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PET Radiomics in NSCLC: state 
of the art and a proposal for 
harmonization of methodology
M. Sollini1, L. Cozzi1,2, L. Antunovic3, A. Chiti   1,3 & M. Kirienko1

Imaging with positron emission tomography (PET)/computed tomography (CT) is crucial in the 
management of cancer because of its value in tumor staging, response assessment, restaging, 
prognosis and treatment responsiveness prediction. In the last years, interest has grown in texture 
analysis which provides an “in-vivo” lesion characterization, and predictive information in several 
malignances including NSCLC; however several drawbacks and limitations affect these studies, 
especially because of lack of standardization in features calculation, definitions and methodology 
reporting. The present paper provides a comprehensive review of literature describing the state-of-the-
art of FDG-PET/CT texture analysis in NSCLC, suggesting a proposal for harmonization of methodology.

Positron emission tomography (PET)/computed tomography (CT) using the radiopharmaceutical 
18F-fluoro-deoxy-glucose (FDG) has a paramount role in the management of cancer patients owing to its value in 
tumor staging, response assessment, and restaging as well as in prognosis and prediction of treatment response. 
The standardized uptake value (SUV) obtained from FDG-PET scans is the most widely used parameter for lesion 
characterization and it has been shown to have a prognostic value1. More recently, volumetric parameters, includ-
ing metabolic tumor volume (MTV) and total lesion glycolysis (TLG), have also been proposed for assessment of 
prognosis2–5. Moreover, in recent years there has been emerging evidence that the heterogeneity of density values 
on CT and of FDG uptake within the primary tumor can permit in vivo lesion characterization and provide pre-
dictive information in malignances, including non-small cell lung cancer (NSCLC)6–10.

The term “heterogeneity” conveys different meanings depending on the imaging modality: in FDG-PET it 
refers to the variability in the distribution of radiopharmaceutical uptake, while in CT it refers to the variability 
in tissue density. Lesion “heterogeneity” can be described by a multitude of mathematical methods that, taken 
together, constitute the “texture analysis” which provides numerous quantitative and semiquantitative indices, 
termed “features”11–13. This approach as a whole is named “radiomics”.

Textural features seem to perform better than the conventional uptake parameters used for image interpre-
tation in clinical routine, such as SUV measurements (e.g., SUVmax, SUVmean), which are subject to several limi-
tations14. Numerous studies have explored the additional information that can be extracted by texture analysis, 
with the aim of characterizing tumor lesions. However, these investigations have had multiple drawbacks and 
limitations, especially with respect to lack of standardization in feature calculation, definitions, and reporting 
methodology15.

Texture analysis has the potential to impact on patient management if its ability to characterize lesions in vivo 
and to provide predictive information is demonstrated in prospective studies. As lung cancer is the fourth most 
frequently diagnosed malignancy in Europe and the the leading cause of cancer mortality (http://eco.iarc.fr/
eucan), texture analysis in such patients, when validated, will strongly impact on patient management and health-
care systems. The present article provides a comprehensive review of the literature describing the state-of-the-art 
in FDG-PET/CT texture analysis methods in lung cancer. It also reports on the ability of textural features to iden-
tify tumor phenotype and to provide additional predictive and prognostic information in patients with NSCLC. 
Moreover, a comprehensive review of calculation methods, feature names, and definitions is performed, and a 
scheme for harmonization of methodology and reporting of results is proposed.
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Methods
From the PubMed/MEDLINE database a search algorithm based on a combination of the following terms was 
used: (a) “texture” or “textural” or “radiomics” or “heterogeneity” or “heterogeneous” or “features” or “histogram” 
and (b) “lung cancer” or “NSCLC” and (c) “PET” or “PET/CT”. No start date limit was used and the search 
extended to 23 April 2016. To expand our search, references of the retrieved articles were also screened. Two 
authors independently searched articles and performed an initial screening of identified titles and abstracts. All 
studies or subsets in studies investigating the role of PET or PET/CT radiomics in patients with suspected/definite 
NSCLC were considered eligible. The exclusion criteria were: (a) articles not within the field of interest; (b) review 
articles, editorials or letters, comments, and conference proceedings; (c) articles not in the English language; (d) 
case reports or small case series (<10 patients); and (e) in vitro or animal studies.

Among the 294 studies identified by reviewing titles and abstracts, 247 were excluded by applying the criteria 
mentioned above. One paper not retrievable in the full-text version was excluded. Forty-six articles, retrieved in 
full-text version, were assessed for eligibility. Nine articles were excluded after reading the full text version. One 
further article was identified after screening of the references. Overall, 38 articles were selected and used for the 
qualitative synthesis (Fig. 1). Considering the aim of this review (i.e. texture analysis in NSCLC) which takes into 
account a variety of heterogeneous papers in terms of aim(s), methods, and results; a systematic review according 
to the PRISMA algorithm16 was considered not feasible. Selected papers were grouped into two different sets 
based on their aims: technical/methodological and clinical studies. The technical/methodological group included 
16 papers (568 patients) that tested specific algorithms, different approaches for segmentation and tumor volume 
delineation, modalities of image acquisition, attenuation correction, or reconstruction. The clinical set comprised 
22 papers (2306 patients), and we separately reviewed the results in respect of the diagnostic and the prognostic 
or predictive role of the textural features in NSCLC. Although prognosis and treatment prediction should be 
reported separately, in order to avoid an overlap of contents we treated these topics in the same section since 
many of the analyzed studies have evaluated them simultaneously. In approaching this review, the main difficul-
ties were related to the differences in textural feature nomenclature and to the comparison of results regarding 
features obtained using different approaches. Therefore, we started with a reclassification of each feature (Fig. 2). 
For each feature we specified the order (i.e., first, second, or superior), the matrix (e.g., histogram, gray-level 
co-occurrence), the definition, and/or the formula, when available, as reported in the Supplementary material. 
Hereafter the features that are denominated in the identical way but can be derived using different approaches 
(e.g., histogram, gray-level co-occurrence matrix) are reported by adding the matrix from which they have been 
derived in subscript.

Results
Nomenclature and methods in texture analysis.  Texture analysis refers to a variety of mathematical 
methods that may be applied to describe the relationships between the intensity of pixels or voxels and their posi-
tion within an image. An advantage of measuring textural parameters is that it is a post-processing technique that 
can be applied to data acquired during routine clinical imaging protocols, thereby maximizing the information 
that can be derived from standard clinical images14. Distinct approaches (statistics based17, 18, model-based19–21, 
transform-based22–24, and structural25) may be used to analyze functional imaging information, resulting in 
numerous radiomics features, such as descriptors of the image intensity histogram, “shape and size” features, 
descriptors of the relationships between image voxels (e.g., GLCM-, and NGTDM-derived features), textures 
extracted from wavelet and Laplacian of Gaussian filtered images, and fractal features26, as shown in Fig. 2.

