protect
against oncogenic HPVs infection have been commercially available, global disparities persist due
to their high cost. Interestingly, numerous authors have detected an increased high risk (HR)-HPV
infection in BC specimens when compared with non-tumor tissues. Therefore, it was suggested
that HR-HPV infection could play a role in breast carcinogenesis in a subset of cases. Additional
epidemiological and experimental evidence is still needed regarding the role of HR-HPV infection in
the development and progression of BC.
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1. Breast Cancer as a Global Health Concern
1.1. Breast Cancer Epidemiology

Breast cancer (BC) is the most commonly diagnosed malignancy in women worldwide
as well as the leading cause of cancer-related death in this gender. It was estimated that
2,261,419 new cases of BC and 684,996 deaths worldwide were attributable to this malignant
tumor in 2020 [1]. Developed parts of the world such as Australia/New Zealand, Northern
and Western Europe, and North America display high incidence and low mortality rates
of BC when compared with developing areas such as Melanesia, Micronesia/Polynesia,
Northern and Western Africa, and the Caribbean [2]. In fact, the age-standardized incidence
and mortality rates for BC in women were different when data from high-income economies
and low/middle income economies (55.9 vs. 29.7 per 100,000 and 12.8 vs. 15.0 per 100,000,
respectively) were compared [1]. Despite recent advances in the treatment of primary
tumors, 20–40% of BC patients eventually develop recurrences depending on their stage at
diagnosis and the molecular classification of the tumor [3,4].

Biology 2021, 10, 804. https://doi.org/10.3390/biology10080804 https://www.mdpi.com/journal/biology

https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://doi.org/10.3390/biology10080804
https://doi.org/10.3390/biology10080804
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biology10080804
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology10080804?type=check_update&version=2


Biology 2021, 10, 804 2 of 17

1.2. Breast Cancer Classification

Approximately 90–95% of BCs are adenocarcinomas, which arise from the cells lining
the milk ducts or lobular (milk-producing) glands. Of these, 75–80% are invasive ductal
carcinomas (IDC) and 5–10% are invasive lobular carcinomas (ILC). Special types of inva-
sive BC include mixed (ductal and lobular), inflammatory, metaplastic, papillary, tubular,
adenoid cystic, cribriform, medullary, and mucinous carcinomas [5,6]. Based on the im-
munohistochemical expression of estrogen (ER), progesterone (PgR), and the epidermal
growth factor receptor type-2 (HER2), BC is divided into four molecular subtypes with
distinct prognostic and therapeutic approaches. The estimation of cell proliferation rate
by the means of Ki-67 expression is also used for BC molecular classification. Ki-67 is a
nuclear protein present in all active phases of cell cycle (late G1, S and G2/M), but absent
in G0 [7]. The subtypes are as follows: Luminal A (ER+ and/or PgR+, HER2-, Ki-67 < 14%),
Luminal B (ER+ and/or PgR+, HER2-, Ki-67 high or ER+ and/or PgR+, HER2+, Ki-67
any), HER2-enriched (ER-, PgR-, HER2+) and triple negative breast carcinoma (TNBC)
(ER-, PgR-, HER2-) [8]. Interestingly, it was reported that approximately 25% of BCs
change the molecular subtype in the same patients during tumor progression. ER and
PgR usually decrease, while Ki-67 increases in recurrences compared to primary tumors,
representing a change to a more aggressive BC subtype (e.g., change from Luminal A to
TNBC) [9,10]. Luminal A tumors are typically the most frequent molecular subtype of BC
(~50–60%), showing a better prognosis [11]. Conversely, TNBC (~15% of BC) occurs in
younger women and exhibits a high histological grade, increased rates of distant metastasis,
and poor prognosis. TNBC lacks the benefits of specific therapies such as hormonal ther-
apy or anti-HER2 strategies (e.g., trastuzumab) and displays a high recurrence rate after
chemotherapy [12,13]. For these reasons, research efforts are still focused on developing a
better understanding of BC biology and the identification of both new molecular targets
for its treatment and drug resistance biomarkers [14,15].

