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Abstract

Introduction

Cystic fibrosis (CF) airways are colonized by a polymicrobial community of organisms,
termed the CF microbiota. We sought to define the microbial constituents of the home envi-
ronment of individuals with CF and determine if it may serve as a latent reservoir for
infection.

Methods

Six patients with newly identified CF pathogens were included. An investigator collected
repeat sputum and multiple environmental samples from their homes. Bacteria were cul-
tured under both aerobic and anaerobic conditions. Morphologically distinct colonies were
selected, purified and identified to the genus and species level through 16S rRNA gene
sequencing. When concordant organisms were identified in sputum and environment,
pulsed-field gel electrophoresis (PFGE) was performed to determine relatedness. Culture-
independent bacterial profiling of each sample was carried out by lllumina sequencing of
the V3 region of the 16s RNA gene.

Results

New respiratory pathogens prompting investigation included: Mycobacterium abscessus
(2), Stenotrophomonas maltophilia(3), Pseudomonas aeruginosa(3), Pseudomonas fluor-
escens(1), Nocardia spp.(1), and Achromobacter xylosoxidans(1). A median 25 organisms/
patient were cultured from sputum. A median 125 organisms/home were cultured from envi-
ronmental sites. Several organisms commonly found in the CF lung microbiome were
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identified within the home environments of these patients. Concordant species included
members of the following genera: Brevibacterium(1), Microbacterium(1), Staphylococcus
(3), Stenotrophomonas(2), Streptococcus(2), Sphingomonas(1), and Pseudomonas(4).
PFGE confirmed related strains (one episode each of Sphinogomonas and P. aeruginosa)
from the environment and airways were identified in two patients. Culture-independent
assessment confirmed that many organisms were not identified using culture-dependent
techniques.

Conclusions

Members of the CF microbiota can be found as constituents of the home environmentin
individuals with CF. While the majority of isolates from the home environment were not
genetically related to those isolated from the lower airways of individuals with CF suggesting
alternate sources of infection were more common, a few genetically related isolates were
indeed identified. As such, the home environment may rarely serve as either the source of
infection or a persistent reservoir for re-infection after clearance.

Introduction

CF has traditionally been viewed as a disease of limited pathogens. Classical pathogens such as
Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia complex (Bcc) and Hae-
mophilus influenzae, have been well characterized [1]. Increasingly these are being supple-
mented with “emerging organisms” such as Stenotrophomonas maltophilia, Achromobacter
spp, and nontuberculous mycobacteria [2,3]. Many of these organisms have been found to
develop chronic infection and result in an accelerated clinical decline [2,4]. However, due to
the increasing use of high throughput culture-independent molecular techniques, scientist
have identified a diverse number of “newly appreciated” organisms infecting the CF lower air-
ways [5-8]. Many of these organisms are thought to effect clinical outcomes either through
direct or indirect pathogenic potential [9-11]. The diversity of the organisms colonizing and
infecting the lower airways is termed the CF lung microbiota [5,7,10,12,13].

Where the constituents of the lung microbiome are derived is relatively unknown. For cer-
tain pathogens such as P. aeruginosa and Achromobacter xylosoxidans they are ubiquitously
distributed in natural environments (water, soil, decaying matter) and their infrequent role as
human pathogens (being opportunistic), led to the presumption that most patients acquired
these infections from environmental reservoirs [2,14]. Indeed, in CF patients with newly identi-
fied lower airways infection with P. aeruginosa, a home environmental reservoir with a geno-
typically identical strain could be identified in 18% of patients, most frequently identified in
the bathroom [15]. In addition, shared strains of organisms such as P. aeruginosa and S. aureus
in unrelated patients have led researchers to identify that limited transmission amongst
patients is possible if adequate infection controls are not in place [16].

A critical innovation within CF care has been the recognition that chronic infection can be
terminated thereby potentially avoiding the resultant clinical sequelae (termed “eradication”)
[17,18]. Indeed, with the early recognition and treatment of new infections many new patho-
gens can be eradicated. Unfortunately, success is not always possible and some patients will fail
antibacterial therapy, and others will be re-infected [19]. This is possibly due to repeated expo-
sures from a persistent latent reservoir that has not been eliminated. The goals of our research
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were to define the microbiota of the home environment of individuals with CF and to deter-
mine if the microbiota of their home environment shares microbial constituents with the lower
airways. In CF patients who acquire “new” infection, it is possible that the source of these
“new” infections exists within their homes. If so, these sources may potentially serve as a persis-
tent latent reservoir for re-infection, even after successful eradication therapies.

