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SUMMARY
Predicting disease progression remains a particularly challenging endeavor in chronic degenerative disor-
ders and cancer, thus limiting early detection, risk stratification, and preventive interventions. Here, profiling
the three chronic subtypes of myeloproliferative neoplasms (MPNs), we identify the blood platelet transcrip-
tome as a proxy strategy for highly sensitive progression biomarkers that also enables prediction of
advanced disease via machine-learning algorithms. The MPN platelet transcriptome reveals an incremental
molecular reprogramming that is independent of patient driver mutation status or therapy. Subtype-specific
markers offer mechanistic and therapeutic insights, and highlight impaired proteostasis and a persistent in-
tegrated stress response. Using a LASSO model with validation in two independent cohorts, we identify the
advanced subtype MF at high accuracy and offer a robust progression signature toward clinical translation.
Our platelet transcriptome snapshot of chronic MPNs demonstrates a proof-of-principle for disease risk
stratification and progression beyond genetic data alone, with potential utility in other progressive disorders.
INTRODUCTION

The classic Philadelphia chromosome-negative (Ph-) MPNs,5–8

are clonal disorders of the bonemarrow that comprise three clin-

ical phenotypes– essential thrombocythemia (ET), polycythemia

vera (PV), and myelofibrosis (MF). These myeloid neoplasms are

defined by a combination of morphologic, clinical, laboratory,

and cytogenetic/molecular genetic features. The existing ge-

netic landscape9–11 of MPNs primarily involves mutations in

three driver genes that lead to constitutive JAK-STAT signaling

(JAK2, CALR, MPL). Several additional non-driver mutations

(see references9–15 for details) as well as cytogenetic7 and epige-

netic16,17 abnormalities also contribute to disease initiation and

progression, and impact both overall survival and potential for

progression to acute myeloid leukemia (AML)18. Depending on

the MPN and stage of disease, these patients may exhibit debil-

itating constitutional symptoms such as fatigue, pruritus, night

sweats, and weight loss; thrombohemorrhagic diathesis and ex-

tramedullary hematopoiesis; and an increased propensity for
Cell Repo
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transformation to AML. Although an increase in one or more

blood cell lineages contributes to these morbid sequelae, the

qualitative abnormalities of myeloid cells that increase vascular

risk or disease progression are not well understood. Taken

together, a limited understanding exists regarding how geno-

typic variability contributes to diverse phenotypic presentations

and disease natural histories. We were motivated by the current

clinical need7,9,10 and the potential for deeper integration of clin-

ical features and genetics with gene expression profiling to

improve stratification and management of chronic blood disor-

ders, such as MPNs.

Blood platelets play critical roles in multiple processes and

diseases19–21, from their traditional function in hemostasis and

wound healing to inflammation, immunity, cancer metastasis,

and angiogenesis. Platelets originate from bone marrow precur-

sor megakaryocytes as anucleate fragments with a distinctive

discoid shape. Platelets contain a complex transcriptional land-

scape of messenger RNAs (mRNAs), unspliced pre-mRNAs,

rRNAs, tRNAs and microRNAs21–24. Most platelet RNA
rts Medicine 2, 100425, October 19, 2021 ª 2021 The Author(s). 1
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Figure 1. Two independent MPN clinical cohorts and closely replicated patient variables

(A) Similarity in distribution of MPN subtypes between two cohorts of MPN patients (Stanford single-center; approximately 2 years apart: cohort 1: 2016-17, n =

71; and cohort 2: 2019, n = 49); the majority subtype is MF in both cohorts (34% of n = 71 and 37% of n = 49).

(B) Comparable distribution of age acrossMPN subtypes in the two cohorts. Violin plots of patient age from eachMPN subtype reflect clinical expectation, with an

almost identical match between the two cohorts. Slightly higher median age noted in the second cohort for ET and PV patients alone.

(C) Comparable and balanced distribution of gender across MPN subtypes in the two cohorts. Larger percentage of male healthy controls in both cohorts and

smaller percentage of males in ET cohort 1 noted.

(legend continued on next page)
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expression results from the transcription of nuclear DNA in the

megakaryocyte22,25, and thus reflects the status of themegakar-

yocyte at the time of platelet release into the circulation, as well

as subsequent splicing events, selective packaging, and inter-

cellular RNA transfer. There is emerging evidence26–30 that the

molecular signature of platelets may be changed in disease con-

ditions where these processes are altered, including via inter-

cellular transfer27,29 of cytosolic RNA. In the context of MPNs,

the platelet transcriptome therefore not only represents a critical

biomarker of megakaryocytic activity31–35, but also provides a

snapshot of the underlying hemostatic, thrombotic, and inflam-

matory derangements associated with these hematologic neo-

plasms and the potential impact of treatment34.

To date, no one composite study4,15,36,37–40 has evaluated the

disease-relevant platelet transcriptome in a sizeable clinical

cohort of all three subtypes of Ph- MPNs. Here, we extend our

prior preliminary work36 toward a comprehensive analysis of dis-

ease-relevant41 platelet RNA-sequencing (RNA-seq) in two

temporally independent and mutually validating cohorts of all

three MPN subtypes, ET, PV, and MF (primary or post ET/PV

secondary). We demonstrate marked differences in platelet

gene expression across the MPN spectrum, which also permits

robust validated (temporal and geographical) prediction of MF.

In addition to identifying novel gene expression signatures

impacted by the JAK1/JAK2 inhibitor ruxolitinib (RUX), platelet

profiling reveals MPN-altered pathways that may be targets for

future drug development.

RESULTS

Two independent MPN clinical cohorts and closely
replicated platelet transcriptome
We prepared highly purified leukocyte-depleted42,43 platelets

from peripheral blood samples of two cohorts (approximately 2

years apart; Stanford single-center) of patients with a diagnosis

of MPN (including provisional) at the time of sample acquisition,

and included healthy controls in each cohort as reference (cohort

1, n = 71, and cohort 2, n = 49; Figure 1, Tables S1A and S1B).

Only 2 patients (2%) received a change in diagnosis from MPN

(MF) to a non-MPN phenotype; and were therefore excluded

from all downstream analyses (Figure 2A principal component

analysis plot panel-3 identifies these 2 outliers). Our two-cohort
(D) Matched distribution of primarily JAK2 and CALRmutational status across MP

three subtypes; 100% of PV and over 50% of ET and MF patients have JAK2 mu

patients is noted as a natural consequence of the rarer prevalence of these muta

(E) Diversity of MPN patient therapies across the two cohorts reflecting current cl

inhibitor, ruxolitinib, in MF. Note that a given patient may be on more than one tr

equal 100. To control for any inter-patient variability, all treatment, in addition to pa

expression analyses.