The first approach consists in the summarizing of 3D functional imaging data into a single curve – histogram 
– representing the voxel intensity values contained within the volume of interest (VOI), allowing for a simplified 
interpretation. Intensity-volume histograms (IVH) or cumulative SUV-volume histograms (CSH) have been pro-
posed by El Naqa et al.27 as a novel way to characterize heterogeneity in tumor tracer uptake. These histograms 
are similar to dose-volume histograms frequently used in radiotherapy28. A set of metrics are derived from IVH 

Figure 1.  Schematic representation of the process of selection of literature data included in the review.
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representations that reflect the voxel value frequency distribution27: Ix (minimum intensity to x% highest inten-
sity volume); Vx (percentage volume having at least x% intensity value); and descriptive statistics (mean, mini-
mum, maximum, standard deviation, etc.)29. In CSH the percent volume of a tumor (derived from CT or from 
PET-based (semi-)automatic tumor delineation methods30) with an SUV above a certain threshold is plotted 
against that threshold value, which is varied from 0 to 100% of SUVmax. The area under the CSH (AUC-CSH) may 
be a quantitative index of tracer uptake heterogeneity and/or heterogeneous tumor response31. Any method to 
characterize heterogeneity, however, will treat both partial volume effect and noise as heterogeneity. Therefore 
partial volume correction (PVC) and image denoising should be applied prior to calculating AUC-CSH32. Despite 
this consideration, PVC has not been routinely applied. To overcome this potential limitation on the quantitative 
measurements, most studies have considered relatively large lesions (generally volumes >3–5 cm3), assuming that 
PET cannot characterize heterogeneity in smaller volumes because of its limited spatial resolution.

IVH and other first-order approaches are limited by their spatial insensitivity. To overcome this drawback, 
textural features and “shape and size” attributes may be extracted that contain embedded spatial and topological 
information. In fact, second-order and high-order statistics (i.e., based on gray-level matrix, nearest neighbor 

Figure 2.  Methodological approaches in image texture analysis (the most frequently evaluated PET features in 
lung cancer patients are reported as examples).
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spatial dependence matrices, etc.) provide information from the spatial relationship of image voxels33. The 
gray-level co-occurrence matrix features may be used to represent texture information because of its relatively 
simple and intuitive structure. Surface plots of the co-occurrence matrix give a pictorial representation of the 
spatial-intensity distribution, which is typically masked by first-order histogram analyses. Several other matrices 
are also used, including the neighborhood gray-tone difference matrix, which provides information regarding 
how each voxel value differs from the neighboring voxel values; the gray-level run length matrix, which stores the 
number of voxels with identical values in each direction; and the gray-level size zone matrix, which stores the size 
of the 3D region that includes a given voxel value27, 29, 33–37. Therefore, a multitude of metrics may be derived from 
the gray-level matrices to characterize the structure of interest27. These metrics are independent of tumor posi-
tion, orientation, size, and brightness and take into account the local intensity-spatial distribution33, 38, 39. Hence, 
the combination of these features can provide an intensity-spatially dependent map of the tumor metabolic 
uptake that can potentially be used as a signature to characterize the tumor phenotype and response to treatment.

Texture feature extraction requires the voxel intensity values within the VOI to be discretized. This discreti-
zation step not only reduces image noise, but also normalizes intensities across all patients, allowing for a direct 
comparison of all calculated textural features between patients. Shape and size features are calculated, describing 
the 3D shape and size of the lesions40. However, it should be considered that volumetric indexes (e.g., sphericity) 
may also be extracted from the IVH40–42, allowing for a simplified interpretation27.

The majority of texture features that have been used in PET medical imaging to date fall into one of the follow-
ing three categories: (a) first-order features derived from statistical moments of the image intensity histogram, 
(b) second-order features derived from the GLCM, and (c) higher order features derived from analysis of the 
NGTDM, NGLDM, or GLSZM43. Despite the difficulties in generalization due to the variability in textural PET 
features among studies, related to the methodology used, we can summarize that IVH features tend to depend 
on the tumor delineation method44–46 and that features derived from GLSZM have been reported to be the most 
susceptible to variability40, 46, 47, while the GLCM-derived features tend to be the most robust. In particular, “entro-
pyHist” and “entropyGLCM” have been reported to be features less dependent on the tumor segmentation method46, 
reconstruction settings, iteration numbers, and voxel size47, and type of acquisition (3D versus 4D)42, 48.

Texture analysis and technical/methodological investigations.  The accuracy and precision of tex-
ture analysis derived from PET images depends significantly on scanning protocols. Factors such as image acqui-
sition, reconstruction, and inherent image quality parameters (noise, motion artifacts, and slice thickness) may be 
important. It is to be expected that all texture analysis methods are influenced to some extent by these factors and 
the sensitivity of various textural features may be based on different image models. Further aspects that require 
careful assessment are the methods used for region of interest (ROI) definition on PET images and the intraob-
server and interobserver variations14. Figure 3 shows examples of different methods used for ROI definition. All 
of these aspects have been evaluated in the determination of PET features in NSCLC patients (Table 1).

Hatt et al.44 evaluated the impact of five different methods of segmentation on anatomic tumor volume, MTV, 
and heterogeneity (“coefficient of variation” histogram-based) in a small group of NSCLC patients. They found 

Figure 3.  Example of tumor contouring using in (a) a threshold method at 50% of SUVmax and (b) a method 
based on an absolute SUV cut-off of 2.5. The ROI identified by using the absolute SUV cut-off of 2.5 is greater 
than that identified by the threshold method, as shown by axial (top), sagittal (right), and coronal (left) images 
(same slices).
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Reference
Type of 
study Patients, n

Setting, 
stage Aspect evaluated

Lesion segmentation 
method

PET parameter and 
textural index matrix Main results

Cheng48 R 56 Staging, I–
III (only T)

Impact of respiration-
averaged CT on PET 
texture parameters

Adaptive threshold, threshold 
uptake 45% of the SUVmax

*

FOS/IVH = 3 SS = 1 
GLCM = 4 GLRLM = 3 
NGTDM = 4

Texture parameters obtained with 
helical and respiration-averaged 
PET/CT showed a high degree 
of agreement (SUV entropy and 
entropy had the lowest levels of 
variation)

Cui50 n.r. 20 n.r.

Impact of the 
segmentation method on 
tumor volume estimation 
(validation of DM 
algorithm)

Automatic (DM), fuzzy 
C-means, threshold uptake 
40% of the SUVmax, threshold 
uptake 50% of the SUVmax, 
tumor-customized downhill, 
watershed§

FOS/IVH = 1 
NGTDM = 1 Gr = 1

DM algorithm was able to 
segment the tumor (also when 
adjacent to mediastinum or chest 
wall) and outperformed the other 
lung segmentation methods in 
terms of overlapping measure

Cui51 n.r. 40 n.r.

Impact of the 
segmentation method on 
tumor volume estimation 
(validation of topo-poly 
algorithm)

Threshold uptake 40% of the 
SUVmax, threshold uptake 
50% of the SUVmax, adaptive 
threshold, fuzzy C-means, 
tumor-customized downhill, 
random walks, high-
order interactive learning 
segmentation, PET/CT 
tumor-background likelihood 
model, topo-poly§

NGTDM = 1
Topo-poly algorithm was able to 
delineate tumor margins better 
than other methods

Dong45 R 50 Staging, 
I–IV

Impact of the 
segmentation method on 
tumor volume estimation

Absolute SUV cut-off of 
2.5, manual (2 observers), 
threshold at 40% of the 
SUVmax

*

FOS/IVH = 1 SS = 1 
GLCM = 1  + visual score

Intratumor heterogeneity 
significantly correlated 
with differences in the GTV 
definition (high heterogeneity 
corresponded to a larger GTV)

Gao57 n.r. 132 Staging, 
I–III

Impact of computer-based 
algorithm on diagnosis of 
mediastinal lymph node 
metastases (validation 
of computer-based 
algorithm)

Manual# FOS/IVH = 3 
GLCM = 5 + visual score

Diagnostic ability of computer-
based algorithm and visual 
experience was similar

Hatt44 n.r. 25, only 17 
analyzed

Staging, 
Ib–IIIb

Impact of the 
segmentation method 
on the tumor volume 
estimation

Adaptive threshold, fully 
automatic method (FLAB), 
manual, threshold at 50% of 
the maximum*

FOS/IVH = 1 SS = 1

All delineation methods except 
the manual one resulted in 
underevaluation of MTV. 
Anatomic tumor size and 
heterogeneity were correlated 
(larger lesions were more 
heterogeneous)

Hofheinz49 n.r. 30 n.r.