Methods
Patients and Sample Collection

CF patients with new bacterial infections identified from sputum analysis collected during rou-
tine quarterly appointments at the Southern Alberta Adult CF clinic were approached for
inclusion. If the patient consented, an investigator organized an appointment to sample the
patient’s home within two weeks of the original sputum sample being collected. During the
visit, the investigator would, using aseptic techniques, sample multiple sites in the patients
homes including; showerheads, bathroom/kitchen sink faucets and drains, humidifiers, clothes
washers, as well as CF specific equipment including airway clearance devices, compressors, and
nebulizers, as CF pathogens have been previously found to exist in such niches and where
applicable recreational drug equipment (not medically sanctioned) was similarly sampled
[15,20-22]. An average of 6-8 sites were sampled within the homes of each patient using a
COPAN eSwab (Thermo Scientific) anaerobic transport media. A repeat sputum sample was
collected simultaneously in sterile containers and transported to the research laboratory within
one hour using GasPak anaerobic transport systems (BD Diagnostics) (<0.01%,0,, 10% CO,).
Ethics for this study was approved by the University of Calgary Conjoint Health Research Eth-
ics Board (CHREB 14-2462) and each patient provided written informed consent.

Definitions

To be included patients had to meet the established definition of CF [23]. Stage of lung disease
was defined based on spirometery as measured by the forced expiratory volume in one second
(FEV); advanced <40%, moderate 40-70%, mild 70-90%, and very mild >90% predicted.
Chronically colonizing pathogens were defined using previously described definitions [24]. If
organisms were present in >50% of a minimum of four sputum cultures collected from patient
in the preceding year they were consider chronically infected. Organisms deemed newly infect-
ing, thereby prompting investigation, were defined in individuals who had not previously
grown the same organism.

Culture-Dependent Studies

Within one hour of collection, traditional microbiological protocols were used to cultivate
organisms. Sputum was physically sheared, vortexed and 100 uL was serially diluted from 10~
to 107> in Brain Heart Infusion (BHI) broth (Difco) in an anaerobic chamber (5% CO,, 5% H.,,
balanced N,). Similarly, environmental swabs collected in Amies transport media were serial
diluted in BHI broth. Aliquots of 100 uL of the 10> and 10~* serial dilutions of the environ-
mental, and 10~ and 10~ dilutions of the sputum were plated on differentially selective media
types. Samples were plated on a range of general and semi-selective medias including; Fastidi-
ous Anaerobe Agar (FAA), Chocolate (CHOC) (Difco), Columbia Blood Agar (CBA) (Difco)
with 5% defibrinated sheep blood (Materials Bio Labs), and incubated for seven days anaerobi-
cally at 37°C. Samples were similarly plated on Trypticase Soy agar (TSY) (Difco), Brain Heart
Infusion (BHI) and Colistin supplemented BHI (BHI Co) (Difco), Columbia Naladixic Acid
(CNA) (Difco), Mannitol Salt Agar (MSA) (Difico), Pseudomonas Isolation Agar (PIA)
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(Difco), McKay Agar,[9] and MacConkey (MAC) (Difico) and grown aerobically with 5% CO,
at 37°C and incubated for 48 hrs. For the two patients where M. abscessus was identified, an
additional culturing step on Middlebrook 7H11j solid medium at 30°C for 12 weeks was per-
formed [25]. Unique isolates were selected for based on differences in colony morphologies
and purified in triplicate, assigned a study ID and stored in 10% Skim milk (Difico) at -80°C
for later assessment.

Bacterial identification

Cells from uniquely identified isolates were grown under appropriate conditions for at least 24
hours, and then re-suspended in 200 pL of sterile water and boiled for 20 min. PCR amplifica-
tion of the 16S rRNA gene was carried out using the boil preparation from the target isolate

(2 pL of the supernatant was used as template for PCR amplification of the 16S rRNA gene)
[26]. The oligonucleotide primers used, 8F and 926R, were previously described by Sibley et al.,
[6]. Samples were sent for Sanger sequencing to Macrogen (Seoul, Korea). Taxonomic assign-
ment of cultured organisms was achieved using a combination of databases including, NCBI
BLAST, Ribosomal Database Project (RDP) classifier, and Human Oral Microbiome Database
(HOMD) [27]. If match ID was > 97% organisms were identified to the species level [27-29].
Organisms with sequence identity >95% but <97% to known or well characterized 16S rRNA
sequences were resolved to the genus level, 90-95% to the family level, 85-90% to the order
level, 80-85% to the class level, and 77-80% to the level of phyla [28-30].