(F) Representative clinical laboratory variables, as boxplots, measured at the same

larger variance (inter-quartile range [IQR]), and reflect current clinical knowledge

WBC); and show the greatest differential in MF. Note higher platelet count in ET w

and lower red blood cell count in MF with concomitantly lower hemoglobin, hem

terisks indicate a statistically significant difference between any two groups (*p %

(G) High correlation (R2 = 0.89) of platelet gene expression as assessed by norm

essential thrombocythemia (ET), polycythemia vera (PV), and myelofibrosis (MF).

24), PV (n = 33), primary or post ET/PV secondary MF (n = 42), healthy donors (n =

analyses.
study was specifically designed (before knowledge of other sub-

sequent studies) for the explicit purpose of validation, not only of

intercohort RNA-seq results44 but also to evaluate temporal vali-

dation45 of our prediction model (see STAR Methods, Figures

5C, 5E, 5F). Figure S1 demonstrates our established42,46 high-

quality and highly efficient experimental framework toward a

rigorous platelet RNA-seq approach. Clinical features of the

MPN patients are shown in Figure 1 and listed in Tables S1A

and S1B. The distribution of key variables was closely matched

between the two cohorts by MPN subtype (Figure 1A), age (Fig-

ure 1B), gender (Figure 1C), JAK2/CALR mutation status (Fig-

ure 1D), and treatment (Figure 1E). Any interpatient variability in

patient age, gender, and treatment were adjusted as confound-

ing factors in all downstream gene expression analyses (see

STAR Methods). Clinical laboratory measures (Figure 1F) at the

time of sampling reflected the phenotype of the MPN subtypes

(please see figure legend for detailed statistical comparisons).

The two cohorts of platelet transcriptome data (Figure 1G,

normalized transcript counts) adjusted for patient age, gender,

and all treatment as confounding factors were also highly corre-

lated (R2 = 0.89), thus demonstrating high intercohort validation

of gene expression that then enabled us to combine our two

RNA-seq datasets into a final integrated dataset of enhanced

statistical power for downstream analyses, especially prediction

modeling (Figure 5). Together, this platelet transcriptome com-

pendium comprises 118 human peripheral blood samples from

healthy controls (n = 21) and World Health Organization–

defined MPN patients (24 ET, 33 PV and 40 MF) that include 7

untreated, and 92 either on cytoreductives/biologics (e.g., ruxo-

litinib, hydroxyurea, interferon-alpha), anti-thrombotic agents

(e.g., aspirin, warfarin), or a combination of the two; and captures

the real-life diversity among MPN patients. Our cross-sectional

design here capturing patients from all three MPN subtypes

also serves as a practical alternative to the longitudinal

approach; though ideal, it is likely difficult to implement in these

chronic disorders which often occur over decades.

MPN platelet transcriptome distinguishes disease
phenotype and reveals phenotype- and JAK-inhibitor
specific signatures
Given the phenotypic overlap, yet also differences in disease

behavior and prognosis between ET, PV, and MF, we
N subtypes in the two cohorts. JAK2 is the most common mutation across all

tation in both cohorts. Mismatch between cohorts on the MPL/triple negative

tions; and therefore, not the primary focus of this work.

inical practice. The majority being aspirin (ASA) in ET/PV patients and the JAK-

eatment and therefore, the total treatment percentage in this graphic may not

tient age and gender are adjusted as confounding factors in downstream gene

date and time as platelet sampling. Compared to controls, MPN patients show

. Groups differ primarily only with respect to blood cell counts (platelet/RBC/

ith a concomitant lower mean platelet volume, higher red blood cell count in PV

atocrit, and higher red cell width. Wilcoxson signed rank tests marked by as-

0.05; **p % 0.01; ***p % 0.001; ****p % 0.0001).

alized counts of matched transcripts in each cohort between each of controls,

The two-cohort collective sample size by subtype constitutes each of ET (n =

21), and totals (n = 120), affording increased statistical power for subsequent

Cell Reports Medicine 2, 100425, October 19, 2021 3



Figure 2. MPNplatelet transcriptomedistin-

guishes disease phenotype and reveals

phenotype- and JAK-inhibitor specific sig-

natures

(A) Unsupervised principal component analysis

(PCA) of normalized platelet gene expression

counts adjusted for age, gender, treatment, and

experimental batch. Three panels of PC1 and PC2

colored by MPN subtype; and each contrasted

with controls (n = 21; yellow): ET (n = 24; top, light

green), PV (n = 33; middle, dark green), andMF (n =

42; bottom, dark blue). Circles filled or open mark

presence or absence of ruxolitinib treatment and

size of circles, smaller or larger, indicate presence

or absence of JAK2 mutation. The first two prin-

cipal components account for 48% of total vari-

ance in the data.

(B) Volcano plots (three panels as A above of ET,

PV, and MF) of differential gene expression

showing statistical significance (negative log10 of

p values) versus log2 fold change of each gene.

Significant upregulated and downregulated genes

are those with p values (FDR) smaller or equal to

0.05 and absolute value of fold changes larger or

equal to 1.5.

(C and D) Venn Diagram comparisons of MPN

differential gene expression lists. In (C), each of ET,

PV and MF is contrasted with controls; identifying

gene sets that are shared (n = 1504, FDR < 0.05) as

well as unique to each subtype. In (D), differential in

the RUX-treated cohort is contrasted with MF

versus controls. Differential in gene expression in

RUX-treated cohort is a fraction of the total dif-

ferential noted in the MF transcriptome.

(E) Volcano plot of differential gene expression

between MPN patients treated with ruxolitinib and

not. A small subset of overlapping differential

genes that are upregulated in MF (B) (bottom

panel) and suppressed in the RUX-treated cohort

(E) are colored in green.
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hypothesized that there may be MPN subtype-specific differ-

ences in gene expression that are independent of JAK2/CALR/

MPL mutation status. In addition, we hypothesized that MPN

platelets are likely to be enriched for subtype-specific bio-

markers that may otherwise be missed in blood/plasma/serum

sources37–39. Therefore, we compared platelet transcriptomic

expression in each of the three MPN subtypes with that of con-

trols and discovered a shared gene set that is also progressively

differentiated across the MPN spectrum (ET/PV to MF as shown

in Figures 2A–2C). First, unsupervised principal component anal-

ysis (PCA) of MPN patients and controls data (Figure 2A)

confirmed that the collective variability from the first two prin-

cipal components (accounting for 48% of total variance), after

adjusting for age, gender, treatment, and experimental batch,

was MPN disease status, with increasing differentiation by sub-

type. Next, differential gene expression analysis (DGEA), as

shown in a volcano plot (Figures 2B and 2C), efficiently distin-
4 Cell Reports Medicine 2, 100425, October 19, 2021
guished each of the MPN subtypes and

resulted in highly significant expression

signatures (adjusted p value/FDR < 0.05)
with 2634 genes differentially regulated in ET (1364 up and

1269 down), 4398 in PV (2098 up and 2300 down), and 6648 in

MF (3965 up and 2683 down). A subset of 100+ long non-coding

RNAs and pseudogenes also constituted the significant (FDR <

0.05) differential expression across MPNs (Table S2A-C).