Impact of the 
segmentation method 
on tumor volume 
estimation (validation of 
voxel-specific threshold 
algorithm)

Lesion-specific threshold, 
manual, voxel-specific 
threshold*°

FOS/IVH = 2 SS = 1
Voxel-specific threshold 
method was able to reproduce 
tumor boundaries accurately, 
independent of the heterogeneity

Leijenaar40 n.r.
11 (test-retest 
cohort) + 23 
(inter-observer 
cohort)

Features’ test–retest 
reliability and 
interobserver stability 
among multiple tumor 
delineation methods

Manual (by 5 observers), 
threshold at 50% of the 
maximum

FOS/IVH = 54 
SS = 8 GLCM = 22 
GLRLM = 11 
GLSZM = 11

The majority of features had 
high test–retest (71%) and 
interobserver (91%) stability in 
terms of ICC

Leijenaar52 P 35 Staging, 
I–III

Comparison of different 
discretization methods for 
textural features

Manual (SUV discretization 
using a fixed bin size and a 
fixed number of bins)

GLCM = 22 
GLRLM = 11 
GLSZM = 11

SUV discretization had a crucial 
effect on textural features

Oliver42 R 23

Sensitivity of texture 
features to tumor motion 
by comparison of static 
(3D) and respiratory-
gated (4D) PET imaging

Adaptive threshold 
(background-adapted 
thresholding method)*

FOS/IVH SS GLCM 
GLRLM (total 56)

Quantitative analysis using a 3D 
versus 4D acquisition provided 
notably different image feature 
values, mainly due to the impact 
of respiratory motion

Orlhac46 P 24 Staging, III
Impact of the 
segmentation method 
on the tumor volume 
estimation

Threshold at 40% of the 
maximum, adaptive 
threshold*°

FOS/IVH = 8 SS = 1 
GLCM = 6 GLRLM = 11 
GLSZM = 11 
NGLDM = 3

IVH-based indices strongly 
depended on the tumor 
delineation method; 17/31 
second- or high-order statistic 
features were robust with respect 
to tumor segmentation. Several 
texture indices included similar 
information. Some texture 
indices were highly correlated 
with MTV

Orlhac53 R 48 Staging, 
I–III

Impact of resampling 
step on textural features 
and on the ability of 
textural features to reflect 
tissue-specific patterns of 
metabolic activity

Adaptive threshold (relative 
resampling approach 
and absolute resampling 
approach)*°

FOS/IVH = 1 SS = 1 
GLCM = 2 GLRLM = 3 
GLSZM = 2

Textural features computed using 
an absolute resampling method 
varied as a function of the tissue 
type and cancer subtype more 
than when using the usual 
relative resampling approach

Tixier55 P 20 Staging, I–II
Impact of static and 
parametric acquisition on 
PET features

Fully automatic method 
(FLAB)*°

FOS/IVH = 2 SS = 3 
GLCM = 3 GLSZM = 2

Compared with static SUV 
images, parametric images 
did not provide significant 
complementary information 
concerning heterogeneity 
quantification

Continued
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that all delineation methods except the manual one resulted in an underestimation of MTV, and that larger lesions 
were more heterogeneous.

Similar results were obtained in a larger population (n = 50) with NSCLC. Tumor volume was observed to 
be significantly diverse using different approaches (manual or automatic) on CT and on fused PET/CT images 
(volumes delineated on CT were larger than those defined on PET images). Intratumor heterogeneity, defined by 
visual scoring, “coefficient of variation”, or “entropyGLCM” (gray-level co-occurrence matrix – GLCM) significantly 
correlated with differences in the target volume [tumors with a high heterogeneity showed a larger gross tumor 
volume (GTV)], suggesting that caution should be exercised when applying relatively simple threshold-based 
segmentation to define the target volume for tumors with high heterogeneity45.

Hofheinz et al.49 developed and tested a voxel-specific threshold algorithm as a delineation method for het-
erogeneous tumors. This method, which can be considered as an extension of an adaptive threshold method, 
proved able to reproduce the true tumor boundaries accurately, without being influenced by the heterogeneity 
(“coefficient of variation”).

Cui et al.50 developed an automatic algorithm that used the PET SUV volume and the CT volume to localize 
and segment tumor lesions. This algorithm outperformed other (semi-)automatic methods in terms of overlap-
ping measure, and they found that the feature “contrastNGTDM” (NGTDM: neighbor gray-tone difference matrix 
based) was valuable in automatic tumor localization. The same group developed and tested a “topo-poly” algo-
rithm (which incorporated an intensity graph and a topology graph) in two groups of patients defined as having 
‘isolated’ (i.e., lung tumor located in the lung parenchyma and away from associated structures/tissues in the 
thorax) or ‘complex’ (i.e., tumor abutted/involving a variety of adjacent structures, where the tumor margins were 
indistinct and/or had heterogeneous regions of FDG uptake) disease. This method provided better anatomic and 
functional boundary delineations for both small and large tumors and for ‘complex’ cases. Again, “contrastNGTDM” 
was valuable in automatic tumor localization51.

Leijenaar et al.40 tested more than 100 PET features (first-order statistics and intensity volume histogram – 
FOS/IVH, “shape and size” features – SS, GLCM, gray-level run-length matrix – GLRLM, and gray-level size-zone 
matrix – GLSZM) to evaluate their test–retest reliability and interobserver stability among different tumor delin-
eation methods in 34 NSCLC patients. Considering all features, a good overall similarity in feature stability was 
observed, based on rankings in terms of test–retest and interobserver intra-class correlation coefficient (ICC, 
p ≪ 0.001). Comparing stability rankings per feature group, a high similarity was found for both the first-order 
statistics (p ≪ 0.001) and other textural features (p ≪ 0.001). Features based on GLSZM had the overall lowest 
ranks, indicating that these features have the highest variability. For the IVH features the observed similarity 
was more moderate (p ≪ 0.001). Comparison of the rankings for the geometric features proved non-significant 
(p = 0.086). Overall, more stable features on repeated PET scans were also more robust against interobserver var-
iability. In a similar number of patients, the same group evaluated prospectively different discretization methods 

Reference
Type of 
study Patients, n

Setting, 
stage Aspect evaluated

Lesion segmentation 
method

PET parameter and 
textural index matrix Main results

van Velden41 P 11 Staging, 
IIIb–IV

Repeatability of texture 
features using different 
reconstruction settings 
and delineation methods

Threshold uptake 50% of 
the 3D SUVpeak on EANM-
compliant (reconstruction 
method 1) and PSF-based 
(reconstruction method 2) 
images°

FOS/IVH = 29 FF = 3 
SS = 10 GLRLM = 22 
GLCM = 44 L = 1 SA = 2

The majority of features had 
a high level of repeatability 
(ICC ≥ 0.90 for 63 features). 
Features were more sensitive to 
a change in delineation method 
(n = 25) than a change in 
reconstruction method (n = 3)

Yan47 R 17 n.r., I–IV

Variability of PET textural 
features using different 
reconstruction methods, 
iteration numbers, and 
voxel size

Threshold uptake 40% of the 
SUVmax

*°

FOS/IVH = 6 
GLCM = 21 
GLRLM = 11 
GLSZM = 13 
NGLDM = 5 
NGTDM = 5

Image features had different 
sensitivities to reconstruction 
settings (entropyHist, difference 
entropy, inverse difference 
normalized, inverse difference 
moment normalized, low 
gray-level run emphasis, high 
gray-level run emphasis, and 
low gray-level zone emphasis 
were the most robust features; 
skewness, cluster shade, and 
zone percentage exhibited large 
variations)

Yip56 R 26 Staging, n.r.