Bacterial Strain typing

Where concordant positive cultures for organisms within the home environment and sputum
were identified, bacterial strain typing was performed using pulse-field gel electrophoresis
(PFGE). Strains were incubated from frozen stocks onto TSY agar and cultured at 37°C for 24
hours. PFGE protocols were performed as per Parkins et al., and Workentine et al. [31,32],.
Cell suspensions were made in a cell suspension buffer (CSB) (1M NaCl, 10mM Tris-HCI,
pH?7.6). Next PFGE plugs were made by adding equal volume of 1% (w/v) SeaKem Gold Aga-
rose in TE, buffer (10mM Tris-HCl, ImM EDTA, pH 7.6) to 150uL of CSB in a plug mold
(BioRad). Plugs were left to solidify in cast at room temperature (RT) for 15 minutes and then
incubate at 37°C for 4 hours in a tube containing 1mL of cell lysis buffer (CLB) (1M NaCl,
100mM EDTA[pH 7.5],0.5% Brij-58, 0.5% Sarcosyl, 0.2%Deoxycholate, 6mM Tris-HCL[pH
7.6], 1 mg/mL lysozyme powder, 20ug/mL RNase A). Next plugs were transferred to a tube con-
taining 1 mL ESP solution (0.5M EDTA [pH 9], 1% sarcosyl, 70 ug/mL proteinase K) and incu-
bated in a water bath at 50°C overnight. Plugs were then washed 6 times using TE, ; buffer
(T10 mM Tris-HCI, 0.1mM EDTA, pH 7.6) and stored in the TE, ; buffer at 4°C. This was fol-
lowed by restriction digestion of the isolates. Plugs were rinsed with 1X reaction buffer (NEBuf-
fer Cutsmart) for 15 min at RT, then digested with specific restriction enzymes (New England
Biolabs) for 4 hours at 37°C. Different restriction enzymes were used for the various organisms
being studied based on a review of previously published work with few modifications [31,33-
38].

Assessment of strain relatedness was performed using the CHEF Mapper system (BioRad).
Lambda ladder PFG Marker (New England Biolabs) was used as a standard. Strains that had
banding patterns that were >80% identical were considered related, conforming to the Tenover
criteria, where isolates with up to 3 band differences are still considered related. PFGE profiles
were compared using BioNumerics, version 7.0 (Applied Maths, Austin, TX) [39]. PFGE band-
ing profiles were compared using the Dice coefficient, allowing for 2% tolerance in band
matching.
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Culture-Independent Studies

Microbial community profiling of environmental and sputum samples was conducted as previ-
ously described [40,41] In brief, 300 uL of sputum sample was suspended in 800 uL of 200 mM
NaPOy,, 100 pL of guanidine thiocyanate-ethylenediaminetetraacetic acid—Sarkosyl. Similarly
for samples collected from environmental reservoirs a COPAN eSwab containing 1 mL of lig-
uid amies solution, was used to collect these samples. These samples were rigorously vortexed
and 300 pL of this solution was suspended in 800 uL of 200 mM NaPO,, 100 pL of guanidine
thiocyanate—ethylenediaminetetraacetic acid-Sarkosyl. The solutions were then homogenized
using 0.1-mm zirconia/silica beads (BioSpec Products Inc.).Enzymatic lysis was performed in
two steps. Firstly, 50 pL lysozyme (100 mg/mL), 50 uL mutanolysin (10 U/ pL), 10 uL RNase A
(10 mg/ml), was added to each sample followed by an incubation at 37°C for 1.5 hours. In the
second lysis step 25 pL 25% sodium dodecyl sulfate, 25 pL proteinase K, and 62.5 uL 5 M NaCl
was added to each sample followed by an incubation at 65°C for 1.5 hours. Samples were then
pelleted via centrifugation at 12 000 x rpm. Next 900 pL of the supernatant was transferred to a
tube containing 900 uL phenol-chloroform-isoamyl alcohol (25:24:1) centrifuged at 13 000
rpm for 10 min. The aqueous solution was transferred to a tube containing 200 uL of DNA
binding buffer (Zymo). The solution was then transferred to a DNA column (Zymo), washed,
and DNA eluted using ultra pure H,O.

Next, amplification of the V3 hypervariable region of the 16S rRNA gene was carried out
using reverse and forward barcoded primers using the Illumina MiSeq technology at the
McMaster Genome Facility (Hamilton, ON) [41]. Sequencing reads were analyzed using cus-
tom Perl scripts [41]. Sequences with low quality reads were trimmed using Cutadapt [42].
Next, PANDAseq was used to assemble paired-end reads [43]. Operational taxonomic units
(OTUs) were picked using AbundantOTU1 for OTUs with >97% identity [44]. The RDP clas-
sifier was used to assign taxonomy against the Greengenes reference database [27,45]. Next,
analysis was carried out using QIIME and Phyloseq R package [46,47]. A total of five samples
with <1500 reads/sample were considered low quality and were excluded from the study.

Results

As per the a priori defined study cap, a total of six patients with CF and new lower airways
infection were enrolled. Patient demographics are detailed in Table 1. Sputum and environ-
mental samples were collected from moist sites in patient’s homes including kitchen/bathroom
sink faucets and drains, showerheads, outside faucets, respiratory care equipment, humidifiers
and any relevant recreational drug equipment (Table 2). The total number of cultured, mor-
phologically distinct individual bacterial isolates collected from the home environment of each
of the six patients using Sanger sequencing ranged from 64-168 (Table 2). By far, sink faucets
and drains were the sites with the greatest burden of different microorganisms found in the
home environment for all six patients ranging from (53-85%) of the morphologically distinct
organisms found in each home (Table 2). Humidifiers were less likely to be contaminated with
cultured bacterial organisms compared to other environmental sites, with only (4-5%) of
organisms collected coming from that particular sample type. The percentage of organisms
found in showerheads varied from patient-to-patient ranging from 1-30% of environmental
organisms (Table 2). Between 8 and 32 macroscopically differentiable organisms were identi-
fied in each of the six sputum samples (Table 2). Multiple concordant organisms were found to
exist in both home and sputum samples (Fig 1 and Table 3).