Specifically, DGEA also uncovered shared and unique genes

between all three MPN phenotypes, thus offering a potential

core set of genes involved in MPN pathogenesis (Figure 2C,

with associated heatmaps in Figure 3 and pathways in Figure 4).

The shared gene set at FDR < 0.01 constituted 654 upregulated

genes, with a predominance of molecular pathways involving

myeloid cell activation in immune response and membrane pro-

tein proteolysis, and 360 downregulated genes, reflecting nega-

tive regulation of hematopoiesis and negative regulation of trans-

membrane receptor protein serine/threonine kinase signaling as

a consistent pathogenetic mechanism. The upregulated genes

belonged to the endoplasmic reticulum/ER-Golgi intermediate



Figure 3. Graded differential expression by

MPN phenotype and driver mutation status

(A–D) Hierarchically clustered heatmaps of the top

10 differentially expressed genes (DEGs) from

controls (FDR < 0.01) of all MPN (A) and MF, ET,

and PV each separately (B–D). Colored annotation

is provided to indicate MPN subtype, age, gender,

mutation, and ruxolitinib treatment. Rows indicate

gradation in gene expression on a blue (low) to red

(high) scale. Columns indicate sample type from

controls (CTRL) to ET, PV, and MF.
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compartment; they also included a particularly high expression

of the cAMP-response element binding transcription factor,

CREB3L147 implicated in cell differentiation and inhibition of

cell proliferation, with concomitant high expression of ER

chaperones48 calreticulin (CALR), calnexin (CANX); transport

factors: golgin (GOLGB1) and folate receptor FOLR1.

Platelet alpha granule proteins (F5, VWF, MMP14), several colla-

gens (COL10A1, COL18A1, COL6A3), immune/inflammatory

(IFITM2/3/10, FCGR2A, TMEM179B), Cathepsins (C/Z/D, MIF,

PTGES2) and proliferation mediator genes (CDK1, CCNG1,

BMP9/GDF2, LAPTM4B, PSENEN) also constituted the MPN

shared set. Downregulated genes, on the other hand, were pre-

dominantly within transcription factor complexes, and included

opposing expression of CREB1 (vis-à-vis CREB3L1 above), cal-

cium-calmodulin protein kinases, CAMK4, SMAD1 and b-cate-

nin CTNNB1 together pointing to dysregulated calcium (Ca2+)

homeostasis in the ER lumen.

Differential markers in each of ET, PV and MF also highlight

candidate genes as potential mediators of the pro-thrombotic

and pro-fibrotic phenotypes in MPNs. In ET and PV, a strong
Cell Repor
thromboinflammatory profile6,40 is re-

vealed by the upregulation of several

interferon inducible transmembrane

genes (IFITM2, IFITM3, IFITM10, IFIT3,

IFI6, IFI27L1, IFI27L2); interleukin recep-

tor accessory kinases/proteins (IRAK1,

IL15, IL1RAP, IL17RC); and several solute

carrier family genes (SLC16A1, SLC25A1,

SLC26A8, SLC2A9) as glucose and other

metabolic transport proteins; and coagu-

lation factor V (F5). InMF, fibrosis-specific

markers were identified by an additional

focused comparison of MF patients

versus ET and PV (Figure S2), showing

increased expression of several pro-

fibrotic growth factors (FGFR1, FGFR3,

FGFRL1); matrix metalloproteinases

(MMP8, MMP14); vascular endothelial

growth factor A (VEGFA); insulin growth

factor binding protein (IGFBP7); and cell

cycle regulators (CCND1, CCNA2,

CCNB2, CCNF). GSEA of this MF-

focused comparison again highlighted

potential underlying molecular dysregula-

tion in MPNs that likely contribute to the
fibrotic phenotype (e.g., unfolded protein response, mTORc1

signaling, MYC/E2F targets, oxidative phosphorylation;

Figure 4).

Having defined differential gene expression signatures by MPN

subtype, we then explored how platelet gene expression profiles

differed in patients by treatment, focusing for this work on the

JAK1/JAK2 inhibitor, ruxolitinib (RUX, Figure 2E). DGEA on the

platelet transcriptome in RUX-treated patients identified over

400 core significant genes changed in response to treatment (Fig-

ure 2E; Tables S4 and S5). At-least two-fold reduction in expres-

sion was noted in genes associated with interferon-stimulation

(IFI6, TRIM69, LY6G5C), platelet-mediated apoptosis, FASLG,

G-protein coupled receptor, GPR88, calcium-calmodulin protein

kinase, CAMK2A and fibroblast growth factor binding protein,

FGFBP2, followed by over 150 geneswith at least one-fold reduc-

tion in expression in the RUX-treated cohort (Table S5). These

included genes downregulatedwithin classical pathways of adap-

tive immune response (TNFSF13B, B2M, HMGB1); response to

oxidative stress (COX1, COX2, COX15, TP53); and myeloid acti-

vation (TNIP2, FTH1, TOLLIP, RAB6A).
ts Medicine 2, 100425, October 19, 2021 5



Figure 4. Altered immune, metabolic, and

proteostatic pathways underlie each MPN

phenotype

Pathway-enrichment analysis of genes with MPN

subtype-specific expression (color indicated; light

green ET, dark green PV, and dark blue MF)

overlayed with ruxolitinib-specific expression (light

blue). Each point represents a pathway; the x axis

gives the normalized enrichment score, which re-

flects the degree to which each pathway is over- or

under-represented at the top or bottom of the

ranked list of differentially expressed genes,

normalized to account for differences in gene set

size and in correlations between gene sets and the

expression dataset. The y axis lists the detail-level

node of the most enriched pathways; solid lines

mark GSEA-recommended49 Bonferroni-cor-

rected statistical significance criterion of FDR <

0.25 for exploratory analyses. Dotted lines mark

FDR > 0.25 and therefore, not sufficiently signifi-

cant, yet visualized alongside solid lines to retain

overall context (upper-level parent nodes of the

detail-level pathways are provided in Table S3A–

S3C). Multiple immune and inflammatory path-

ways are consistently significantly enriched across

ET, PV, and MF (and suppressed in the ruxolitinib-

treated cohort). MF is differentiated from ET and

PV through dysregulation of additional molecular

processes for cellular development, proliferation,

metabolism, and DNA damage.
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In addition to confirming previous observations7,50–52 on the

anti-inflammatory and immunosuppressive effects of JAK inhibi-

tion by RUX (e.g., downregulation in our RUX-treated cohort of

IL1RAP, CXCR5, CPNE3, ILF3), we identified new gene clusters

responsive to RUX in the inhibition of type I interferon (e.g., IFIT1,

IFIT2, IFI6); chromatin regulation (HIST2H3A/C, HIST1H2BK,

H2AFY, SMARCA4, SMARCC2); and epigenetic methylation in

mitochondrial genes (ATP6, ATP8, ND1-6 and NDUFA5). Recent

literature probing the mechanisms of action of ruxolitinib in other

disease settings, including SARS-CoV-2,53,54 confirm our obser-

vations in MPNs.

