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	 Background:	 The mechanical properties of 1–2-year-old pediatric cranial bones and sutures and their influential factors were 
studied to better understand how the pediatric calvarium reacts to loading.

	 Material/Methods:	 Cranial bone and suture specimens were extracted from seven fresh-frozen human infant cadavers (1.5±0.5 
years old). Eight specimens were obtained from each subject: two frontal bones, two parietal bones, two sag-
ittal suture samples, and two coronal suture samples. The specimens were tested in a three-point bend set-
up at 1.5 mm/s. The mechanical properties, such as ultimate stress, elastic modulus, and ultimate strain, were 
calculated for each specimen.

	 Results:	 The ultimate stress and elastic modulus of the frontal bone were higher than those of the parietal bone (P<0.05). 
No differences were found between the coronal and sagittal sutures in ultimate stress, elastic modulus, or ul-
timate strain (P>0.05). The ultimate stress and elastic modulus of the frontal and parietal bones were higher 
than those of the sagittal and coronal sutures (P<0.05), whereas the opposite ultimate strain findings were re-
vealed (P<0.05).

	 Conclusions:	 There was no significant difference in ultimate stress, elastic modulus, or ultimate strain between the sagittal 
and coronal sutures. However, there were significant differences in ultimate stress, elastic modulus, and ulti-
mate strain between the frontal and parietal bones as well as between the cranial bones and sutures.
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Background

In forensic practice, it is difficult to distinguish between acci-
dental and intentionally inflicted head trauma in an injured 
child. The key question is often whether the head injury was 
the consequence of a fall or a blow from caretakers suspect-
ed of child abuse [1,2]. Computer-based finite element mod-
eling of the head can be used to simulate the events associ-
ated with traumatic head injury and quantify biomechanical 
responses within the brain, but the utility of these models de-
pends upon the accuracy of cranial material property inputs 
[3]. Determining the material properties of pediatric bones 
and sutures, such as elastic modulus, ultimate stress, and ul-
timate strain, and elucidating the factors that affect them will 
not only provide insight into the reaction of the pediatric cra-
nial bones and sutures to loading, but will improve the accu-
racy of computational and experimental models simulating 
falls or impacts to a pediatric head [4–7].

The dynamic material properties of human adult or animal 
skull tissues are well documented [8–16], but little informa-
tion is available about the dynamic properties of human in-
fant cranial bones and sutures [3,17,18]. Testing speed, strain 
rate, and cranial sampling position reportedly have significant 
effects on some or all of the computed mechanical parame-
ters of adult cranial bones [7]. A modest correlation was also 
found between percent bone volume and the elastic modu-
lus and the maximum bending stress [19]. Furthermore, the 
frontal bone (FB) was thicker and less porous and had a high-
er percent bone volume than the parietal bone (PB); thus, it 
fractured under higher forces and absorbed more energy pri-
or to fracturing [20].

Coats and Margulies were the first to investigate pediatric bone 
and suture material properties at high rates (1.2–2.8 m/sec) 
related to fetal head molding in three-point bending and ten-
sion. They found that pediatric cranial bone is 35 times stiffer 
than pediatric cranial suture. In addition, pediatric cranial su-
ture deforms 30 times more before failure than pediatric cra-
nial bone. The PB was found to be significantly stiffer and have 
a higher ultimate stress than occipital bone [18]. McLaughlin 
et al. reported no significant difference in ultimate stress at 
failure between the coronal and sagittal sutures of 1-week-old 
Wistar rats. The stiffness of the coronal and sagittal sutures 
was also comparable. The elastic modulus of coronal and sag-
ittal sutures was 13 Mpa and 14 Mpa, respectively, while the 
estimated ultimate strain values were 160% and 120% for the 
sagittal and coronal sutures, respectively. However, no data 
currently exist in the literature regarding whether there is a 
difference in the material properties between coronal and sag-
ittal sutures of human infants [21]. Few studies have reported 
differences in bending properties

The purpose of this study was to examine the differences in 
the material properties of human infants (1–2 years old) in 
different bone and suture sampling positions. These results 
could be used in future computational models simulating the 
infant head during accidental and intentionally inflicted impact.

Material and Methods

The cadaver specimens were obtained from deceased infants 
donated by their families to the Southern Medical University 
in China. The research was approved by the ethics committee 
of Southern Medical University.

Specimen preparation

Human infant cranial bones and sutures were obtained from 
seven fresh-frozen human infant cadavers (females, three; 
males, four; 1.5±0.5 years old). All materials were thoroughly 
examined to ensure a lack of skull fractures and malformations 
and refrigerated at –20°C until the preparation and testing, 
thus minimizing the number of freeze-thaw cycles to prevent 
bone damage. We then thawed out the subjects in saline no 
more than 6 hours before the experiment. Eight specimens (6 
cm long, 1 cm wide) were obtained from each subject: two 
FB, two PB, two parietal–parietal suture (sagittal sutures) sam-
ples, and two parietal–frontal suture (coronal sutures) samples. 
The latter two contained suture and bone. We used a vertical 
band saw and gently filed the cut faces to ensure accurate di-
mensions. The positions and directions of the samples from 
the eight skulls were kept as uniform as possible to allow for 
realistic future comparisons (Figure 1). The thickness of each 
suture was measured using a vernier caliper. The width and 
thickness of each test specimen were measured adjacent to 
the cross-section where the fracture occurred.