Sensitivity of texture 
features to tumor motion 
by comparing static (3D) 
and respiratory-gated 
(4D) PET imaging

Threshold uptake 40% of the 
SUVmax

GLCM = 1 GLRLM = 1 
NGTDM = 4

4D-PET derived textures were 
less susceptible to tumor motion 
and may have greater prognostic 
value

Table 1.  Publications reporting methodological investigations on texture analysis in NSCLC patients. FF: 
fractal features; FLAB: fuzzy locally adaptive Bayesian; FOS/IVH: first-order statistics/intensity-volume 
histogram; GLCM: gray-level co-occurrence matrix; GLRLM: gray-level run-length matrix; GLSZM: gray-
level size-zone matrix; Gr: absolute gradient; ICC: intra-class correlation coefficient; L: Laplacian; LF: Laws 
family; n.a.: not available; n.r.: not reported; NGLDM: neighboring gray-level dependence matrix; NGTDM: 
neighborhood gray-tone difference matrix; P: prospective; R: retrospective; SA: spatial autocorrelation; SS: 
shape and size; W: wavelet *Segmentation of only primary lung lesion. #Segmentation of lymph nodes. § 
Segmentation of primary lung lesion and other tissues (e.g. lymph nodes). °Included in the analysis only lung 
lesion with a volume > of a minimum cut-off (e.g. 3 mL).
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Reference

Type 
of 
study Patients, n Setting, stage Aspect investigated Lesion segmentation method

PET features and 
textural index matrix Main results

Apostolova73 R 60 Staging, I–III Prognostic value of 
asphericity Adaptive threshold method*° FOS/IVH = 2SS = 4

Asphericity was a predictor 
of progression-free survival 
and overall survival

Budiawan59 R 44 Staging, I–IV
Ability of PET features 
to predict lymph node 
metastases

Manual#° FOS/IVH = 4 + visual 
score

Metastatic lymph nodes 
had higher heterogeneity 
(coefficient of variation) 
than inflammatory ones

Carvalho80 n.r. 220 Staging, I–IIIb
Prognostic value of 
heterogeneity based on 
PET textural features

Absolute SUV cut-off values of 
2.5, 3, and 4, threshold at 40% and 
50% of SUVmax

FOS/IVH = 8 SS = 1

Best prognostic value for 
overall survival was found 
for relative portions of the 
tumor above higher uptakes 
(80% SUV)

Cook77 R 53 Staging, I–III

Ability of PET features 
to predict prognosis 
and disease progression 
after concurrent 
chemoradiotherapy

Threshold at 45% of the SUVmax
* FOS/IVH = 3 SS = 2 

NGTDM = 4

Coarseness, contrast, 
and busyness were 
associated with response 
to chemoradiotherapy and 
prognosis

Cook78 P 47 Staging, IIIb–IV
Ability of PET features 
to predict prognosis and 
disease progression after 
erlotinib

Threshold at 40% of the SUVmax
* FOS/IVH = 8 SS = 2 

NGTDM = 4

Heterogeneity 
predictedresponse to 
erlotinib. Changes in 
entropyHist (baseline and 6 
weeks) were independently 
associated with overall 
survival and treatment 
response

Desseroit83 R 116 Staging, I–III

Develop a nomogram 
by exploiting intratumor 
heterogeneity (PET and 
CT features) to identify 
patients with the poorest 
prognosis

Fully automatic method (FLAB)
FOS/IVH = 3 SS = 1 
GLCM = 2 GLSZM = 2 
( + 35 on CT images)

Intratumor heterogeneity 
could be used to create a 
nomogram with a higher 
stratification power than 
staging alone (poorest 
prognosis: stage III, large 
tumor volume, high PET 
heterogeneity, and low CT 
heterogeneity)

Fried81 R 195 Staging, III
Ability of PET features to 
enhance overall survival 
risk stratification

Manual§° FOS/IVH = 8 SS = 3 
GLCM = 4

Imaging features (solidity 
and primary tumor energy) 
improved risk stratification

Fried82 R 225 Staging, III

Ability of PET features 
to identify patients who 
might benefit from a 
higher radiation dose 
compared with that for 
the entire stage III

Semiautomatic gradient based§ FOS/IVH = 1 SS = 3 
GLCM = 1

Imaging features were 
found to be capable of 
isolating subgroups of 
patients who received a 
benefit or detriment from 
dose escalation

Ha60 R 30 Diagnostic, n.r.
Correlation between 
metabolic heterogeneity 
and histopathologic 
characteristics

Adaptive threshold* FOS/IVH = 1 
GLCM = 21 Gr = 2

The majority of texture 
features analyzed (including 
SUVmax) differed between 
Adk and Sqc

Hatt74 R 101 Staging, I–III
Relationship between 
tumor MTV and 
derived heterogeneity 
measurements

Fully automatic method (FLAB)*° FOS/IVH = 3 SS = 1 
GLCM = 2 GLSZM = 2

Correlation between MTV 
and textural features varied 
greatly depending on the 
MTV (reduced correlation 
for increasing volumes)

Kang75 R 116 Staging, III

Ability of PET 
features to predict 
disease progression 
after concurrent 
chemoradiotherapy

Absolute SUV cut-off value of 3.0* FOS/IVH = 2 SS = 1

Intratumoral heterogeneity 
predicted disease 
progression after 
chemoradiotherapy in 
inoperable stage III NSCLC

Kim61 R 119 Staging, I

Ability of PET 
features to predict 
prognosis after curative 
surgical resection in 
pathologically N0 tumor

Absolute SUV cut-off value of 2.5* FOS/IVH = 2 SS = 2
Heterogeneity of primary 
tumor was predictive of 
recurrence in pN0 Adk but 
not in Sqc

Lovinfosse36 R 63 Staging, I
Ability of PET features 
to predict prognosis after 
radiotherapy

Fully automatic method (FLAB)*
FOS/IVH = 7 SS = 2 
GLCM = 6 GLSZM = 2 
NGTDM = 3

Intratumoral heterogeneity 
(dissimilarity) appeared to 
be a strong independent 
outcome predictor after 
radiotherapy

Miwa37 R 54 Diagnostic, n.a.
Ability of PET and CT 
features to differentiate 
malignant from benign 
pulmonary nodules

Threshold at 40–100% (intervals 
of 2%) of SUVmax

*
FOS/IVH = 1 FF = 1 
(+1 on CT images)

Intratumoral heterogeneity 
could help to differentiate 
malignant and benign 
pulmonary nodules (better 
diagnostic ability of density 
fractal dimension on PET 
than morphological fractal 
dimension on CT)

Continued



www.nature.com/scientificreports/

8Scientific Reports | 7: 358  | DOI:10.1038/s41598-017-00426-y

(fixed bin size versus fixed number of bins) for textural feature extraction in the context of treatment response 
assessment. Textural feature values were shown to depend on the intensity resolution used for SUV discretiza-
tion. Discretizing SUVs using a fixed number of bins was found to be less appropriate for inter- and intrapatient 
comparison of textural feature values in a clinical setting. Additionally, results obtained for the features could not 
be directly compared when different intensity resolutions were used, suggesting that their interpretation (e.g., 
prognostic or predictive value) depended on the intensity resolution. It is noteworthy that the “correlationGLCM” 
was the only feature observed to have highly similar patient rankings over the course of treatment, regardless of 
the discretization method or discretization value used52.