A direct comparison restricted to only differentially expressed

genes (FDR < 0.05) in RUX-treated versus not with MF versus

healthy controls revealed less than 5% overlap (Figure 2D), re-

flecting potentially the extent of the impact of treatment by rux-

olitinib relative to the substantive disease burden in MF.

Focusing further on the directionality of the changes observed,

we found just 18 genes that were increased in MF and sup-

pressed in the RUX-treated cohort (Figure 2E, colored green),

and 9 vice versa (Tables S3A S3B). Despite the small overlap,

we capitalized on the converging genes to better define molec-

ular and physiological pathways underlying the effect of RUX in

MPNs. The 18 RUX-downregulated genes followed expected

mapping to immunosuppression through interferon- and cyto-

kine-mediated signaling pathways. The nine genes that were up-

regulated with RUX in MF mapped to previously undescribed ef-

fect of the drug in select G-protein-coupled receptor and
6 Cell Reports Medicine 2, 100425, October 19, 2021
chemokine activity (e.g. CXCR5, GPR128/ADGRG7), sema-

phorin signaling (SEMA3C) and circadian regulation (PER3). A

subcohort analysis of RUX-treated and RUX-naive MF patients

alone also identified downregulation of interferon-stimulated

genes (e.g., SLFN12L, G-protein-coupled receptors (S1PR5),

fibroblast growth factor binding protein (FGFBP2), and tyrosine

kinase (LCK).

Graded differential expression by MPN phenotype and
driver mutation status
Unsupervised hierarchical clustering was used to define the na-

ture of MPN platelet transcriptome variability more precisely

from controls, as well as between andwithin MPN subtypes. Fig-

ure 3 reveals a spectrum of expression in the MPN platelet tran-

scriptomic profile using just the top 10 highly significant differen-

tially expressed genes by disease status: (Figure 3A) all MPN

versus controls, (Figure 3B) MF versus controls, and (Figures

3C and 3D) ET and PV versus controls. As shown in Figure 3A,

all MPN patients clustered into two distinct groups: a larger

group of 87 ET, PV, and MF patients clustered independently

from the 21 controls; whereas a smaller group of 10 ET, PV,

and MF patients formed a homogeneous cluster of their own

closer to controls reflecting a varying gradation with respect to

the top-10 gene expression by MPN subtype (patient variables

annotated above the heatmaps offer additional context, particu-

larly on mutation status and RUX therapy). In the larger cluster,

while we observed a graded overlap in platelet RNA signatures



Figure 5. Prediction of MF based on unique and progressive MPN platelet transcriptome

(A and B) Top few genes (out of 3000+) demonstrating monotonic progressive gene expression (log 2 fold change in expression y axis, FDR < 0.01,Mann-Kendall

test with Bonferroni correction) across x-axes (A), CTRL-to-ET-to-MF and (B, CTRL-to-PV-to-MF.

(C) Lasso-penalizedmultinomial logistic regressionmodel under temporal validation i.e., trained on Stanford cohort 1 (n = 71, 2016–2017, Figure 1A) and validated

on Stanford cohort 2 (n = 49, 2019, Figure 1A) as test set.

(D) Lasso-penalizedmultinomial logistic regression model under geographical validation using two independently published datasets for training (cohort 3, n = 31

healthy controls in addition to Stanford cohorts 1 and 2) and validation (cohort 4, n = 25 MF and n = 15 healthy controls).

(legend continued on next page)
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between ET and PV, a more distinct expression pattern charac-

terized the more advanced population of MF patients (PC1 cor-

relates with MF disease risk by the Dynamic International Prog-

nostic Scoring System55 [DIPSS]; Figure S3). These data

collectively highlight the importance of phenotype-modifying

genes that are independent of JAK2/CALR/MPL mutation

status.

Untangling other mechanisms beyond the few genes that are

recurrently mutated is critical for defining subtype-specific risk

and for identifying molecular pathways for targeted therapy.

Accordingly, we sought to refine the molecular classification of

MPN by associating platelet gene expression profiles with the

corresponding subtype, and yielded a core set of 10 highly sig-

nificant preferentially expressed genes for each: (1) MF (Fig-

ure 3B), defined by high mRNA expression of proteostasis-asso-

ciated CREB3L1 and CALR, and megakaryocyte-erythroid

differentiation stage-associated RHAG;56,57 (2) ET (Figure 3C)

marked by comparatively high expression of interferon-related

genes IFITM2/3, immune response FCGR2A, and proliferation-

associated STAT5 target OSBP2; and (3) PV (Figure 3D) marked

by overlapping signatures with ET in inflammation-associated

IFITM3 and TBL1X, and the B-myb promoter MYBL2, with MF

in the maturation-associated RHAG at variable expression, and

with both ET and MF in the high expression of CREB3L1 and

cell survival-associated MINDY4 and STAC.

Altered immune, metabolic, and proteostatic pathways
underlie each MPN phenotype
Our analysis of MPN platelet RNA-seq enabled identification of

altered MPN pathways that might be amenable to drug therapy.

To understand the biological significance of transcriptional

changes, we performed pathway-enrichment analysis and iden-

tified signaling pathways that are differentially activated between

MPN subtypes (Figure 4). Gene set enrichment analysis (GSEA;

see STARMethods) of Hallmark gene sets found thatMPN (strat-

ified by subtypes, ET, PV, and MF) induces genes related to

pathways with known immune modulatory functions (Figure 4,

notably interferon alpha response in ET, PV, and MF, and IL2

STAT5 signaling, and interferon gamma response specifically

enriched in PV). Moreover, among the most enriched gene

sets, MPN pathology induces robust activation of oxidative

phosphorylation (OXPHOS) and mTORC1 signaling pathways,

with increasing enrichment and significance by MPN subtype

(FDR < 0.0001 in MF). Pathways of reactive oxygen species

(ROS) production paralleled activation of mTORC1 in MF. Other

complementary metabolic pathways paralleled OXPHOS activa-

tion, with significant enrichment of bile and fatty acid meta-

bolism, cholesterol homeostasis, and adipogenesis, most pro-

nounced in MF and variably expressed in ET and PV.