1.3. Breast Cancer Risk Factors

Age, family history, use of exogenous estrogen, and lifestyle (e.g., alcohol consumption,
tobacco use) are important risk factors of BC [16]. A cohort study in the United Kingdom
(UK) demonstrated that women with one first-degree relative with BC have a higher
risk of developing this disease than women without any affected relatives. Furthermore,
the risk escalates even higher in women with two or more first-degree relatives with
BC [17]. The inherited susceptibility to BC is partially attributed to the mutations of
BC-related genes such as BRCA1 and BRCA2 [18]. A study has identified more than
20 common genetic variants, which individually alter BC risk and it was reported that
other gene mutations also increase the risk for BC such as TP53, PTEN, STK11, ATM,
CHEK2, BRIP1, RAD51C, RAD51D, BARD1, and PALB2 [19]. In addition, approximately
90 more frequent variants with low penetrance have also been identified in genome-wide
association studies (GWAS) [20]. Several studies have investigated whether the relative
risks associated with common genetic BC susceptibility loci are modified by environmental
risk factors [18,21–24]. The identification of the gene-environment and its interaction may
help to understand BC etiology and its biological pathways. Using pooled data from
24 studies from the BC Association Consortium, it was investigated whether the impact
of these genetic variants is influenced by environmental factors such as parity, body mass
index, height, oral contraceptive usage, menopausal hormone therapy use, alcohol intake,
cigarette smoking, and physical activity, all of which are known to influence the risk of
developing BC [18].

Some viral infections have been proposed as risk factors for sporadic BC. For instance,
the mouse mammary tumor virus (MMTV) is almost absent in hereditary BC compared
with 30% of sporadic BC [25]. The low prevalence of MMTV could be involved in exacer-
bating BC, though various studies have reported contradicting results [26,27]. Epstein-Barr
virus (EBV) is a persistent virus associated with the development of Burkitt lymphoma,
post-transplant lymphoma, nasopharyngeal carcinoma, Hodgkin’s disease, and gastric
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cancer [28–31]. Although EBV presence has been reported in BC at different frequencies in
different countries, a causal role of EBV in BC is controversial [32,33]. In a study from India,
EBV-encoded RNA in situ hybridization (EBER-ISH) was positive in 30.1% of BC cases [34],
while a study from China detected EBV in 60% of the studied BC cases using multiplex
polymerase chain reaction (PCR) [35]. European studies demonstrated EBV positivity in
25.8% (Portugal) and 33.2% (France) of breast tumors using real-time PCR technique [36].
A lower prevalence of EBV (8%) was detected in BC from Iran using real-time PCR [37].
However, other studies failed to detect EBV in investigated BC cases [38–40]. In addition,
it has been suggested that high-risk human papillomavirus (HR-HPV) infection is a risk
factor for developing BC. HR-HPV types have the potential to induce the malignant trans-
formation of epithelial cells and cancer development (e.g., cervical, oropharyngeal, and
anogenital tumors). The association between HR-HPV infection and BC development will
be addressed in the subsequent sections.

2. Human Papillomavirus (HPV)
2.1. Genome Organization, Structure, and Replication Cycle

HPV is a non-enveloped virus which belongs to the Papillomaviridae family and
exclusively infects epithelial cells. The HPV genome comprises 8 kb double-stranded
circular DNA containing 8 protein-coding genes. Its genome is functionally divided into
three main regions: early (E), late (L), and the long control region (LCR). The E region
contains open reading frames (ORFs) which encode the E1 to E7 non-structural proteins.
These proteins are implicated in both viral replication and the transformation of host cells.
Additionally, the L region encodes for two structural proteins, the major capsid protein (L1)
and the minor capsid protein (L2) (reviewed in [41]) (Figure 1). Based on the L1 sequence,
more than 200 HPV types have been identified. These types are divided according to the
oncogenic potential in HR-HPV (e.g., 16, 18, 31, 33, 34, 35, 39, 45, 51, 52, 56, 58, 59, 66,
68, and 70) and low-risk (LR)-HPV types (e.g., 6, 11, 42, 43, and 44) [42,43]. The LCR is
located between L1 and E6 genes and is approximately 1000 bp in size. This region can
be divided in three segments: (1) the 5’ segment of LCR which contains a nuclear matrix
attachment region, transcription termination signals and polyadenylation sites; (2) the
central or enhancer segment which is involved in the regulation of viral gene expression;
and (3) the 3’ segment that contains the sequence where DNA viral replication is initiated
(origin of viral replication) (Reviewed in: [44]). Generally, HPVs infect the basal cells
of the stratified epithelium through microlesions which occur during sexual intercourse.
Heparan sulfate proteoglycans (HSPG), such as glypicans and syndecans, are required for
HPV entry [45]. In addition, integrin complex α6β4 and tetraspanins are candidates for
the uptake receptor complex [46,47]. The virus is internalized by a macropinocytosis-like
mechanism [48] and transported into the nucleus. In undifferentiated basal cells, HPV
is maintained at a low-copy number (approximately 50–100 copies per cell) [49]. The
productive phase of the HPV life cycle occurs in differentiated epithelial cells (suprabasal
layers), in which DNA replication activity is suppressed. In these cells, HPV E6 and E7
oncoproteins induce the inactivation of p53 and retinoblastoma (Rb) tumor suppressors,
respectively, enabling the cells to retain the capacity for DNA replication. This fact results
in the amplification of viral genomes copies per cell [50]. Afterward, the expression of late
genes is induced, viral genome encapsidation occurs, and progeny virions are released
from the cornified keratinocytes.
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Figure 1. Human papillomavirus (HPV) genome organization. The HPV contains a circular double-
stranded DNA genome with approximately 8000 base pairs (bp), organized into three regions. The E
or early region (purple) contains the E1, E2, E4, E5, E6, and E7 open reading frames (ORFs). The L or
late region (blue) contains the L1 and L2 ORFs. Finally, the Long Control Region (LCR) (red) contains
regulatory elements.