Orlhac et al.46 investigated a consistent number of texture indices on a variety of tumors (including 24 NSCLC) 
to gain a better insight into how they relate to one another and to conventional indices such as SUV, MTV, and 
TLG and to determine the extent of their robustness with respect to the gray-level resampling scheme and for-
mula and to the tumor delineation method. All histogram indices strongly depended on the tumor delineation 

Reference

Type 
of 
study Patients, n Setting, stage Aspect investigated Lesion segmentation method

PET features and 
textural index matrix Main results

Nair71 R

172 (study 
cohort = 25, 
external 
cohort = 63, 
validation 
cohort = 84)

Staging, I–
IV (study 
cohort) and 
I–II (validation 
cohort)

Identify individual genes 
and gene expression 
signatures associated 
with prognostically 
relevant PET features

Adaptive threshold method* FOS/IVH = 10 SS = 3
Four genes (LY6E, RNF149, 
MCM6, FAP) associated 
with textural features were 
also associated with survival

Ohri76 P 250, only 201 
analyzed Staging, IIb–III

Prognostic value of 
heterogeneity based on 
PET textural features

Semiautomatic gradient-based

FOS/IVH SS GLCM 
GLRLM GLSZM 
NGTDM NGLDM 
(total 45) + visual 
score

SumAverg was an 
independent predictor of 
overall survival

Pyka79 R 45 Staging, I
Ability of PET features 
to predict prognosis and 
disease progression after 
radiotherapy

Absolute SUV cut-off values of 2.0 
and 2.5*

FOS/IVH = 3 
SS = 1 GLCM = 2 
NGTDM = 3

Tumor heterogeneity was 
associated with response to 
radiation therapy

Tixier35 R 108, only 102 
analyzed Staging, I–III Prognostic value of 

heterogeneity Fully automatic method (FLAB)*^°

FOS/IVH = 3 
SS = 2 GLCM = 3 
GLSZM = 3 + visual 
score

High SUV, large metabolic 
volumes, and high 
heterogeneity were 
associated with poorer 
overall survival and 
recurrence-free survival

Vaidya29 R 27 Staging, I–IV
Ability of PET and 
CT features to predict 
disease progression after 
radiotherapy

Manual
FOS/IVH = 12 SS = 2 
GLCM = 4 ( + 32 on 
CT images)

IVH parameters (Ix 
metrics for PET and Vx 
metrics for CT) yielded the 
highest association with 
locoregional control

van Gómez 
López62 R 38 Staging, I–IIIa

Correlation between 
metabolic heterogeneity 
and pathologic staging

Absolute SUV cut-off value of 2.5* FOS/IVH = 2 SS = 2 
GLCM = 5

Tumor heterogeneity was 
correlated with global 
metabolic parameters, 
and both were associated 
with macroscopic tumor 
diameter and, under special 
conditions (exclusion of 
a small tumor with high 
AJCC stage), with the AJCC 
stage

Win13 P
122 (study 
cohort = 56, 
validation 
cohort = 66)

Staging, I–IV
Ability of PET and 
CT features to predict 
survival

Threshold at 42% of the SUVmax
* FOS/IVH = 2 ( + 1 on 

CT images)

PET-derived heterogeneity 
was predictive of survival 
at univariate analysis; at 
multivariate analysis only 
CT-derived heterogeneity, 
stage, and permeability 
were independent 
predictors of survival

Wu84 R
101 (study 
cohort = 70, 
validation 
cohort = 31)

Staging, I
Ability of PET features 
to predict distant 
metastases

Fully automatic method*
FOS/IVH = 11 SS = 2 
GLCM = 3 W = 24 
LF = 30

The optimal prognostic 
model for identifying 
groups at risk of developing 
distant metastasis included 
SUVpeak2mL and Gauss 
cluster shadeLaws

Table 2.  Publications reporting studies on the diagnostic, prognostic and predictive role of texture analysis in 
NSCLC patients. Adk: adenocarcinoma type; FF: fractal features; FLAB: fuzzy locally adaptive Bayesian; FOS/
IVH: first-order statistics/intensity-volume histogram; GLCM: gray-level co-occurrence matrix; GLRLM: gray-
level run-length matrix; GLSZM: gray-level size-zone matrix; Gr: absolute gradient; ICC: intra-class correlation 
coefficient; L: Laplacian; LF: Laws family; n.a.: not available; n.r.: not reported; NGLDM: neighboring gray-level 
dependence matrix; NGTDM: neighborhood gray-tone difference matrix; P: prospective; R: retrospective; 
SA: spatial autocorrelation; Sqc: squamocellular types; SS: shape and size; W: wavelet. *Segmentation of only 
primary lung lesion. #Segmentation of lymph nodes. §Segmentation of primary lung lesion and other tissues 
(e.g. lymph nodes). ^Application of partial volume correction. °Included in the analysis only lung lesion with a 
volume > of a minimum cut-off (e.g. 3 mL).
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method. Similarly, “contrastNGTDM”, “busyness” (NGTDM-based), “low gray-level run emphasis”, “short-run low 
gray-level emphasis”, “long-run low gray-level emphasis” (GLRLM-based), “low gray-level zone emphasis”, and 
“short-zone low gray-level emphasis” (GLSZM-based) were highly sensitive to the segmentation method, while 
“homogeneityGLCM” and “entropyGLCM” were found to be robust with respect to tumor segmentation. The same 
group investigated, in 48 treatment-naïve NSCLC patients, the effect of the resampling approach on the ability of 
textural features to reflect tissue-specific patterns of metabolic activity. An adaptive threshold method was used 
to delineate tumors. The relative resampling approach (RR) was compared with the absolute resampling (AR) 
approach. Seven features (from GLCM, GLRLM, and GLSZM) were calculated and correlated with tissue types 
and cancer subtypes. AR-based “entropyGLCM” could differentiate between tumor and healthy tissue (p < 0.0001). 
Using the AR method, tumor tissue exhibited higher “high gray-level zone emphasis” than healthy tissue, while 
tumors had lower “homogeneityGLCM” and “low gray-level zone emphasis”. AR-based textural features differed 
adenocarcinoma (Adk) and squamocellular carcinoma (Sqc) (p ≤ 0.05)53.