Coagulation- and complement-associated gene sets were
(E) Receiver operating curves (ROC) toward MF prediction under conditions of

models: (i) baseline, with no gene expression data but patient age, gender, an

progressive genes alone. Outperformance of the progressive transcriptome mod

curve, AUROC = 0.95) and lastly, the baseline model without gene expression

transcriptome model also demonstrates independent, high MF predictive accura

(F) Heatmap of top recurring Lasso-selected progressive genes for each of control

blue). Rows indicate gradation in gene expression on a blue (low) to red (high) sc
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expectedly enriched across ET, PV, and MF. What is particularly

noteworthy is that in MF, cell cycle progression and proliferation

pathways reveal significant enrichment (FDR < 0.001) around c-

MYC and E2F targets, and G2M checkpoint pathways; and

unfolded protein response emerges as a key factor, likely attrib-

utable to ER stress (see CREB3L1 and CALR overexpression in

Figures 2 and ,3). Representative GSEA profiles are shown in

Figure 4 and the full list of enriched pathways and gene sets

detailed in Tables S4A–S4C. The MPN pathways exhibiting sig-

nificant transcriptional regulation by GSEA are consistent with

our observations at the individual gene level for upregulated

and downregulated transcripts, specifically those upregulated

in MF. Taken together, these data demonstrate that in addition

to immune factors such as type I/II interferons and dysregulation

of interleukin-dependent inflammatory responses, which have

been linked to MPNs, platelet transcriptional signatures of prolif-

eration, metabolic and proteostasis signaling are a feature of

MPN pathogenesis (Figure S4 captures the relative enrichment

by subtype of MPN molecular pathway categories as a concept

model of MPN progression).

Prediction of MF based on shared, unique, and
progressive MPN platelet transcriptome
Current knowledge of MPN genetic, cytogenetic, or epigenetic

abnormalities are limited7,8 in their ability to enable prediction

of disease progression or evolution of a given patient, from ET/

PV phenotype to MF. In order to investigate the potential of

platelet transcriptomic parameters to enable MF prediction, we

constructed LASSO penalized58 regression classifiers (ma-

chine-learning R package glmnet) to discriminate MPN subtypes

from each other, and from healthy controls (Figures 5A–5E). We

apply two rigorous45 external validation conditions (Figures 5C

and 5D): (1) training and independent temporal validation (Fig-

ure 5C) leveraging the Stanford two-cohort design, and (2)

geographical validation (Figure 5D). We used two independently

published platelet transcriptome datasets: first, from Rondina

et al.3 on an additional n = 31 healthy donors integrated with

the Stanford datasets as training; and second, from Guo et al.4

n = 25 MF and n = 15 healthy donors as geographical validation

of the Lasso algorithm (Figure 5D). Our temporal validation

constituted three types of models: (1) baseline (no transcrip-

tome, but age, gender, and driver mutation status as reference

variable information available not only for patients but also

healthy donors); (2) full platelet transcriptome ; and (3) subset

platelet transcriptome that exhibits progressive differentiation

from controls to ET to MF or controls to PV to MF (> 3000 genes,

top few of each comparison visualized to demonstrate progres-

sive gene expression, (Figures 5A and 5B) (progressive subset is

selected unbiased as part of the Lasso learning procedure).

Comparison of the classification potential among the three
temporal (C) and geographical (D) validation. Temporal validation uses three

d mutation status alone; (ii) entire MPN platelet transcriptome; and (iii) MPN

el (red curve, AUROC = 0.96) vis-a-vis the entire transcriptome dataset (blue

(black curve, AUROC = 0.68). Geographical validation using the progressive

cy (green curve, AUROC = 0.97).

s (left column, CTRL, yellow bar), ET (light green), PV (dark green), andMF (dark

ale. Columns indicate sample type (CTRL, ET, PV, and MF).
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models demonstrated that the progressive platelet transcrip-

tome model (Figure 5E red curve) substantially outperformed

the baseline model (Figure 5E black curve) and was slightly bet-

ter than the full transcriptome model (Figure 5E blue versus red

curves) in the classification of ET, PV, and MF. Predicted proba-

bilities for all three models are shown in Tables S5A–S5C. Lasso

logistic regression classifiers to predict MF with each of the

models under the first temporal two-cohort training-validation

split of baseline, full, and progressive transcriptome each

achieved area under the receiver-operating characteristic curve

(AUROC) of 0.68, 0.95, and 0.96, respectively. Outperformance

of the progressive transcriptomemodel was validated in our sub-

sequent independent external geographic validation (Figure 5E

green curve) at an AUROC of 0.97.

Recurrent top 4 genes from our progressive transcriptome

Lasso are visualized as a heatmap in Figure 5F, clearly capturing

the incremental gradient in gene expression between controls,

ET, PV, and MF. These include ADAMTS3 (ADAM metallopepti-

dase protease59 with likely roles in VEGF signaling, tissue re-

modeling, and expression of related collagens through profi-

brotic PAR1 and TGF-b signaling), PSMB5 (implicated in

proteasomal degradation/UPR activation60 and identified previ-

ously in MPNs61), NT5C related to PI3K signaling62,63 and

SUPT6H/SPT6,64,65 a tumor-initiating histone chaperone associ-

ated with chromatin remodeling. Lasso-selected candidate

markers reflect the MPN clinical spectrum and capture the un-

derlying pathology.

A key aspect of the layered Lasso modeling demonstrated

here is our use of an approach that can be developed in future

work to incorporate additional predictors to MF (e.g., JAK2

V617F allele burden66 or other genetic variants67 beyond the

driver mutations). Figure S5 demonstrates this through a second

base model for prediction to MF from ET or PV alone (no tran-

scriptome, but platelet count and hemoglobin levels as two addi-

tional clinical parameters that were available for all patients in

addition to age, gender, and driver mutation status).

Essentially, our analyses with both the Lasso regression as

well as the progressive transcriptome (Figure 5A) enable a small

gene signature that could be implemented in a PCR-based prog-

nostic assay and performed in any standard clinical laboratory.

Figure S6 demonstrates a robust model (AUROC of 0.86) with

just the top progressive genes (Figure 5A) or the Lasso-selected

features (Figure 5G) incorporated with patient age, gender, driver

mutation status, and the two clinical laboratory variables, platelet

count and hemoglobin levels. Identification of genes with signif-

icant prognostic impact in this rich dataset in a therapy-agnostic

manner may prove useful for stratifying patients at high risk for

progression and may be translated toward a widely applicable

clinical laboratory assay.

DISCUSSION

Here, we present a comprehensive catalog of the platelet tran-

scriptome in chronic progressive MPNwith immediate relevance

to defining subtype-specific molecular differences and predict-

ing the advanced phenotype, MF. Recent data68 identify the

timing of MPN driver mutation acquisition to be very early in

life, even before birth, with life-long clonal expansion and evolu-
tion. These new findings highlight the importance of early pro-

gression biomarkers and the substantial opportunity for early

detection and intervention strategies in these disorders.

Our analyses confirm and extend many important observa-

tions made previously either in vitro,69–71 in other transcriptome

or microarray analyses15,38,40,4,72,73 including our own early

work,36 or using animal models.31,74–76 By highlighting intersect-

ing mechanisms in transcription across MPN, and by annotating

MPN subtype-specific gene signatures, this dataset facilitates

predictive machine-learning algorithms, that aid in MPN classifi-

cation and potential prognostication.