2.2. HPV Oncoproteins

The biological functions of each HPV oncoprotein are summarized in Table 1. E1 and
E2 are related to viral DNA replication and the regulation of early transcription [51,52]. The
E4 protein shows multiple roles during HPV replication, being likely related to efficient viral
release (reviewed in [53]). The interaction of E5, E6, and E7 viral proteins with host proteins
induces cell transformation and immortalization. E5 has been found to be mainly related
to the expression and activation of the epidermal growth factor receptor (EGFR) [54,55].
E5 protein interacts with the 16K subunit of the vacuolar (H+)-ATPases (V-ATPases), dis-
rupting the normal v-ATPase-dependent endosomal acidification process, which results in
reduced EGFR degradation [56,57]. Additionally, it was demonstrated that HPV18 E5 protein
enhances EGFR expression in primary human keratinocytes [55]. Moreover, HPV16 E5
disrupts the EGFR ubiquitination in human foreskin keratinocytes, which delays the EGFR
degradation upon activation and increases the amount of cell surface receptors [54]. Indeed,
the E5 knockdown reduced both EGFR and pEGFR in E5/E6/E7 co-expressing cells [58],
which support the role of E5 protein in promoting EGFR signaling pathway deregulation.
Alternately, HPV16 E5 downregulates the major histocompatibility complex class I (MHC-I),
promoting immune evasion [59]. E6 and E7 are considered the major HPV oncoproteins
(reviewed in [41]). E6 promotes the inactivation of p53 through E6-associated protein (E6-
AP)-mediated ubiquitination and its subsequent proteasome degradation, thus protecting
infected cells from apoptosis [60] (Figure 2, left). E6 also disrupts the apoptotic program
targeting the pro-apoptotic Bak for degradation [61] and Fas-associated protein with death
domain (FADD) and caspase-8 [62]. Importantly, E6 can activate both the Mitogen-activated
protein kinase (MAPK) and the mechanistic target of rapamycin complex 1 (mTORC1) path-
ways [63,64]. Furthermore, HPV16 E6 reduces interleukin (IL)-1β expression by proteasomal
degradation of pro-IL-1β, which is necessary for the activation of Th1 CD4+ T cells [65].
MHC-I expression is also reduced by HPV38 E6, through the signal transducer and activator
of transcription 1 (STAT1) downregulation [66]. E7 targets Rb protein for ubiquitination,
leading to E2F transcription factor release, forcing cell entry to S-phase [67,68] (Figure 2,
right). E7 can bind the stimulator of interferon genes (STING) decreasing the production of
interferons (INFs) [69]. Additionally, HPV16 E7 increases EGFR expression and upregulates
the protein kinase B (PKB or AKT) activity [70,71]. Both E6 and E7 proteins are also able to
interact with c-Myc oncogene. This interaction induces the activation of the human telom-
erase reverse transcriptase (hTERT) promoter and hTERT expression, contributing to the
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evasion of cellular senescence [72,73]. Moreover, both E6 and E7 promote cell migration and
invasiveness by upregulating N-cadherin, Fibronectin and Vimentin, which are involved in
the epithelial-to-mesenchymal transition (EMT) [74]. The capacity of E6 and E7 to inhibit
the production of antiviral IFNs and the interleukin-1 beta (IL-1β) secretion by macrophages
facilitates infected cells in evading the host immune system [75].

Table 1. Biological functions of HPV oncoproteins.