Yan et al.47 tested the variability of more than 60 PET-textural features using different reconstruction settings, 
different iteration numbers, and different voxel size in 17 NSCLC patients. “Skewness” (IVH-based), “cluster 
shadeGLCM”, and “zone percentage” (GLSZM-based) were the least robust with respect to reconstruction algo-
rithms using default settings and were the most sensitive to iteration number. Among all the features evaluated, 
“entropyHist”, “difference entropy”, “inverse difference normalized”, “inverse difference moment normalized”, “low 
gray-level run emphasis”, “high gray-level run emphasis”, and “low gray-level zone emphasis” proved to be the 
most robust.

Recently, repeatability of more than 100 radiomics features using different reconstruction settings, first 
using the point spread function and secondly complying with the European Association of Nuclear Medicine 
(EANM) guidelines for tumor PET imaging54, and using different delineation methods, first on PET and then 
on CT images, was evaluated in 11 NSCLC patients. The best performance was seen using CT-based delinea-
tion (32%), followed by EANM-compliant reconstruction (17%), PET-based delineation (17%), and point spread 
function-based reconstruction (10%). The majority of PET features (98%) had a repeatability comparable to that 
reported for simple SUV measures (e.g., SUVmax) in the literature. Sixty-three features showed a very high ICC 
(≥0.90) independent of delineation or reconstruction. The performance of radiomics features depended more on 
the delineation method than on the applied reconstruction algorithm (changes in 25 and 3 features, respectively). 
CT-based delineation showed favorable repeatabilities and ICCs for most radiomics features, an exception being 
shape-based features, for which PET-based delineation performed better41.

Compared with static images, parametric images don’t provide significant complementary information con-
cerning standard parameters (SUVmax, SUVmean, and metabolically active tumor volume - MATV) and hetero-
geneity quantification (histogram-based)55. Differences in quantitative analysis using three-dimensional (3D) 
versus respiratory-gated (4D) acquisition have been reported. According to Oliver et al.42, the features with the 
least variability were “sphericity”, “spherical disproportion”, “entropyHist”, “entropyGLCM”, “sum entropy”, “informa-
tion measure of correlation 2”, “short run emphasis”, “long run emphasis”, and “run percentage”, while the features 
with the largest differences (>50%) were “kurtosis”, “low gray-level run emphasis”, “short run low gray-level 
emphasis”, and “long run low gray-level emphasis”.

Yip et al.56 found significant differences in “maximal correlation coefficient”, “long run low gray-level empha-
sis”, “coarseness”, and “busyness” (NGTDM-based) between 3D and 4D PET imaging. When measuring tumor 
heterogeneity characteristics, reduced motion blurring by 4D PET acquisition was found to offer significantly 
better spatial resolution of textural features. 3D PET textures may lead to inaccurate prediction of treatment 
outcome, hindering optimal management of lung cancer patients. 4D PET textures may have a better prognostic 
value as they are less susceptible to tumor motion42, 56. Different results have been reported by Cheng et al.48, 
who compared the attenuation correction of PET images with helical CT (PET/HCT) and respiration-averaged 
CT (PET/ACT) in 56 NSCLC patients. PET/ACT yielded significantly higher SUVmax, SUVmean, and TLG while 
significant differences between PET/HCT and PET/ACT were not observed with regard to other features, includ-
ing “entropyHist”, “entropyGLCM”, “dissimilarity”, “homogeneityGLCM”, and “uniformity” (GLCM-based), “gray-level 
non-uniformity”, “zone-size non-uniformity”, and “high gray-level large zone emphasis” (GLSZM-based), and 
“coarseness”, “busyness”, “contrastNGTDM”, and “complexity” (NGTDM-based).

Textural features have also been used to develop a computer-based algorithm which supported a vector 
machine; combined image parameters, derived from CT, PET, and PET/CT images, were found to improve diag-
nosis of mediastinal lymph node metastases by PET/CT57.

Texture analysis and clinical applications.  Diagnosis.  Imaging texture analysis has been evaluated in 
order to determine which type and level of tissue heterogeneity can be captured and quantified through PET 
and to bridge the gap between in vivo and ex vivo tumor characterization58. Histologic characteristics and PET 
features have been compared to identify whether texture analysis can help in differentiating between benign and 
malignant lesions or in classifying NSCLC subtypes (Table 2).

As mentioned above, Orlach et al.53 compared the relative with the absolute resampling approach (RR and 
AR, respectively) and calculated the correlations of seven features with tissue types (tumor versus healthy tissue) 
and cancer subtypes (Adk versus Sqc). RR-based “entropyGLCM” didn’t distinguish between tumor and healthy 
tissue (p = 0.7621) whereas the same index computed with the AR method was able to differentiate between these 
tissue types (p < 0.0001). Using the AR method, tumor tissue exhibited higher “high gray-level zone emphasis” 
than healthy tissue, while tumors had lower “homogeneityGLCM” and “low gray-level zone emphasis”. Comparing 
textural indices in Adk versus Sqc, all RR-based textural features were not significant (p > 0.07), in contrast to the 
AR-based textural features (p ≤ 0.05). According to these results, features computed using an AR method vary as 
a function of the tissue type and cancer subtype and might be useful for tumor characterization.
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Miwa et al.37 evaluated whether morphological complexity (“morphological fractal dimension” derived from 
CT) and intratumoral heterogeneity (“density fractal dimension” derived from PET) assessed by fractal anal-
ysis improved the differential diagnosis between benign and malignant lung nodules in 54 patients with sus-
pected NSCLC. Both fractal dimensions assessed by PET and CT were lower in malignant than in benign nodules 
(p < 0.05). SUVmax was higher in malignant than in benign nodules (p < 0.05). Tumor size significantly correlated 
with SUVmax (p < 0.0001), but not with either “morphological fractal dimension” (p = 0.61) or “density fractal 
dimension” (p = 0.09). The diagnostic accuracy of “density fractal dimension” tended to be higher than SUVmax 
(78% versus 68%, respectively) and was better than that for “morphological fractal dimension” (65%).

Heterogeneity has also been evaluated to determine whether it can help in differentiating between metastatic 
and inflammatory lymph nodes in lung Adk, as assessed by visual analysis, and other standard parameters of 
PET and CT (size and Hounsfield units). In this study, heterogeneity was assesed as “coefficient of variation” of 
lymph nodes in 44 patients (with a total of 94 biopsy-proven lymph nodes). Visual assessment for malignancy 
had high sensitivity (81%) but a relatively low specificity (67%), with an accuracy of 75%. The diagnostic perfor-
mance of PET/CT using the cut-offs commonly employed for standard PET and CT parameters (SUVmax = 2.5, 
size of lymph nodes = 1 cm, and Hounsfield units = 120) was not satisfactory (accuracy of 56%, 60%, and 68%, 
respectively). Using an optimal cut-off determined by this study (SUVmax = 5.96, size of lymph nodes = 1.5 cm, 
and Hounsfield units = 136), the accuracy increased for SUVmax and size but not for Hounsfield units (81%, 84%, 
and 65%, respectively). Heterogeneity measured as “coefficient of variation” (using a cut-off = 0.2) yielded good 
sensitivity, specificity, and accuracy (88%, 76%, and 82%, respectively). The accuracy of “coefficient of variation” 
was slightly higher than that of SUVmax and size when using optimal cut-offs, but significantly higher than that 
of visual assessment and Hounsfield units. “Coefficient of variation”, SUVmax and size were significantly higher in 
metastatic lymph nodes than in benign ones (p < 0.0001), while the Hounsfield unit value was significantly lower 
in metastatic than in benign lymph nodes (p = 0.0249). Univariate analysis showed that all parameters except 
visual assessment were significant predictors, while using multivariate logistic regression only “coefficient of var-
iation” and size proved statistically significant (p = 0.032 and 0.023, respectively)59.