The platelet transcriptome is significantly reprogrammed in the

MPN setting, with a wealth of transcript associations that may be

missed in using conventional tissue sources such as serum,

plasma, whole blood, or bulk bone marrow. While previous

bulk RNA-seq studies on MPNs by us and others analyzed far

fewer samples,36–38,4 select MPN subtypes,40,4 or non-specific

source tissue37–39 that may be underpowered41 for candidate

genes, we here analyzed, by next-generation RNA sequencing,

120 purified platelet samples from healthy controls and all three

subtypes; and identified clinically interpretable transcriptomic

signatures for each of the three subtypes. Each subtype showed

both overlapping and progressively divergent transcriptional

pathways, suggesting both a shared signature across all MPN,

and unique biological trajectories. Pathway-enrichment ana-

lyses confirmed the existence of a shared inflammatory

milieu37,77–82 among MPN. We also confirmed that the JAK1/

JAK2 inhibitor ruxolitinib was associated with inhibition of inflam-

matory as well as interferon-mediated signaling pathways. Addi-

tional previously undescribed insights into the mechanisms of

action of RUX in MF included genes implicated in protein matu-

ration, chaperone-mediated protein complex assembly, and

circadian rhythm. These and other gene signatures and path-

ways identifiedmay help guide candidate drugs to be used alone

or in combination with RUX for the treatment of MPNs. Whether

MPN oncogenic driver mutations increase inflammation or

mutations are acquired in response to inflammatory stimuli is

unclear from this work and remains an active area of

investigation.79,80,83,84

The 10 genes most significant (FDR < 0.001) of the commonly

expressed genes across MPN indicated a gradation in platelet

gene expression, with overlapping signatures in ET and PV

(e.g. IFITM2, MYBL2) and a substantial difference with MF (e.g.

CREB3L1, CALR) that was independent of driver mutation status

or treatment. Hence, while over 1500 genes were commonly

differentially expressed across MPN, their abundance and func-

tion could differ between subtypes. The nature of the separation

of transcriptomic clusters between ET, PV, and MF suggest also

that they represent diverse cell states along a continuous spec-

trum of MPN, in line with the clinical overlap of these neoplasms.

Another observation relates to the association of the differen-

tial genes with signaling pathways: As indicated above, all three

MPN subtypes showed a positive enrichment in immune modu-

lation pathways, independent of mutational status. Whether this

response reflects a causal effect of inflammation on bone

marrow biology remains to be elucidated. Indeed, the platelet

transcriptomic signatures could also reflect intercell interactions

of platelets with other immune cells, including as transient
Cell Reports Medicine 2, 100425, October 19, 2021 9
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aggregates with neutrophils, granulocytes, and dendritic cells.

Nevertheless, observations that MPN transcriptomic biomarkers

correlated robustly with immune factors such as type I/II inter-

ferons and dysregulation of interleukin-dependent inflammatory

responses across ET, PV, and MF suggest opportunities for use

of these and other subtype-specific genes as biomarkers for

prognosis as well as design of therapies and prediction of

response.

Our data closely overlaps with recent MPN platelet studies:

thrombo-inflammatory signatures in PV from Gangaraju and

Prchal et al.40 (BCL2, CXCL1, MMP7, PGLYRP1, CKB, BSG,

CFL1, and more) or fibrosis-associated signatures in MF from

Guo et al.4 (CCND1, H2AFX, and CEP55). Most notably in our

data on MF, high expression of ER stress and unfolded protein

response (UPR) biomarkers (e.g., CREB3L1, CALR) associated

with impaired proteostasis signaling and emerged as a key

feature of MPN pathobiology. Indeed, recently published works

from distinct research groups69,70,85 highlight protein quality

control in ER-associated degradation and proteostasis69,70

deregulation as a primary effector of myeloid transformation,

highlighting the importance of protein homeostasis for normal

hematopoiesis. These findings too are in line with reports86 impli-

cating chronic ER stress, malfunctioning protein quality control,

and loss of proteostasis as aggravating factors in age-related

disorders.

Most importantly, platelet gene expression profiling inMPNof-

fers directions for prediction of MF. Applying machine-learning

algorithms of LASSO penalized regression under two conditions

of external validation45—temporal (using our two-cohort design)

and geographical (independently published datasets on healthy

donors3,4 and MF4)—we uniquely discriminate MPN subtypes

from each other and healthy controls, using three model types,

and predict MF at high accuracy. The highest performing model

used a set of progressively differentiated MPN genes at an area

under the (ROC) curve of 0.96 (temporal) and 0.97 (geograph-

ical), and rendered a core signature of < 5 candidate markers

as top predictors of disease progression. It will be of interest to

determine what machine-learning algorithms based on a defined

platelet gene expression classifier on potential new MPN data-

sets (ideally longitudinal) can be used to more precisely predict

the probability and/or timing of an individual’s risk of progression

from ET/PV to secondary MF.

In conclusion, using platelet transcriptome profiling, we

observed dynamic shifts in MPN immune inflammatory profile

and preferential expression of interferon-, proliferation-, and

proteostasis-associated genes as a progressive gradient

across the three MPN subtypes. Our findings highlight that

MPN progression may be influenced by defects in protein ho-

meostasis (impaired protein folding and an accumulation of

misfolded proteins within the endoplasmic reticulum) and an

abnormal integrated stress response—consistent with recent

studies61,69,70,85 indicating dysregulated proteostasis as a pri-

mary effector of myeloid transformation. While this work has

been focused on the overarching progressive platelet tran-

scriptome across MPNs, these data open an important avenue

for utilizing platelet RNA signatures to better understand spe-

cific MPN complications such as the risk of thrombosis and

bleeding, or fibrosis, and transformation to AML. Altogether,
10 Cell Reports Medicine 2, 100425, October 19, 2021
this study in chronic MPNs provides a comprehensive frame-

work for exploiting the platelet transcriptome and may inform

future studies toward mechanistic understanding and thera-

peutic development in MPNs and potentially, other age-related

disorders.

Limitations of the study
There are several limitations to our study. First, our data are not

longitudinal by design but rather the closest practical alternative

of cross-sectional snapshots of all three MPN subtypes with the

goal of achieving a well-powered dataset in these chronic disor-

ders. In this regard, the progressive or progression terminology

used here refer strictly to trends in gene expression and do not

imply study of longitudinal clinical progression. Therefore, sub-

sidiary longitudinal evaluation of the disease as well as treatment

markers identified here is warranted. Second, our focus for this

study has been on the platelet transcriptome alone. Future inves-

tigations focused on ascertaining overlap between our platelet-

derived molecular alterations with those of other cell types,

specifically, parent megakaryocytes, CD34+ cells, granulo-

cytes/immune cells, and even whole blood will be required to

identify additional functional aspects of bone marrow pathology.