A large number of organisms from 60 different genera across the six patients were identified
(S1 Table). A variety of Gram-positive and Gram-negative organisms with varying oxygen
requirements were found to exist in both the home environment and lower airways
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Table 1. Characteristics of patients who underwent correlation of home and sputum microbiome studies.

Patient ID P1 P2 P3 P4 P5 P6

Gender M M M F F F

Age (years) 21 33 38 23 77 44

Genotype F508del / F508del/ F508 del/ F508 del/ F508  F508 del/ 3849 F508 del/ F508
F508del G551D F508del del +10kbC->T del

Lung Disease Stage Very mild Mild Advanced Mild Moderate Advanced

Normal MSSA MSSA PA MSSA SA MSSA

Chronic Hi PA

Flora

Organism Prompting PA, NC, MA PA, SM MA PA, SM PF, SM AX

Investigation

MSSA = Methicillin sensitive Staphylococcus aureus, HI = Haemophilus influenzae, PA = Pseudomonas aeruginosa, NC = Nocardia cyriacigeorgica,
MA = Mycobacterium abscessus, SM = Stenotrophomonas maltophilia, AX = Achromobacter xylosoxidans, PF = Pseudomonas fluorescens, M = male,
F = Female

doi:10.1371/journal.pone.0148534.t001

microbiome (Fig 1 and S1 Table). Not surprisingly, previously unidentified organisms were
commonly found in environmental reservoirs (Fig 1 and S1 Table). The most prevalent organ-
ism cultured from the home environmental samples by percentage belonged to the Sphingomo-
nas genus 15% for patient 1, Family Micrococcaceae 19% for patient 2, Agrococcus and
Streptococcus genera—17% of each for patient 3, Stenotrophomonas genus 16% for patient 4,
Family Micrococcaceae 13% for patient 5, Family Micrococcaceae 12% for patient 6 (Fig 1 and
S1 Table).

Various organisms commonly regarded as normal oropharyngeal flora were cultured from
sputum (Fig 1). The most prevalent organisms cultured from sputum samples of patients were
common CF microbiota belonging to the Stenotrophomonas genus 24% for patient 1, Strepto-
coccus genus 35% & 67% for patients 2 and 3 respectively, Pseudomonas genus 50% for patient

Table 2. Number of morphologically distinct bacterial organisms in the home environment as a function of reservoir.

Patient ID

P1 P2 P3 P4 P5 P6

(%) (%) (%) (%) (%) (%)
Total Sputum 25 20 24 8 32 32
Natural reservoir
Shower heads 52/170 (31) 18/139 (13) 4/71 (6) 14/64 (22) 7/110(6) 8/147 (5)
Sink faucets and drains * 97/170 (57) 75/139 (53) 51/71 (72) 49/64 (77) 94/110 (85) 120/147 (82)
Airway clearance device N/A 10/139 (7) N/A N/A N/A 9/147 (6)
Nebulizers N/A 22/139 (16) N/A N/A 9/110 (8) 2/147 (1)
Compressors N/A 15/139 (11) N/A 1/64 (1) N/A N/A
Humidifier 71170 (4) N/A 3/71 (4) N/A N/A 8/147 (5)
Recreational drug equipment A 14/170 (8) N/A N/A N/A N/A N/A
Washer N/A N/A 13/71 (18) N/A N/A N/A
Total Environmental 170 139 71 64 110 147

(*) Represents various sites of sink faucets and drains throughout the homes of patients. N/A indicates site was not sampled for particular patient. (n) =
total number of bacteria organisms cultured from home environment.
(™) Recreational drug equipment represented a hashish pipe.