Yip et al.56, in order to evaluate whether texture features may be affected differently in Adk (21 lesions) versus 
Sqc (13 lesions) by motion, calculated the relative difference in each texture between 3D and 4D PET. The relative 
difference in each texture between 3D and 4D PET was not found to be significantly different between histologies 
(p = 0.26).

Ha et al.60 analyzed differences in 24 textural features between Adk and Sqc (17 and 13 patients, respectively). 
The majority of texture parameters that showed a significant difference between Adk and Sqc were derived from 
GLCM (93%). SUVmax showed the most significant association with tumor pathology (p = 0.001). Upon autoclus-
tering by linear discriminant analysis with those texture parameters that showed a significant difference between 
tumor subtypes (n = 15), the classification accuracy was found to be 83% (25/30 lesions were correctly clustered 
to their own tumor subtype). When analyzing with all parameters (n = 24), linear discriminant analysis clustered 
the lesions accurately according to their pathology, i.e., Adk versus Sqc, with a classification accuracy of 100% 
(linear separability of this autoclustering = 0.90).

Similarly, Kim et al.61 found that SUVmax, MTV, TLG, and heterogeneity (defined as the derivative of the 
volume-threshold function from 20 to 80%), were significantly higher in Sqc than in Adk.

van Gómez López et al.62 evaluated the correlation between conventional metabolic parameters (SUVmax, 
SUVmean, MTV, and TLG) and heterogeneity (“energyGLCM”, “contrastGLCM”, “correlation”, “entropyGLCM”, and 
“homogeneityGLCM”), histology, tumor size, and AJCC stage in 38 NSCLC patients (24 Sqc and 14 Adk). There 
was a positive relationship for all metabolic parameters with “entropyGLCM”, “correlation”, and “homogeneityGLCM” 
and a negative relationship with “energyGLCM” and “contrastGLCM”. No statistically significant differences were 
found between the mean values of tumor size, AJCC stage, and standard metabolic parameters in Adk versus 
Sqc tumors. Concerning textural features, “energyGLCM” was lower in Adk than in Sqc (p = 0.027) while “homo-
geneityGLCM” was higher in Adk than in Sqc (p = 0.047). Tumor size was correlated with “energyGLCM”, “contrast-
GLCM”, “correlation”, “entropyGLCM”, “MTV”, and “TLG” (p < 0.01). A statistical correlation between the pT and 
“energyGLCM”, “contrastGLCM”, “entropyGLCM”, and “MTV” (p ≤ 0.05) was found, but not between remaining AJCC 
subgroups and the other textural or metabolic parameters.

Prognosis and treatment response prediction.  The Warburg effect, first described over 80 years ago, postulates 
that tumors undergo glycolysis preferentially despite adequate intracellular oxygen tension63, 64. While Warburg 
believed this to be a consequence of mitochondrial dysfunction, tumor glycolysis can proceed with functional cel-
lular mitochondria and may be an adaptive response for tumor survival65–67. Furthermore, studies have recently 
linked glycolysis in cancer to more widespread deregulation of cell bioenergetics68–70, suggesting that FDG uptake 
may be a surrogate for more than glycolysis alone and perhaps a lens through which one can view global tumor 
bioenergetics71. Therefore, texture features have been introduced as imaging biomarkers on the assumption that 
they are an index of the degree of tumor heterogeneity, and that biologic tumor heterogeneity is associated with 
poor prognosis in cancer patients and can contribute to treatment failure and drug resistance72. The prognostic 
value of texture analysis has been evaluated in different NSCLC clinical settings (Table 2).

Nair et al.71 evaluated a possible association between textural features, gene expression signatures, and survival 
in a computational study (172 NSCLC patients). Fourteen PET features were extracted within the study cohort 
(n = 25). Individual genes associated with PET features in the study cohort were directly analyzed in the exter-
nal cohort (n = 63) for their association with clinical outcomes. Lastly, PET features associated with prognostic 
gene signatures from the external cohort were tested in a validation cohort (n = 84). Four genes (LY6E, RNF149, 
MCM6, FAP) associated with textural features were found also to be associated with survival. Histogram-based 
and “shape and size” features together provided a more accurate prognostic model than each feature alone, 
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suggesting that leveraging tumor genomics with an expanded collection of PET features may enhance under-
standing of the value of FDG uptake as an imaging biomarker beyond its association with glycolysis.

Win et al.13 compared the prognostic value of texture analysis with tumor staging and other imaging prognos-
tic factors (i.e., metabolism assessed by PET/CT and permeability assessed by dynamic contrast-enhanced CT) in 
122 NSCLC patients treated with curative or palliative approach. Tumor heterogeneity (“entropyHist”) was calcu-
lated from both attenuation-corrected CT images and SUV images without image filtration. “EntropyHist” (derived 
from both CT and PET images), permeability, and stage were found to be survival predictors at univariate analysis 
(p ≤ 0.003), in contrast to SUVmax (p = 0.948). At multivariate analysis, “entropyHist” derived from CT (p = 0.021), 
stage (p = 0.001), and permeability (p < 0.001) were identified as independent survival predictors, irrespective 
of the treatment objective (curative or palliative). In the study by Cheng et al., “EntropyHist”, “entropyGLCM”, and 
“coarseness”, derived from both PET/HCT and PET/ACT, were able to predict disease-specific survival at univar-
iate (p ≤ 0.01) and multivariate analysis (p < 0.05) in stage I–III NSCLC patients48.

Similarly, the “shape and size” features “asphericity” (p < 0.001) and “solidity” (p = 0.05), as well as “primary 
surgical treatment” (p = 0.05), were found to be significant independent predictors of progression-free survival 
in 60 NSCLC patients treated with different approaches. Concerning overall survival, only “asphericity” and “pri-
mary surgical treatment” (p = 0.02 and = 0.01, respectively) proved to be independent predictors, and none of 
the other PET parameters (including SUVmax, TLG, and MTV) showed a significant predictive value in this series 
of patients73.

The GLCM- and GLSZM-derived features “entropyGLCM”, “homogeneityGLCM”, “dissimilarity”, “size-zone var-
iability”, and “zone percentage”, but not “high intensity emphasis” (GLSZM-based), have also been reported to 
be independent prognostic factors with respect to stage (although not independently of each other) in patients 
treated with different approaches. Nonetheless, the addition of risk factors allowed a better differentiation of 
patient outcome. High SUV, large metabolic volumes, and high heterogeneity were associated with a poorer over-
all survival and recurrence-free survival35, suggesting that heterogeneity quantification and volume (i.e., MTV) 

Diagnostic role

Compared with non-malignant lesions, malignant lung nodules are characterized by higher SUVmax and lower morphological and density 
fractal dimensions37.

Metastatic lymph nodes are characterized by higher heterogeneity (coefficient of variation) than inflammatory ones59.

Large lesions are characterized by high heterogeneity (i.e., visual score, entropyGLCM, coefficient of variation)44, 45, 74.

Each subtype of NSCLC tumor has different metabolic heterogeneity characteristics. Compared with Adk, Sqc is characterized by higher 
SUVmax, AUC-IVH, energyGLMC, entropyGLCM, sum entropy, difference entropy, and inverse different moment and by lower homogeneityGLCM, 
sum of squares, angular second moment, ratio of non-zeroGr, and difference variance60–62.