HPV Protein Function References

E1 Initiates viral genome replication. [51]

E2 Induces viral DNA replication and
transcription.Modulates viral gene expression. [52]

E3 Not known. [53]

E4 Facilitates the encapsidation and maturation of viral
particles. [53]

E5

Disrupts the v-ATPase-dependent endosomal acidification
process, reducing EGFR degradation. [56,57]

Increases both EGFR and pEGFR expression on cell
surface. [54,55,58]

Downregulates the MHC-I, disrupting the host immune
response. [59]

E6

Protects cells from apoptosis inducing p53, Bak, FADD,
and caspase-8 degradation. [60–62]

Activates MAPK and mTORC1 signaling. [63,64]
Disrupts the activation of Th1 CD4+ T cells by means of
pro-IL-1β degradation. [65]

Downregulates MHC-I expression, targeting STAT1. [66]

E7

Induces cell cycle progression by means of Rb
degradation. [67,68]

Decreases INFs production targeting STING. [69]
Activates AKT activity and EGFR expression. [70]

E6 and E7

Interact with c-myc, inducing hTERT activation and cell
immortalization. [72,73]

Induce EMT, upregulating N-cadherin, Fibronectin, and
Vimentin. [74]

Inhibit INFs and IL-1β production, contributing to
immune evasion. [75]

EGFR, epidermal growth factor receptor; MHC-I, major histocompatibility complex class I; FADD, Fas-associated
protein with death domain; MAPK, mitogen-activated protein kinase; mTORC1, rapamycin complex 1; IL,
interleukin; STAT1, signal transducer and activator of transcription 1; STING, stimulator of interferon genes;
INF, interferon; AKT, protein kinase B; hTERT, human telomerase reverse transcriptase; EMT, epithelial-to-
mesenchymal transition.

Biology 2021, 10, x FOR PEER REVIEW 6 of 17 
 

 

 

Figure 2. HR-HPV E6 oncoprotein induces p53 degradation, thus impairing the ability of the cell to 

promote apoptosis. HR-HPV E7 oncoprotein induces the Rb degradation, promoting S phase entry. 

The E6 protein blocks the binding of the transcription factor p53 to the promoters of pro-apoptotic 

genes through its binding with the ubiquitin ligase E6-AP, thus inducing its proteasomal degrada-

tion. Additionally, the E6 protein promotes transcriptional activation of the promoter of the catalytic 

subunit of telomerase enzyme (hTERT) in a myc-dependent manner. This mechanism is induced by 

the degradation of NFX1-91 mediated by the binding of E6 to E6-AP. The E7 oncoprotein induces 

the degradation of the retinoblastoma protein (pRb) by binding to the Cullin 2 protein (Cul2), which 

is part of the E3 ubiquitin ligase complex. Thus, the release of E2F occurs along with the subsequent 

binding as a transcription factor to the genes that regulate the cell cycle. 

3. HPV Infection and Breast Cancer 

3.1. Routes for HPV Infection in Breast 

The possible route of HPV infection to the breast is yet to be fully known. Lawson et 

al. found the same HR-HPV genotype in both BC specimens and squamous intraepithelial 

lesions of the cervix (SILs) counterparts from the same patients [76]. Additionally, the 

presence of HPV infection was reported in BC samples from women with HPV-associated 

SILs [77,78]. Taken together, these findings allowed the authors to suggest that HPV could 

reach the breast tissue through circulation (blood or lymphatic systems) in patients who 

displayed HPV-positive cervical cancer [79]. Bodaghi S et al. (2005) and others suggested 

that HPV could be transmitted through the bloodstream because HPV DNA was found in 

peripheral blood mononuclear cells (PBMC) [80]. However, all these findings failed to 

demonstrate that infectious HPV was present in the blood or that PBMC cells are suscep-

tible to or permissive for HPV infection. The evidence shows that basal cells in a stratified 

epithelium are susceptible to HPV infection, with only cells from the upper highly differ-

entiated epithelium strata, being permissive. Whether HPV virions are transported to the 

bloodstream from infected sites to reach the breast or any other anatomical region, has not 

yet been demonstrated and remains a matter of speculation. Therefore, as HPV replication 

occurs in the stratified epithelium as a mechanism to evade immune recognition, a route 

through the bloodstream seems difficult to sustain from a virological point of view. It has 

also been suggested that free HPV DNA in blood could reach the breast, which can incor-

porate this viral DNA through transference [78,81]. Interestingly, De Carolis et al. reported 

that HPV DNA is found in the serum-derived extracellular vesicles (EV) and may be trans-

ferred to TNBC. The authors suggested the possibility that HPV DNA from EV can confer 

an increased aggressive feature to the BC [82,83]. However, further studies are needed to 

clarify whether HPV DNA is transported from HPV infected sites, through EV, to this 

anatomical site. Another theory proposes that HPV could reach the breast tissue through 

nipple or areola microlesions of breast skin that may occur during oral-breast or genital-

breast sexual intercourse [79]. Therefore, considering that HPV infection requires direct 

contact with cutaneous or mucosal epithelium, this transmission route to the breast ap-

pears to be the most feasible alternative for HPV entry to breast cells. We cannot deny the 

Figure 2. HR-HPV E6 oncoprotein induces p53 degradation, thus impairing the ability of the cell to
promote apoptosis. HR-HPV E7 oncoprotein induces the Rb degradation, promoting S phase entry.