doi:10.1371/journal.pone.0148534.1002
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mmm  P:Actinobacteria == P:Firmicutes;C:Bacilli;O:Bacillales;F:Staphylococcaceae;G: Staphylococcus
== P:Actinobacteria;C:Actinobacteria;O:Actinomycetales === P:Firmicutes;C:Bacilli;O:Lactobacillales
mmm  P:Actinobacteria;C:Actinobacteria;O:Actinomycetales;F:Actinomycetaceae; G:Actinomyces —= P:Firmicutes;C:Bacilli;O:Lactobacillales;F:Aerococcaceae;G:Aerococcus
== P:Actinobacteria;C:Actinobacteria;O:Actinomycetales;F:Brevibacteriaceae mmm  P:Firmicutes;C:Bacilli;O:Lactobacillales;F:Carnobacteriaceae; G:Granulicatella
== P:Actinobacteria;C:Actinobacteria;0:Actinomycetales;F:Brevibacteriaceae;G:Brevibacterium === P:Firmicutes;C:Bacilli;O:Lactobacillales;F:Streptococcaceae
== P:Actinobacteria;C:Actinobacteria;0:Actinomycetales;F:Corynebacteriaceae === P:Fimicutes;C:Bacilli;O:Lactobacillales;F:Streptococcaceae;G:Lactococcus
=== P:Actinobacteria;C:Actinobacteria;O:Actinomycetales;F:Dietziaceae == P:Firmicutes;C:Bacilli;O:Lactobacillales;F:Streptococcaceae;G: Streptococcus
=== P:Actinobacteria;C:Actinobacteria;O:Actinomycetales;F:Intrasporangiaceae = P:Proteobacteria
=== P:Actinobacteria;C:Actinobacteria;O:Actinomycetales;F:Microbacteriaceae;G:Microbacterium == P:Proteobacteria;C:Alphaproteobacteria;O:Caulobacterales;F:Caulobacteraceae;G:Brevundimonas
== P:Actinobacteria;C:Actinobacteria;O:Actinomycetales;F:Micrococcaceae === P:Proteobacteria;C:Alphaproteobacteria;O:Sphingomonadales;F:Sphingomonadaceae; G:Sphingomonas
—= P:Actinobacteria;C:Actinobacteria;O:Actinomycetales;F:Micrococcaceae;G:Agrococcus === P:Proteobacteria;C:Betaproteobacteria;O:Burkholderiales;F:Comamonadaceae;G:Delftia
== P:Actinobacteria;C:Actinobacteria;O:Actinomycetales;F:Micrococcaceae;G:Kocuria —= P:Proteobacteria;C:Betaproteobacteria;O:Neisseriales;F:Neisseriaceae;G:Neisseria
== P:Actinobacteria;C:Actinobacteria;O:Actinomycetales;F:Micrococcaceae;G:Micrococcus ==  P:Proteobacteria;C:Gammaproteobacteria;O:Enterobacteriales;F:Enterobacteriaceae
—— P:Actinobacteria;C:Actinobacteria;O:Actinomycetales;F:Micrococcaceae;G:Rothia mmm  P:Proteobacteria;C:Gammaproteobacteria;O:Enterobacteriales;F:Enterobacteriaceae;G:Enterobacter
—— P:Actinobacteria;C:Actinobacteria;O:Actinomycetales;F:Promicromonosporaceae;G: Cellulosimicrobium === P:Proteobacteria;C:Gammaproteobacteria;O:Enterobacteriales;F:Enterobacteriaceae;G:Escherichia
== P:Bacteroidetes;C:Bacteroidia;0:Bacteroidales;F:Prevotellaceae;G:Prevotella == P:Proteobacteria;C:Gammaproteobacteria;O:Enterobacteriales;F:Enterobacteriaceae;G:Klebsiella
—= P:Bacteroidetes;C:Flavobacteria;O:Flavobacteriales;F:Flavobacteriaceae;G:Chryseobacterium —= P:Proteobacteria;C:Gammaproteobacteria;O:Pseudomonadales;F:Moraxellaceae; G:Acinetobacter
mmm  P:Firmicutes === P:Proteobacteria;C:Gammaproteobacteria;0:Pseudomonadales;F:Pseudomonadaceae;G:Pseudomonas
mmm  P:Firmicutes;C:Bacilli;O:Bacillales === P:Proteobacteria;C:Gammaproteobacteria;O:Xanthomonadales;F:Xanthomonadaceae;G:Pseudoxanthomonas
=mm  P:Firmicutes;C:Bacilli;O:Bacillales;F:Bacillaceae;G:Bacillus === Unidentified

Fig 1. Cultured bacteria recovered from home environment represented as (Patient # 1-6) and source of isolate (S = sputum, E = environment) for
all 6 patients. Legend shows a color representation of the taxonomic identification at the various taxonomic ranks from Sanger sequencing of the 16S rRNA
DNA of the organisms. Organisms that were cultured in > 6% of the total cultured organisms across all patients are included.

doi:10.1371/journal.pone.0148534.g001

4, Staphylococcus genus 47% for patient 5, and Streptococcus genus 41% for patient 6 (Fig 1).
The majority of organisms identified from patients 4 and 5 sputum were consistent with
chronic P. aeruginosa and S. aureus infection, respectively.

A total of 122 isolates from ten species across the six patients were found to be concordant
in both home environment and sputum (Table 3). PFGE was carried out using organism spe-
cific protocols on all of the concordant isolates collected from sputum and the home environ-
ment to determine if environmental strains were genetically related to isolates collected from
the lower airways. We identified two situations in which the PFGE patterns demonstrated
strain relatedness between environment and lower airways (Fig 2A and 2B). It was impossible
to determine based on the retrospective study design if these isolates were the source of lower
airways infection, or a consequence of patient related environmental contamination. For
Patient 1, three Sphingomonas isolates coming from two different environmental sites (sink
faucet & shower head) were genetically related to an isolate collected from the lower airways of
this patient (Fig 2A). Interestingly, these data also show us that other Sphingomonas isolates
collected from the various sites of this patient’s home are quite heterogeneous suggesting that
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Table 3. The number of concordant isolates found in both sputum (S) and home environment (E) for patients 1-6, using culture-dependent Sanger

sequencing techniques.