Mechanical testing

The samples (n=56; eight each from seven infant cadavers) were 
subjected to a three-point bending test using a BOSE material 
testing machine (ELF-3510AT; Bose, Inc., Chicago, USA) at 1.5 
mm/s after micro-computed tomography measurements. Each 
specimen was thawed at room temperature in saline no more 
than 4 h prior to testing. Prior to testing, each specimen was 
instrumented with support structures (Figure 2) made from a 
rigid two-part epoxy resin to prevent erroneous slippage during 
testing and provide a flat surface on which to rest the speci-
mens. This reduced the effective span length for the tests to 
4 cm (the distance between the two epoxy supports) but still 
allowed specimen rotation and bending. All data were collect-
ed using the computer data acquisition system consisting of 
the BOSE material testing machine and a computer.
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Data analysis

During the mechanical testing, the force-displacement curves 
of the 56 tested specimens were recorded. The elastic mod-
ulus, ultimate bending stress, and ultimate strain were then 
calculated.

The Euler-Bernoulli beam theory is applicable only in cases in 
which the ratio of span length to thickness is at least 8 [22]. 
In our study, the average span length to thickness ratios of 
the tested specimens was >8. Therefore, the Euler-Bernoulli 
equation could be used to calculate the elastic modulus (E):
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where F/d is the force-displacement ratio in the linear elastic 
region of a three-point bending trace (Figure 3), L is the span 
of the beam, and I is the moment of inertia of the rectangu-
lar cross-section of the beam [23].

The flexural strain (ef) from three-point bending was calculat-
ed from the relationship:
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where d is the maximum deflection in the center of the beam, 
t is the thickness of the sample, and L is the span. Ultimate 
strain (eult) was selected as the flexural strain corresponding 
to the ultimate stress.

In-plane stress (exx) was calculated using Timoshenko’s cor-
rected version of the beam theory equation, which accounts 
for radial tensile forces within the beam as the result of an ap-
plied concentrated load to the center of the beam:
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where F is the measured force, w is the width of the speci-
men, L is the span, c is half of the thickness, and y is the loca-
tion of interest along the y-axis (outer surfaces at y=±c) in the 
center of the beam. The ultimate stress (eult) is then calculated 
using the maximum force for F in equation (3).

Statistical analysis

The data are presented as mean ±SD. The statistical signifi-
cance of the differences between groups was determined by 
one-way analysis of variance followed by Student-Newman-
Keuls post hoc multiple comparison tests (two-means compari-
son). Correlations were measured using the Pearson coefficient 
and two-tailed P values. The significance level for all analyses 
was set as P<0.05 and all statistical analyses were performed 
using SPSS 21.0 (SPSS, Inc., Chicago, IL, USA).

Results

According to the calculated mechanical properties of PB and 
FB (Figure 3), both ultimate stress and elastic modulus in 

Figure 1. �Schematic indicating the locations of the pediatric 
cranial bone and suture specimens. Two parietal bone 
and two frontal bone specimens were removed from 
the skull along with two parietal-parietal sutures 
(sagittal suture) and two frontal-frontal sutures 
(coronal suture, superior view).

Figure 2. �A local photo of the test setup schematic used in this 
study indicating a sample specimen instrumented with 
support structures.
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FB (99.75±11.08 MPa and 1265.65±120.90 MPa, respective-
ly) were higher than those in PB (87.12 ± 10.58 MPa, P<0.05 
and 1103.01±112.77 MPa, P<0.01, respectively). No signifi-
cant difference was found in ultimate strain between PB and 
FB (P>0.05 for both).

The order of ultimate stress and elastic modulus from high to 
low in different positions of cranial bone was: FB (99.75±11.08 
MPa and 1265.65±120.90 MPa, respectively) >PB (87.12±10.58 

MPa and 1103.01±112.77 MPa, respectively) > coronal su-
ture (52.44±8.71 MPa and 354.83±44.86 MPa, respectively) 
> sagittal suture (44.75±10.13 MPa and 408.12±59.08 MPa, 
respectively). The order of ultimate strain from high to low 
was: coronal suture (0.2085±0.0529 mm/mm) > sagittal su-
ture (0.1876±0.0348 mm/mm) > FB (0.0972±0.0424 mm/mm) 
> PB (0.0866±0.0270 mm/mm).