Biology 2021, 10, 804 6 of 17

The E6 protein blocks the binding of the transcription factor p53 to the promoters of pro-apoptotic
genes through its binding with the ubiquitin ligase E6-AP, thus inducing its proteasomal degradation.
Additionally, the E6 protein promotes transcriptional activation of the promoter of the catalytic
subunit of telomerase enzyme (hTERT) in a myc-dependent manner. This mechanism is induced by
the degradation of NFX1-91 mediated by the binding of E6 to E6-AP. The E7 oncoprotein induces the
degradation of the retinoblastoma protein (pRb) by binding to the Cullin 2 protein (Cul2), which is
part of the E3 ubiquitin ligase complex. Thus, the release of E2F occurs along with the subsequent
binding as a transcription factor to the genes that regulate the cell cycle.

3. HPV Infection and Breast Cancer
3.1. Routes for HPV Infection in Breast

The possible route of HPV infection to the breast is yet to be fully known. Lawson et al.
found the same HR-HPV genotype in both BC specimens and squamous intraepithelial
lesions of the cervix (SILs) counterparts from the same patients [76]. Additionally, the
presence of HPV infection was reported in BC samples from women with HPV-associated
SILs [77,78]. Taken together, these findings allowed the authors to suggest that HPV could
reach the breast tissue through circulation (blood or lymphatic systems) in patients who
displayed HPV-positive cervical cancer [79]. Bodaghi S et al. (2005) and others suggested
that HPV could be transmitted through the bloodstream because HPV DNA was found
in peripheral blood mononuclear cells (PBMC) [80]. However, all these findings failed
to demonstrate that infectious HPV was present in the blood or that PBMC cells are
susceptible to or permissive for HPV infection. The evidence shows that basal cells in a
stratified epithelium are susceptible to HPV infection, with only cells from the upper highly
differentiated epithelium strata, being permissive. Whether HPV virions are transported
to the bloodstream from infected sites to reach the breast or any other anatomical region,
has not yet been demonstrated and remains a matter of speculation. Therefore, as HPV
replication occurs in the stratified epithelium as a mechanism to evade immune recognition,
a route through the bloodstream seems difficult to sustain from a virological point of view.
It has also been suggested that free HPV DNA in blood could reach the breast, which can
incorporate this viral DNA through transference [78,81]. Interestingly, De Carolis et al.
reported that HPV DNA is found in the serum-derived extracellular vesicles (EV) and may
be transferred to TNBC. The authors suggested the possibility that HPV DNA from EV
can confer an increased aggressive feature to the BC [82,83]. However, further studies are
needed to clarify whether HPV DNA is transported from HPV infected sites, through EV,
to this anatomical site. Another theory proposes that HPV could reach the breast tissue
through nipple or areola microlesions of breast skin that may occur during oral-breast or
genital-breast sexual intercourse [79]. Therefore, considering that HPV infection requires
direct contact with cutaneous or mucosal epithelium, this transmission route to the breast
appears to be the most feasible alternative for HPV entry to breast cells. We cannot deny
the possibility that both transmission routes (sexual and EV) and others may be involved.
A general scheme showing breast cancer transmission routes is shown in Figure 3.
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Figure 3. Possible HPV transmission routes. Two routes of HPV infection of the mammary epithelium
are plausible. First, direct contact between an infected epithelium and the mammary epithelium. In
this way, the virus can enter through microlesions that would allow infection and the expression of
viral oncoproteins, which in collaboration with other factors can account for a breast tumor. On the
other hand, extracellular vesicles (EV), which can be released to the bloodstream by HPV-infected
cells, can transfer viral biomolecules to the breast. These biomolecules (EV cargo: proteins, nucleic
acids, microRNAs) may go on to collaborate with other factors in tumor development.