Genus, species S

Brevibacterium spp.

Microbacterium spp.

Pseudomonas aeruginosa 2
Sphingomonas spp. 2
Staphylococcus aureus
Staphylococcus epidermidis
Staphylococcus spp.

Stenotrophomonas maltophilia 1
Streptococcus mitis

Streptococcus parasanguinis

Total isolates screened )

P1

Patient Restriction
P2 P3 P4 P5 P6 enzyme
E S E S E S E S E S E
6 40U,Smal
1 12 10U, Spel
6 3 4 2 2 2 2 20U, Spel
12 10U, Xbal
5 2 40U, Smal
1 6 1 3 40U, Smal
1 7 40U, Smal
10 2 5 20U, Spel
8 1 2 2 90U, Smal
1 1 5 1 90U, Smal
28 3 25 12 6 4 7 8 10 8 6

A total of 122 isolates were screened to determine if isolates are clonally related using pulse field gel electrophoresis (PFGE). Organisms that were
concordantly identified in both sputum and home environmental isolates and the corresponding number of isolates that were screened. Blank cells
represents organisms that were not concordant in a particular patient. P1-P6 refers to patient identification in the study. PFGE was done on each of the
concordant isolates using the restrictions enzymes listed.

doi:10.1371/journal.pone.0148534.1003

there is a wide variety of strains persisting in the home environment. Similarly in Patient 4, the
P. aeruginosa isolates collected from this patient’s sputum was genetically related to the isolate
found in the basement sink faucet which they reported to be their principle bathroom (Fig 2B).
Despite several concordant species being found between home environments and lower air-
ways, the majority of PFGE patterns did not demonstrate strain relatedness between environ-
ment and lower airways (data not shown).

To assess for the uncultured microbial community of the home, a total of 39 samples taken
from the home environment and sputum (from patients 1,3, 5, and 6) were sent for Illumina
MiSeq sequencing of the V3 hypervariable region of the 16S rRNA gene. Samples from patients
2 and 4 were not available for assessment in the culture-independent studies. A total of
3,965,211 reads (an average of 116,623.8 reads/sample) for all the samples included in the anal-
ysis. Five of the 39 samples were excluded from assessment as they had <1500 reads/sample.
Results show that there were 289 uniquely identified genera across all samples from all patients
(Fig 3). Samples taken from the home environment and sputum collected from patients 1, 3, 5,
and 6 suggest that bathrooms are contaminated by a greater percentage of Pseudomonas spe-
cies compared to other environmental sites. Interestingly, many organisms were not identified
by culture and were found using the culture-independent technique, however, in some
instances the opposite was also true (Table 4). We speculate that those organisms that were
missed in the culture-independent assessments are low abundance organisms that require cul-
ture enrichment in order to be detected. This is in accordance with previous findings suggest-
ing that both culture-dependent and culture-independent techniques are required to enhance
sensitivity of identifying organisms present in a given sample [6]. For example, using culture-
dependent techniques only 9 organisms were cultured from Nebulizers for patients 5 and only
2 organisms were cultured from patient 6. However, using culture independent techniques
7-13 taxa with greater than 1000 reads each were observed (Fig 3 and Table 4). This suggests
that perhaps some of the organisms are not stable in this type of environment and the reads
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Fig 2. Genotypically related isolates found in the home environment of patients studied. (A) The home environment of patient one (P1) contains
genotypically related strains of Sphingomonas species as those found in lower airways. (B) The home environment of patient four (P4) also contained an
isolate of P. aeruginosa similar to two morphologically distinct isolates collected from their sputum. Genotypically related isolates are highlighted in red.
Samples are named as follows Patient ID:S = Sputum isolate /E = environmental isolates:Strain ID number.

doi:10.1371/journal.pone.0148534.9002

represent residual bacterial DNA rather than viable organisms. Indeed, we used a variety of cul-
ture conditions to ensure to maximal recovery of potential viable organisms.

M. abscessus subsp. abscessus was one of the organisms that prompted investigation in
patients 1 and 3, interestingly we were not able to culture this organism from either patients
repeat sputum sample or environmental samples. We were however, able to identify a few M.
gordonae isolates in showerheads of both patients. Similarly in our culture-independent assess-
ments we were able to detect organisms from the Mycobacterium genus in both patients
homes, however, in low abundance.