Significant differences were found in ultimate stress, elastic 
modulus, and ultimate strain between cranial bones (PB, FB) 
and cranial sutures (sagittal suture, coronal suture, P<0.01 for 
elastic modulus between both FB, PB and sagittal suture, coro-
nal suture; P<0.05 for all others). No significant difference was 
found in ultimate stress, elastic modulus, or ultimate strain be-
tween sagittal and coronal sutures (P>0.05 for all).

Discussion

A few human infant finite element models have been con-
structed to perform a series of virtual experiments [6,24–29]. 
However, there has been no FE model for infants aged 1–2 
years until now. An important reason for this is that no me-
chanical properties are documented for 1–2-year-old infants. 
The aim of this paper is to study the mechanical properties of 
the cranial bones and sutures of 1–2-year-old infants to bet-
ter understand how the pediatric calvarium differs from that 
of adults under loading stress [15,21].

Although the mechanical properties of adult cranial bone in-
cluding ultimate stress and elastic modulus did not differ, it 
was reported that pediatric cranial bones <13 months old were 
significantly stiffer and have a higher ultimate stress than oc-
cipital bone [17]. However, no studies have reported the dif-
ferences in material properties between human infant PB and 
FB, while few studies have reported the material properties 
of human pediatric cranial sutures, especially in 1–2-year-old 
infants [30].

In our study, the ultimate stress and elastic modulus values 
of the FB were higher than those of the PB, which was con-
sistent with the findings of Coats and Margulies in which 
both ultimate stress and elastic modulus differed between 
the PB and occipital bone. This result might be related to the 
fact that the average FB thickness was greater than that of 
the PB [17]. In addition, the ultimate stress of the PB was 
higher than those of the sagittal and coronal sutures. The 
elastic modulus of the PB was also higher than those of the 
sagittal and coronal sutures, while the ultimate strain of the 
PB was lower than those of the sagittal and coronal sutures. 
Sutures are more energy absorbent than cranial bone [31]; 
thus, they are able to reduce the amount of stress experi-
enced by the surrounding bones [32]. This effect is partially 

Figure 3. �Comparison of the calculated mechanical properties of 
the human parietal bone, frontal bone, sagittal suture, 
and coronal suture in the three-point bending test: 
ultimate stress (A), elastic modulus (B), and ultimate 
strain (C) by analysis of variance.
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due to the much lower Young’s modulus of the suture than 
of the bone, which allows the suture to act as a cushion with-
in the skull [33].

Whether there are differences in the material properties of the 
human pediatric cranial suture remains unknown. These data 
are also important in the development of an accurate pedi-
atric head injury computational model. As was reported that 
pediatric PB and occipital bones had different material prop-
erties such as ultimate stress and elastic modulus, we won-
dered whether the material properties would differ from cor-
onal and sagittal sutures [15]. To our surprise, we found no 
significant difference between coronal and sagittal sutures in 
ultimate stress, elastic modulus, or ultimate strain. McLaughlin 
et al. demonstrated that sagittal and coronal sutures in 7-day-
old rats had elastic moduli of 13 and 14 MPa, respectively. The 
difference was not significant, however, which was in very good 
agreement with the results of the present study. Besides, their 
result was obtained in rats, which differ from humans [15]. 
Since location plays an important role in ultimate stress and 
elastic modulus, skulls should not be considered homogeneous 
in the creation of computational models to investigate impact 
events in pediatric head trauma [17].

However, our study has some limitations. First, the data were 
obtained from only seven subjects, which is a small sample. 
Second, the assumptions that were made about the geome-
try of each bending specimen were not large enough to be 
significant. The analysis method used in this paper assumed 
that each specimen behaved like a linear beam of a uniform 
cross-section. Although it was observed that the bone samples 
from different individuals were curved in the same direction, 

the initial radius of curvature was eight times greater than the 
thickness of each specimen.

Despite these limitations, our results provide a valuable refer-
ence for relevant research. To the best of our knowledge, the 
current mechanical data in the literature do not include stud-
ies on the differentiating mechanical response of 1–2-year-old 
pediatric cranial sagittal and coronal sutures on the mechanical 
properties of pediatric cranial bones and sutures. The results 
of our study might extend the scope of our knowledge and 
aid further studies of the mechanical properties of 1–2-year-
old infant cranial bones and sutures.

Conclusions

This study examined the effects of cranial sampling position 
and bone microstructural parameters on the calculated me-
chanical properties of pediatric cranial bones and sutures. 
Several conclusions can be drawn. First, ultimate stress and 
elastic modulus values of the FB were higher than those of 
the PB in 1–2-year-old infants. Second, no differences were 
found between coronal and sagittal sutures in terms of ulti-
mate stress, elastic modulus, or ultimate strain. Third, the ulti-
mate stress and elastic modulus values of the FB and PB were 
higher than those of the sagittal and coronal sutures, while 
the ultimate strain findings were opposite.
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