3.2. Epidemiology of HPV Infection in Breast Cancer

The prevalence of HPV in BC ranges 1.6–86.2% worldwide [84,85], although some
authors reported a lack of HPV infection in these tumors [86–88]. HPV frequency in breast
cancer from different continents did not show significant differences [79]. Note that com-
parisons among studies are difficult to establish because differences in specimens (fresh
frozen tissue, paraffin embedded tissue, etc.) and methodologies showing variable sensi-
tivity and specificity (e.g., PCR with different primers) for HPV detection. In addition, we
cannot deny the possibility of contamination with previous PCR products that may have
affected some results during both preanalytical and analytical phases. Despite the above,
some geographic HPV distribution has been reported. For instance, HPV positivity was
evidenced in 32.42% and 12.91% of BC patients from Asia and Europe, respectively [89]. In
addition, 42.9% of HPV was detected in BC individuals from North America and Australia,
and 15.1% in Central America and South America [90]. A study based on The Cancer
Genome Atlas (TCGA) database and analyzed by Next-Generation Sequencing (NGS) with
data from Australian BC specimens, reported the presence of HR-HPVs in 2.3% of BCs.
Importantly, the authors found a correlation between HR-HPV presence in benign breast
specimens and HR-HPV positive BCs in the same patients. In addition, HR-HPV in BC was
detected to be biologically active [91]. A meta-analysis conducted by Bae and Kim (2016)
found a 4.02-fold (95 % CI: 2.42–6.68) increased risk for BC development in HPV-positive
individuals [92]. Similarly, Choi et al. (2016) reported an association between BC and
HPV infection (OR = 5.43, 95% CI: 3.24–9.12) [93]. Furthermore, a similar study published
by Ren et al. (2019) which included 3607 BC cases and 1728 controls showed a statisti-
cally significant association of BC development and HPV infection (OR = 6.22, 95% CI:
4.25–9.12) [94]. Interestingly, HPV infection was demonstrated in BC samples but not in the
normal tissues [95]. Conversely, HPV infection was also reported in normal breast samples,
though it was significantly decreased compared to BC [96,97]. Additionally, an increased
frequency of HPV infection was found in BC when compared with benign breast lesions
such as fibroadenomas, fibrocystic changes, mastitis [98], intraductal papilloma [99,100]
and breast adenosis [101]. HPV infection was also significantly increased from adjacent
normal breast (9.5%) and fibroadenomas (30%) to BC (64.8%) samples [102]. The presence
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of koilocytes was evidenced in breast cancer cells, which matched with HPV-positive cells
by in situ PCR [103]. To date, mostly HR-HPV types (HPV16, 18, 31, 33, 35, 45, and 52)
have been detected in breast carcinoma samples (reviewed in [79]). However, infection
with low-risk subtypes (HPV6 and 11) has also been reported [97,104]. HPV16 is by far
the most frequent genotype found in BC patients, followed by HPV18 and 33 (reviewed
in [79]). In fact, genotypes HPV16 and 18 were detected in 87.5% and 12.5% of HPV-positive
BCs, respectively [98]. HPV16 was also reported in 77.37% of HPV-positive BCs followed
by HPV33 (13.64%) and HPV31 (9.09%) [105]. Nevertheless, some authors have found
HPV33 [106], HPV39 [107] or HPV51 [108] to be the most prevalent HPV genotypes in BC
tissues. A preferential presence of HPV DNA was reported in high grade BC (II/III) [109].
Moreover, HPV16 and 58 were mostly detected in grade II BC, while HPV18 infection
was increased in grade III tumors [110]. According to the molecular classification, HPV
infection was evidenced in all subtypes of BC (Luminal A, Luminal B, HER2-enriched, and
TNBC) (reviewed in [79]). However, an increased presence of HPV was reported in TNBC,
and HER2-enriched tumors, compared to Luminal A and B types [82,111]. TNBC and
HER2-enriched tumors are associated with more aggressive biological behavior of BC. HPV
infection was also found to be increased in hormone receptor-positive BCs compared with
HER2-positive tumors [99]. Furthermore, the presence of HPV was particularly detected
in HER2-negative Luminal B tumors, although no statistically significant difference was
reached when compared to the rest of the molecular subtypes, including Luminal B/HER2+
phenotype [104]. Interestingly, in Luminal A and Luminal B tumors, the presence of HPV
DNA was related to the extent of lymph node invasion and increased proliferation rate,
respectively [82]. Altogether, these facts suggest an association between HPV infection
and more aggressive forms of BC disease. However, no association with any particular
molecular subtype was reported [105].