Similarly, the newly isolated organisms that prompted investigation in Patient 5 were P.
fluorescens and S. maltophilia (Table 1) interestingly neither of these organisms were found
using culture-dependent techniques in the repeat sputum sample at the time of investigation.
However there were four morphologically distinct S. maltophilia isolates cultured from samples
taken from this patient’s home. Likewise, A. xylosoxidans was the new organism that prompted
investigation in Patient 6, however, this organism was not cultured from either the home envi-
ronment or the patients repeat sputum assessment. The data herein suggest transient carriage
of these organisms could have occurred. Indeed, such transient carriage is reported commonly
[48-50]. However, the presence of S. maltophilia isolates in Patient five’s home suggests that
this may be a source for re-infection.
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Fig 3. Relative abundance of OTUs present in greater than 1% of samples for 34 of 39 samples collected from patients 1, 3, 5 and 6. Numeric
identification on x-axis refers to patient number. Bar plots have been grouped according to sample type. Samples taken from bathroom include bathroom
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sinks, faucets, drains, and shower heads/hoses. Samples taken from kitchen include sinks, faucets, and drains. Respiratory equipment includes samples
taken from patient’s nebulizers and airways clearance device (FLUTTER®), Aptalis). Other samples include samples taken from other respiratory equipment,
outside faucets, high efficiency washer, and an aerator.

doi:10.1371/journal.pone.0148534.g003

Discussion

Our understanding of the microbial communities that infect the lower airways in CF remains
limited. Whereas clinical microbiology labs have traditionally focused solely on the identifica-
tion and characterization of a several classical CF pathogens, the adaption of 16s rDNA com-
munity sequencing technologies and more extensive culturing approaches have suggested a
much greater diversity of organisms infect CF airways [7,10,12,51].

The originating source of lower airways infecting organisms remains poorly understood.
Infections can be acquired from a number of possible routes which may be nosocomial; infec-
tions acquired from within a healthcare environment through either patient-to-patient or
healthcare provider/health care environment-to-patient, or community acquired; infection
transmitted from person-to-person outside of the healthcare setting or from an environmental
intermediary [15,52]. Mechanisms by which transmission have occurred may be through drop-
let, aerosol or contact either directly or through fomites [53].

Given its role as the archetypal CF pathogen, environmental sources of acquisition of P. aer-
uginosa have been extensively studied.[15,54,55]. Schelstraete et al., demonstrated that 72% of
bathrooms in the homes of CF patients who were recently identified to have new P. aeruginosa
lower airways infection were also culture positive [15]. However, only 9 of 50 newly infected
patients (18%) were identified to have the same colonizing strain of P. aeruginosa within the
bathroom through genotypic analysis [15]. Similar to previous findings our results have shown

Table 4. Culture-dependent versus culture-independent microbial contamination of respiratory equipment.

Patient Patient 5—Nebulizer Patient 6—Nebulizer

Taxonomic Identification Family/ Culture dependent Culture independent Culture dependent Culture independent
Genus profiling profiling profiling profiling
Pseudomonas

Lachnospiraceae

Stenotrophomonas

Microbacteriaceae v
Streptococcus

Staphylococcus v

N NN N

Lactobacillus
Lactococcus
Mycoplasma
Enterobacteriaceae

\
S<-H<BH<B<H<B

Bifidobacterium

Sphingobacterium v
Anoxybacillus

Bacillaceae v v v
Propionicicella v

<

Dermabacter v

For culture-independent studies only taxa with greater than 1000 reads were included in this assessment. Taxa with lower quality reads are not included in
this table.

doi:10.1371/journal.pone.0148534.1004
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that sink faucets and drains were sites commonly contaminated by P. aeruginosa [15,54,55].
We were able to demonstrate genotypic concordance with lower airways of a single isolate of P.
aeruginosa in a newly infected patient suggesting that environmental acquisition of P. aerugi-
nosa is a rare event. As such, it is likely that specific conditions with respect to the pathogen
and host must be met in order to culminate in infection. In addition, the physical conditions of
the home environmental sites screened are quite different than the lower airways of CF
patients; therefore it is possible that the patients lower airways acts as a selective growth envi-
ronment for strains that may not be the most abundant in other environmental niches.

When assessed using culture-independent technologies, Pseudomonas spp. could be identi-
fied in the home of every patient provided enough samples were taken. Latent reservoirs of P.
aeruginosa may be important in CF. In particular, it may be that the approximately 20% of
patients that fail to respond to early P. aeruginosa eradication may be due to re-infection
through exposure to a persistent environmental niche [56-60]. If this were true, it may be that
clinical outcomes of eradication therapy for P. aeruginosa may be improved with targeted envi-
ronmental treatment to reduce P. aeruginosa burden simultaneous to medical treatment of
patients. Regardless of whether the infection originated from the patient or the environment, a
persistent untreated environmental source may serve as a residual reservoir enabling re-infec-
tion following successful medical therapy of the patient. Furthermore, data from our study and
the work of others suggests that the home environment of CF patients does indeed harbor
potentially pathogenic organisms beyond just P. aeruginosa. Organisms such as S. maltophila,
S. aureus, Streptococcus spp., and Sphingomonas spp. were also commonly found in patient
homes [15,55].

In order to reduce risk of reinfection, strategies of environmental cleaning to remove latent
reservoirs of infection may be considered as viable strategies. Such treatments could prospec-
tively be incorporated into early eradication strategies. If targeted treatments were to be rou-
tinely advocated, current evidence would suggest that cleaning/replacement of showerheads,
and sink faucets would be the highest yield. It is possible in this pilot study that we weren’t able
to identify all cases of clonally related isolates in the home environment and lower airway of
CF patients due to limitations of sequencing and sampling depth. Perhaps if thousands of iso-
lates were screened from each patients home using even more enhanced culturing conditions
clonally linked isolates may have been found at a higher prevalence, although practically this is
not feasible.