Follow-on studies comparing MPN platelet transcriptomic data

with other published data on non-malignant controls would

also add significant value to the current study. Such integrative

analyses may necessitate advanced systems genomics

methods that compare or combine data without biases and

batch effects inherent in each cell data type. Third, we recognize

that our choice of ribosomal RNA depletion to home in on platelet

mRNA signatures leaves out additional diversity in the platelet

RNA repertoire (and will be important future work). Lastly, in

our Lasso predictivemodeling, we demonstrate two rigorous ap-

proaches of external validation (temporal and geographical) and

identify a core signature toward MPN risk stratification or early

detection of progression. Yet, substantive future biological and

computational validations are needed to advance our findings

toward clinical decision making or personalized medicine.
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KEY RESOURCES TABLE
REAGENT OR RESOURCE SOURCE IDENTIFIER

Biological samples

Peripheral blood samples from healthy adults and

patients with one of three subtypes of chronic

myeloproliferative neoplasms

This study Deidentified

Platelets from healthy adults and patients with one of

three subtypes of chronic myeloproliferative neoplasms

This study N/A

Deposited data

Deidentified human/patient platelet RNA-sequencing data This study dbGaP accession # Database:

PHS-0021-21. v1.P1

Deidentified human/patient platelet RNA-sequencing data Guo et al4 Data secured via corr author, W. Erber

Deidentified human platelet RNA-sequencing data Rondina et al3 NCBI Bioproject ID Database: 531691

Software and algorithms

DeSeq2 Bioconductor Open Source N/A

LASSO/glmnet CRAN R Package Open Source N/A
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Anandi

Krishnan (anandi.krishnan@stanford.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
De-identified human/patient platelet transcriptomic data have been deposited at NIH dbGaP repository and are available upon

request from dbGaP. To request access, please contact dbGaP following the instructions at https://dbgap.ncbi.nlm.nih.gov/. Acces-

sion numbers are listed in the Key resources table.

This paper does not report original code. Any analyses applied are based on previously available software and established R pack-

ages, primarily i) DESeq2 (Michael Love1) with the package: http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/

doc/DESeq2.html and ii) Lasso/glmnet (Robert Tibshirani2; https://www.jstatsoft.org/v33/i01/) with https://cran.r-project.org/web/

packages/glmnet/glmnet.pdf.

RNA-sequencing data from this work (original FASQ files from paired-end sequencing of all 120 samples) will be deposited to the

NIH genomic data repository dbGAP under public accession # Database: PHS-0021-21.v1.P1. Previously published RNA-

sequencing data used in this work as geographically independent validation cohorts are from Rondina et al.3 (PMID 31852401,

healthy donors) and Guo et al.4 (PMID 31426129, MF patients and healthy donors). Source data from the work of Rondina et al.3

is publicly available at NIH NCBI Bioproject ID 531691; and that of Guo et al.4 is secured through reaching the corresponding author,

Dr. Wendy Erber.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
All MPN peripheral blood samples were obtained under written informed patient consent and were fully anonymized. Study approval

was provided by the Stanford University Institutional Review Board.

All relevant ethical regulations were followed. Subject demographic data and other relevant clinical variables are reported in

Table S1A and S1B and Figure 1.

We collected blood from ninety-five MPN patients enrolled in the Stanford University and Stanford Cancer Institute Hematology

Tissue Bank from December 2016- December 2019 after written informed consent from patients or their legally authorized
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representatives (Stanford IRB approval #18329). Eligibility criteria included age R 18 years and Stanford MPN clinic diagnosis of

essential thrombocythemia, polycythemia vera or myelofibrosis (defined using the consensus criteria at the time of this study). We

use the term ‘myelofibrosis’ to encompassbothprimarymyelofibrosis andmyelofibrosis that evolved fromessential thrombocythemia

or polycythemia vera. Electronicmedical records reviewof all subjectswas performedby the clinical consultants (J.G. and L.F.), study

datamanager (C.P.), and the studyprincipal investigator (A.K.). For controls, bloodwascollected from twenty-oneasymptomatic adult

donors selected at random from the Stanford Blood Center. All donors were asked for consent for genetic research. For both MPN

patients and healthy controls, blood was collected into acid citrate-dextrose (ACD, 3.2%) sterile yellow-top tubes (Becton, Dickinson

andCo.) and plateletswere isolated by established28,30,42,43 purification protocols. Bloodwasprocessedwithin 4 h of collection for all

samples. The time from whole blood collection to platelet isolation was similar between healthy donors and MPN patients.

Power calculations based on preliminary data indicated 20 PMF, 25 PV and 25 ET patients to achieve 80% power and identify sta-

tistically significant differential expression. This was based on the total number of genes as 12000 and the top 3326 genes as prog-

nostic in PMF, 1190 in PV and 385 in ET with a desired minimum fold change of 2 and a False Discovery Rate FDR < 0.05. Our final

sample set exceeded our preliminary calculations.

METHOD DETAILS

Platelet isolation
Human platelets were isolated and leuko-depleted using established methods (28,42,43 with excellent reproducibility19,25,28,30,87 re-

sulting in a highly purified population of fewer than 3 leukocytes/107 platelets (> 99.9% purity) as counted by hemocytometer. Briefly,

the ACD-tube whole blood was first centrifuged at 200xg for 20min at room temperature (RT). The platelet-rich plasma (PRP) was

removed and Prostaglandin E1 was added to the PRP to prevent exogenous platelet activation. The PRP was then centrifuged at

1000xg for 20min at RT. The platelet pellet was re-suspended in warmed (37�C) PIPES saline glucose (PSG). Leukocytes were

depleted using CD45+ magnetic beads (Miltenyi Biotec). Isolated platelets were lysed in Trizol for RNA extraction. Post RNA-seq

analysis of an index leukocyte transcript (PTPRC; CD45) confirmed that the samples were highly purified platelet preparations (sub-

sequent bioinformatic analyses also adjusted for PTPRC expression for absolute removal of any CD45 expression in our analyses).

Two reference markers of platelet activation, P-selectin (SELP) andGlycoprotein IIbIIIA (CD41/ITGA2B) were expectedly higher in all

MPN than healthy controls but were not statistically significantly different between MPN subtypes; indicating that any expression

difference was not due to experimental artifacts. In addition, we know from prior work (J.R.) that regardless of activation status,

RNA-seq reliably estimatesmRNA expression patterns in platelets. We also know from rigorous prior work88–90 that several abundant

platelet mRNAs are well-known leukocyte or red cell transcripts; and do not immediately imply contamination by these classes but

rather that platelets express gene products that are also present in other cell lineages. Sixty-five of our top 100 abundant platelet

transcripts matched exactly with those of the top 100 abundant genes from the three previous studies cited42,88; and a composite

pathway analysis with the top 100 abundant genes from this as well as the previous studies matched identically.