3.3. Role of HPV Infection in Breast Carcinogenesis

As koilocytes have been detected in normal breast skin and BC tissue, it was suggested
that HPV virions can reach the breast [112]. HR-HPV genomes present in BC have been
mostly detected in an integrated physical status (86–100%) [97,102,113,114]. For instance,
Islam et al. reported a statistically significant HPV16 integration in BC samples when com-
pared to the episomal form (87.5% vs. 4.2%; p = 0.01), while both episomal and integrated
forms (mixed) were evident in 8.3% of BCs from Indian patients [102]. It is well estab-
lished that HR-HPV integration is an important step for epithelial cell carcinogenesis [115],
although this is not a requisite [116]. Other mechanisms of HPV-mediated oncogenesis
have been described in tumors harboring episomal forms of HPV [117,118]. Regarding
viral load, it has been reported that this is extremely low, including levels less than 1 viral
genome per cell. Considering that at least 1 copy/cell is required for clonal viral presence
in each tumor cell (as occurs in SiHa cervical cancer cell line, which harbors 1 copy of
integrated HPV16), it seems difficult to sustain a scenario where all the BC cells harbor
integrated HPV [114,119]. Thus, the low viral load in BCs suggests the possibility that the
role of HPV in these tumors is only indirect. This notion is supported by the fact that BC
risk is not enhanced in immunosuppressed patients or organ transplant recipients [119].
Another possibility is that the restricted HPV positive population can cause molecular
alterations for BC initiation and subsequently, HPV presence is no longer required, com-
patible with a “hit and run” mechanism [120]. However, low copies of the HPV genome
per cell (<1 copy/cell) seem to be sufficient to induce a premalignant phenotype [121,122].
It was reported that HPV-positive BC shows both increased proliferation rates and histo-
logical grade when compared to HPV-negative tumors [123]. Moreover, the expression of
the tumor suppressors BRCA1 and BRCA2 was decreased in patients with HPV-positive
BC. These authors also found the expression of some proinflammatory cytokines such
as IL-1, TGF-β, and TNF-α, related to HPV infection, which are also involved in tumor
progression [97]. HPV infection was also correlated with p-Stat3 and IL-17 expression in
BC patients [101]. Additionally, the expression of HPV E6 and E7 oncoproteins has been
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found in BC [91,120]. A low expression of HPV E6/E7 proteins has also been detected in
BC, most likely due to the hypermethylated state of the HPV16 p97 early promoter [102].
Nevertheless, the expression of E6 and E7 was negatively associated with p53 and Rb,
respectively. In fact, the expression levels of p53 and Rb were decreased in HPV-positive BC
samples compared to HPV-negative tumors [97]. Similarly, Wang et al. found a significantly
higher Bcl-2 and lower p53 expression in HPV-positive BC compared to HPV-negative
tumors, although the expression of p21, Rb, and survivin was not associated with HPV
presence [124]. The expression of HPV E6 was associated with the overexpression of DNA-
binding protein inhibitor (Id-1) in invasive BC [106]. BC cells expressing HPV16 E6/E7
display an increased invasiveness and in vivo metastatic potential when compared to wild
type cells [125]. HPV16 E6/E7 cooperates with HER2 to increase the EGF-independent
colony formation in normal human mammary epithelial cells [126]. Moreover, HPV16
E6/E7 also cooperates with HER2 to promote cell migration and colony formation; it
also activates beta-catenin, a regulator of cell adhesion [127]. It was demonstrated that
HPV18 upregulates the expression of the DNA cytosine deaminase APOBEC3B protein,
increasing γH2AX focus formation and DNA double strand breaks [128]. APOBEC3B
acts as an enzymatic source of DNA damage and mutation in BC [129]. HPV16 E6 and
E7 interact with BRCA1, disrupting the suppression of ER-α activity in BC cells [130]. In
addition, HPV16 E6 promotes BC cells proliferation and anchorage-independent growth by
upregulation of Cyclooxygenase-2 (COX-2) expression. COX-2 overexpression mediated by
HPV16 E6 has also been associated with the activation of NF-κB signaling pathway [131].
Conversely, absence of HPV E6 and E7 expression was also reported in HPV positive BC
samples [132,133]. Recently, it was found that HPV oncoproteins cooperates with EBV for
breast carcinogenesis. The authors demonstrated that E6/E7 cooperate with EBV LMP1,
increasing invasion and EMT in breast cancer cells [134]. However, LMP1 is absent [135] or
weakly detected in EBV positive BCs [136], thus additional studies are warranted to explore
the possibility of a E6/E7/LMP1 cooperation. A potential cooperation between HR-HPV
E6/E7 oncoproteins and EBV BamHI-A rightward frame 1 (BARF1) protein presents itself
as an interesting possibility to be evaluated in the future because BARF1 is considered an
exclusively epithelial EBV oncogene [137,138].