Less is known about potential sources of other established CF pathogens such as Stenotro-
phomonas maltophilia or Achromobacter spp. Results from our culture-independent assess-
ment suggest that there are organisms from the Stenotrophomonas genus in high abundance
contaminating respiratory equipment of CF patients that were missed in the culture-dependent
studies despite a multitude of conditions being attempted. These results are similar to previous
findings comparing Sanger sequencing results to deep sequencing results in polymicrobial
infections showing that deep sequencing was more discriminating. However, the disadvantage
of culture-independent assessments is that bacterial viability cannot be verified. Although we
are able to sequence and identify many more organisms using this technique, it is possible that
this is actually just bacterial DNA present in the environment rather than viable organisms.

With increasing evidence to support the polymicrobial nature of CF lung disease we took a
more broad perspective looking at whether other members of CF lung microbiome may also
exist in the home environment. Our results show that other members of the CF lung micro-
biome including species from the following genera, Brevibacterium, Enterobacter, Mycobacte-
rium, Neisseria, Sphingomonas, Staphylococcus and Streptococcus amongst others, are also
ubiquitously found in moist sites of the home environment. These organisms may play an
important role in CF pathogenesis. For instance Sibley et al. found that the emergence of the
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Streptococcus anginosus group (S. milleri group) as the numerically dominant organism in spu-
tum was associated with bronchopulmonary exacerbations [9]. While members of CF micro-
biome were identified in the home environment based on our PFGE results we were only able
to identify two instances in which environmental strains were identical to strains collected
from the patients sputum samples, suggesting that the majority of these strains are genetically
distinct. This again provides support that organisms infecting the airways in CF have specific
airway adaptations enabling colonization and persistence, and that not all strains of putative
CF pathogens may be capable of causing airways disease in CF.

Precedence exists to suggest that living environment may impact lower airways microbiota
in CF. In a recent study done by Hampton et al., they observed that CF siblings residing
together had a lower airway microbiota that was much more similar than those living apart
[61]. Whereas shared environment is just one factor associated with cohabitating (i.e. intensity
of patient-patient exposure, similar diet, similar natural environmental exposure etc.) their
findings combined with our own might suggest that home environment may serve as a patient-
patient intermediary for microbiota. However, to the best of our knowledge, environmental
sources of acquiring bacterial infection in CF have been explored only in regards to specific
pathogens and never from a microbiome perspective prior to this work.

Our study has a number of notable limitations, most notably the fact that only six patients
were included. However, even in the much larger patient population of 50 patients Schelstraete
et al. which focused only on P. aeruginosa, rarely was a home environmental isolate genotypi-
cally related to the respiratory isolate identified [15] Given the frequent identification of CF
lung microbiome constituents in the home environment (and the tremendous efforts involved
in doing so) and the fact that we were only able to identify genetic similarity in two of the 13
concordant genera assessed it would seem larger scale studies would be impractical. Since our
methods of identifying the isolates relied on culture-based techniques and morphological iden-
tifiable differences between isolates a sampling bias could have occurred. Furthermore, a
broader range of media types could have been used, however, it is unlikely inclusion of more
culture conditions beyond the 12 attempted would further increase the recovery of organisms.
Our comparison of the microbiota of the home environment and lower airways was performed
on only one occasion in each patient-something that may have missed organisms existing tran-
siently in either environment. Using complementary culture-independent studies we did note
a significant increase in burden of potential organisms within the environment. However,
these culture-independent modalities lack specificity as they are capable of amplification of
either free, or dead bacterial DNA, in addition to viable organisms and they thereby potentially
overestimate the degree of diversity. Furthermore an exclusive culture-independent approach
does not allow for determination of strain relatedness.

Finally, we must point out—we were not able to determine the order of infection; did the
patient acquire infection from the home, or did the patient contaminate their home environ-
ment? Such criticism exists in all similar studies. However, regardless of the order of infection,
an environmental niche of infection was occasionally identified which may serve to re-infect
the patient after a successful eradication regimen.

Conclusions

Where the constituents of the lung microbiota of newly infected CF patients originate remains
relatively unknown. We identified that the home environment of CF patients harbors classical
CF pathogens such as P. aeruginosa, S. aureus, S. maltophilia, and Achromobacter spp, as well
as those organisms only recently considered to potentially have a role including members of
the genera Bacteroides, Gemella, Prevotella, Sphingobacterium, Streptococcus, and Veillonella.
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However, the majority of those environmental organisms represent different strains based on
PFGE patterns, suggesting that it is rare that the home environment serve as a source of infec-
tion within the confines of those reservoirs assessed.

Supporting Information

S1 Table. Proportion of cultured bacteria recovered from home environmental sites and
bacterial organism found in patients sputum samples for all 6 patients.
(XLSX)
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