Next-generation RNA sequencing
For next-generation RNA-sequencing (RNA-seq), 1x109 isolated platelets were lysed in Trizol and thenDNase treated. Total RNAwas

isolated, and an Agilent bio-analyzer was used to quantify the amount and quality. The RNA yield was estimated bymeasuring absor-

bance at 260 nm on the Nanodrop 2000 (Thermo Fisher), and RNA purity was determined by calculating 260/280 nm and 260/230 nm

absorbance ratios. RNA integrity was assessed on the Agilent Bioanalyzer using the RNA 6000 Nano Chip kit (Agilent Technologies).

An RNA integrity number (RIN) was assigned to each sample by the accompanying Bioanalyzer Expert 2100 software. To control for

variable RNA quality, RNA sequencing was only performed for samples with a RIN score of 7 or higher. RNA-seq libraries were con-

structed with removal of ribosomal RNA using the KAPA Stranded RNA-Seq kit with RiboErase (Roche). The RNA extraction and li-

brary preparation were performed by the same technician to minimize confounding effects. cDNA libraries were constructed

following the Illumina TrueSeq Stranded mRNA Sample Prep Kit protocol and dual indexed. The average size and quality of each

cDNA library were determined by the Agilent Bioanalyzer 2100, and concentrations were determined by Qubit for proper dilutions

and balancing across samples. Twelve pooled samples with individual indices were run on an Illumina HiSeq 4000 (Patterned

flow cell with Hiseq4000 SBS v3 chemistry) as 2 X 75bp paired end sequencing with a coverage goal of 40M reads/sample. Output

BCL files were FASTQ-converted and demultiplexed.

Platelet transcriptome analysis
Picard, Samtools, andothermetricswereused toevaluatedataquality. Processed readswerealignedagainst the referencehuman tran-

scriptome GRCh37/hg19 using RSEM91 and bowtie292, and expression at gene level determined by calculating raw gene count. Only

genes that passed expression threshold were used; genes were considered expressed if, in all samples, they had at least 10 counts

(genes with low counts are automatically filtered by built-in functions in DeSeq2, see below). A total of 12,924 genes were considered

expressed.Gene expression datawas library-size-corrected, variance-stabilized, and log2-transformed using theR packageDESeq21.

We refer to this version of the data as ‘‘raw data’’ as it is not corrected for any confounders of gene expression variability. DESeq2 was

used tocall differential expressionwhile adjusting for patient age,genderand treatment asconfounding variables andcontrolling formul-

tiple comparisons using the Benjamini-Hochberg defined false discovery rate (FDR). Significant variance in expressed transcripts were
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pre-specified as those transcripts with an FDR < 0.05 and a log2 fold changeR 0.5 inMPN, as compared to healthy controls (the entire

differential transcriptomewasapplied in the instancesofdownstreamGeneSetEnrichmentAnalysisand theLassopredictionmodeling).

QUANTIFICATION AND STATISTICAL ANALYSIS

Continuous data were summarized as medians and IQRs and categorical data are presented as frequencies and percentages. To

compare differences in clinical variables between healthy controls and MPN subtypes (ET, PV, and MF), we use box and whisker

plots and conduct pairwise Wilcoxon signed ranked tests. For unsupervised clustering and visualization, we performed principal

component analyses (identifying MPN subtypes by color, treatment by filled or open circles, and JAK2 mutation status by shape)

using built-in functions of the DeSeq2 R package.We generated a heatmap of all of the top highly significant genes (FDR < 0.01) using

the pheatmap R package and its built-in functions for hierarchical cluster analysis on the sample-to-sample Euclidean distance ma-

trix of the expression data. All analyses were performed using the R studio interface.

Pathway/gene set enrichment for differentially expressed (DE) genes
Gene set enrichment analysis (GSEA)49 was performed on the entire DE gene set for each MPN subtype, using the Cancer Hallmarks

gene sets from MSigDB93. The ‘GSEA Pre-ranked’ function was used with a metric score that combines fold change and adjusted p

value together for improved gene ranking. We used default settings with 10,000 gene set permutations to generate p and q values,

and compared MPN subtypes in the overall cohort, and the ruxolitinib-treated subgroup and the ruxolitinib-naive subgroup sepa-

rately. In these analyses, to allow for a broad comparison, we assessed all transcripts that were differentially expressed according

to FDR/adjusted p < 0.25 as recommended by the authors of GSEA49.

Predictive model generation and external validation
At the conception of this study late 2016, and our early work36, we did not identify any publicly available RNA sequencing data on

MPN platelets. This prompted our specific two-cohort design for the express purpose of temporal external validation as an essential

step in rigorous prediction modeling45. A subsequent independent publication4 facilitated an additional geographically independent

external validation of our model.

We used Lasso penalized regression58 for our model to predict MF from the either healthy controls, ET or PV. Among a variety of

statistical machine-learning algorithms that have been used in prediction modeling, Lasso is favored for its flexibility and simplicity;

and its ability to identify the least set of significant factors from high dimensional data. We evaluated platelet transcriptomic features

with clinical features (age, gender andmutation status for the entire dataset including healthydonors, and inMPNpatients alone, platelet

and hemoglobin values). Normalized gene counts data were split into training (used for constructing multinomial logistic models) and

validation (used for model evaluation and generalization) cohorts. Separately, we assessed the progressive and monotonic upward or

downward trend in gene expression using Mann-Kendall trend test (multiple comparison adjusted with the Benjamini-Hochberg

method) to normalized gene counts and identified statistically significant progressive genes across all three MPN subtypes.

Three multinomial logistic models were constructed: first, with Lasso selected predictors from all genes, second, with Lasso

selected predictors from progressive genes and third, a baseline model using age, gender, and mutation status (JAK2 and CALR)

as predictors. Model outputs correspond to probabilities of having a CTRL, ET, PV, or MF phenotype (sum of these four probability

values totaling 1). Potential interpretation of these probabilities includesMPN risk assessment, e.g., a patient with higher probabilities

of PV andMFwould indicate higher risk than one with higher probabilities of CTRL or ET. The4 dataset onMF platelet RNA seq served

as an independent test set (Figure 5D schematic) while data from our cohorts at Stanford and additional external data on healthy do-

nors from3 constituted an integrated training cohort (R package Limmawas applied for bioinformatic correction of any batch effects).

ROC curveswere used to evaluate the different predictionmodels and discriminate outcomes. ROC curves demonstrate the trade-

off between true positive and false positive rates, ideal being high true positive rate (sensitivity) and low false positive rate (specificity)

the area under the curve (AUROC) as close to 1 as possible. True positive rate (TPR) is defined as correctly predicting anMFpatient as

MF; and false positive rate (FPR) as falsely predicting a non-MF patient as MF.
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