3.4. HPV and Its Association with Estrogen Receptor Signaling

Exposure to estrogens has been widely shown to increase the risk of cervical, en-
dometrial, and BC [139–141]. However, the molecular basis behind this phenomenon
remains unclear. 17β-estradiol, the most common type of circulating estrogen, is a key
steroid hormone for human physiology that exhibits a plethora of biological and physi-
ological functions through its interaction with the estrogen receptor (ER) [142]. ERs are
ligand-inducible transcription factors that belong to the nuclear steroid hormone receptor
superfamily and are overexpressed in 60–70% of human BCs [143]. Two ER isoforms
have been described, ERα and ERß. Although they are encoded by two distinct genes,
which both exhibit similar functional and structural organization. The transmission of the
estrogen signaling includes activation of estrogen receptors and signal transduction, which
can be mediated by genomic and non-genomic pathways. The genomic pathway is the
most characterized type of ER signaling and is initiated by their ligand binding, which
induces a conformational change, leading to translocation of ER from the cytoplasm to
the nucleus and binding to specific DNA sequences. These sequences are called Estrogen
Response Elements (EREs) and are located in or near the promoters of target genes [144].
Consequently, the variety of transcriptional regulation mechanisms in different cells by
ERs and their interactions with local transcription factors lead to the continuous altering
of gene expression [144]. In cervical cancer, ER-mediated signaling has been shown to
promote cell transformation in combination with HPV oncogenes [145,146]. Based on
experiments carried out in the HPV transgenic mouse model, estrogens treatments induce
overexpression of E6 and E7 and an increased severity of cervical dysplasia [147]. Therefore,
a synergy between estrogen signaling and HPV-mediated oncogenesis has been widely
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validated [148,149]. Considering the evidence of integrated forms of the HR-HPV genome
in mammary cells, different oncogenesis mechanisms enabled by a cooperation between
estrogens and HPV could be hypothesized in breast cells. For instance, ERα can interact
with the transcriptional factors c-Fos and c-Jun at their binding regions, which are key
regulators in the LCR of HPV [150]. Therefore, the presence of HPV genomes in mammary
cells, which are highly exposed and sensitive to the supply of estrogens, could produce
a favorable environment for the promotion of viral gene expression, leading to aberrant
overexpression of E6 and E7. Conversely, HPV could have a potential effect on the ER
signaling. In fact, Wu et. al. have shown that E2 protein cooperates with nuclear receptor
co-activators to increase the ERE-dependent transcriptional activity of ERα [151]. Likewise,
Wang et al. demonstrated that HPV-18 E6 and E7 oncoproteins can directly interact with
ERα enhancing the ERE-dependent activity [152]. Therefore, the strong estrogen signaling
resulting from ER overexpression in most cases of BC, could influence the HPV gene ex-
pression in those HPV positive breast cells, favoring the initiation as well as the progression
of BC. Thus, a hypothetical model of HPV-mediated breast carcinogenesis which involves
the ER is proposed in Figure 4.
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Figure 4. A suggested model of HPV-mediated breast carcinogenesis. Estrogens promote estrogen
receptor (ER) activation and nuclear translocation. ER binding to cognate sites into the HR-HPV
LCR promotes early promoter activation and E6/E7 transcript overexpression (in both episomal and
integrated forms of HPV). The expressed E6 and E7 oncoproteins induce pRb and p53 downregulation,
Cox-2 upregulation and NF-κB activation. Additionally, a synergism between ER and HR-HPV E6/E7
has been previously proposed.

4. Conclusions and Remarks

Koilocytes presence and molecular approaches confirm that HPV virions can reach
the breast, most likely through epithelium or mucosal contact during sexual intercourse.
This transmission route requires microlesions in the areola for HPV entry. Importantly,
HPV components such as nucleic acids can reach the breast from infected sites through
the bloodstream by extracellular vesicles. The extremely low viral load detected in BC
specimens indicates that HPV genomes are not clonally distributed in the tumor, although
HPV is frequently integrated into the host genome. Taken together, epidemiological and
experimental evidence suggests that HR-HPV may be involved in BC development in
a proportion of cases. On the other hand, it is well known that HR-HPV is a necessary
condition for the development of cervical cancer, though the infection itself is not sufficient
to establish cell transformation, suggesting that other factors are potentially involved in
HPV-driven carcinogenesis. Thus, interaction models between HPV and additional host
(e.g., ER) or environmental factors (e.g., pesticides, tobacco smoking) offer a plausible way
to explain the frequency of HR-HPV infection in BC. The identification of HR-HPV as a
causal agent in a subset of BC patients with increased risk of disease progression will lead
to prevention or therapeutic alternatives. Additional epidemiological and experimental
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approaches are warranted to dissect the specific molecular alterations involved in HPV-
driven BC.
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