Prognostic and predictive role

Heterogeneity (i.e., AUC-CSH) can predict recurrence in pN0 Adk patients who have undergone curative surgery but not in Sqk patients 
(high heterogeneity is associated with a shorter DFS)61.

Best prognostic value for overall survival is found for relative portions of the tumor above higher uptakes defined as SUVmax > 80% (i.e., 
V80) in patients who received radiation therapy (sequential chemoradiation, concurrent chemoradiation, or only radiation). The higher the 
portion above higher uptake (V80), the better the prognosis29, 80.

Heterogeneity (i.e., low AUC-CSH) identifies patients with inoperable stage III NSCLC with poor PFS75.

High SUVmax, large MTV, and high heterogeneity (i.e., high entropyGLCM, high asphericity, homogeneityGLCM, and high dissimilarity, size-zone 
variability, and low zone percentage) are associated with poorer OS and RFS in stage I–III NSCLC35, 73, 74, 83.

Tumor heterogeneity (i.e., entropyGLCM) is associated with response to radiation therapy in NSCLC (DSS is lower for patients with high 
entropyGLCM)79.

Lesions in responders (complete or partial response) to chemoradiotherapy are characterized by lower coarseness, contrastNGTDM, and 
busyness than non-responders (stable or progressive disease). High coarseness values are associated with an increased risk of progression 
(increased risk of death), whereas high contrastNGTDM and busyness values are associated with a lower risk of progression (PFS and LPFS)14.

Large primary tumors with low SumAverage (i.e., more heterogeneous) have a poor prognosis following chemoradiotherapy76.

Lesions in responders to erlotinib are characterized by lower heterogeneity than those in non-responders. Specifically, lower heterogeneity 
after 6 weeks of treatment, as measured by contrast NGTDM, is independently associated with longer survival, and a larger reduction in 
heterogeneity between baseline and 6 weeks of treatment, as measured by entropyHist, is independently associated with longer survival and 
with treatment response78.

Tumor heterogeneity (i.e., dissimilarity) appears to be a strong independent outcome predictor (DSS and DFS) after radiotherapy. Low 
dissimilarity is associated with a higher risk of recurrence36.

The optimal prognostic model for identification of groups of NSCLC patients at risk for developing distant metastasis includes SUVpeak2mL and 
Gauss cluster shadeLaws. High SUVpeak2mL and Gauss cluster shadeLaws are associated with an increased risk of distant metastases84.

Solidity (which quantifies the dispersion of primary and nodal disease in a local region, with high values corresponding to disease that is 
compact and in close proximity, and low values corresponding to disease that is dispersed) and primary tumor energyGLCM (higher level for 
tumors that are more heterogeneous) improve risk stratification compared with a model with conventional prognostic factors alone in stage 
III NSCLC. Solidity and primary tumor energyGLCM are capable of isolating subgroups of patients who will receive a benefit or detriment from 
dose escalation (i.e., as disease solidity and primary co-occurrence matrix energy increase, patients receiving higher dose radiation therapy 
have improved OS and PFS compared with those receiving lower doses)81, 82.

Table 3.  Summary of clinically relevant results in investigations assessing the diagnostic, prognostic and 
predictive role of FDG-PET/CT texture analysis. Adk: adenocarcinoma type; AUC-IVH: area under the curve 
within the intensity volume histogram; DFS: disease-free survival; DSS: disease-specific survival; GLCM: 
gray-level co-occurrence matrix; GLRLM: gray-level run-length matrix; GLSZM: gray-level size-zone matrix; 
Gr: absolute gradient; LPFS: local progression-free survival; MTV: metabolic tumor volume; NGTDM: 
neighborhood gray-tone difference matrix; NSCLC: non-small cell lung cancer; OS: overall survival; PFS: 
progression-free survival; Sqc: squamocellular types; SUV: standardized uptake value.
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may provide valuable complementary information with respect to prognosis, although the complementary infor-
mation increases substantially with larger volumes74.

Heterogeneity of primary tumor (evaluated by the area under the curve of cumulative SUV histograms: 
AUC-CSH) was observed to be an independent predictor of recurrence in pathologically N0 Adk but not in Sqc 
(p = 0.03 and 0.13, respectively) after curative surgical resection61 as well as a predictor of disease progression 
after concurrent chemoradiotherapy in patients with inoperable stage III NSCLC75.

Interestingly, “Sum Average” (GLCM-based) was strongly associated with overall survival in a 
multi-institutional dataset of locally advanced NSCLC patients with large tumors who were treated with definitive 
chemoradiotherapy, suggesting its robustness as a prognostic factor76.

NGTDM-derived features (“coarseness”, “contrastNGTDM”, and “busyness”) have also been reported to be asso-
ciated with response to chemoradiotherapy and prognosis77 in locally advanced NSCLC. The same group, testing 
FOS and high-order features as predictors of response or survival in patients treated with erlotinib, found that 
response to erlotinib was associated with reduced heterogeneity and that the percentage of changes in “entrop-
yHist” (between baseline and 6-week PET/CT) was independently associated with overall survival and treatment 
response78.

Similarly, PET features have been reported to be able to predict outcome and/or treatment response in NSCLC 
patients treated with definitive radiotherapy29, 36, 79, 80. In this specific clinical setting, “entropyGLCM” has been 
reported to be an independent predictor of disease-specific survival (p = 0.016)79, while “dissimilarity” has been 
found to be associated with both disease-specific survival (p = 0.037) and disease-free survival (p < 0.01)36.

Initial attempts have been made to determine whether quantitative imaging features from pretreatment PET 
can enhance overall survival risk stratification beyond what can be achieved with conventional prognostic factors 
in NSCLC. In patients with stage III NSCLC, linear predictors of overall survival generated with both quantitative 
imaging features (histogram-derived, GLCM-derived, and “shape and size” features) and conventional prognos-
tic factors (age, sex, histologic findings and stage, Karnofsky performance status, smoking status and estimated 
pack-years, treatment type) have demonstrated improved risk stratification compared with those generated with 
conventional prognostic factors alone in terms of log-rank statistics (p = 0.18 versus = 0.0001, respectively)80. 
The use of quantitative imaging features selected during cross-validation improved the model using conven-
tional prognostic factors alone (p = 0.007). Disease “solidity” and primary tumor “energyGLCM” were found to 
be selected in all folds of cross-validation81. Additionally, these features were found to be capable of isolating 
subgroups of patients who received a benefit or detriment from dose escalation82.

Similarly, PET “entropyGLCM” and CT “zone percentage” have been found to have the highest complementary 
values with clinical stage and functional volume in stage I–III NSCLC83. Desseroit et al.83 provided a nomogram 
able to improve stratification amongst patients with stage II and III disease, allowing identification of those with 
the poorest prognosis (clinical stage III, large MTV, high PET heterogeneity, and low CT heterogeneity).

In early-stage NSCLC the optimal prognostic model for prediction of distant metastases in patients treated 
with stereotactic ablative radiation therapy included two image features that allowed quantification of intratumor 
heterogeneity and SUVpeak. A significant improvement (p = 0.0001) in predicting freedom from distant metastasis 
was seen when histologic information was added compared with a prognostic model based solely on imaging 
features84. 

All the following technical aspects should be provided for PET texture features 
calculation

a) scanner

b) method of images acquisition (e.g. respiratory motion, dynamic)

c) parameters used to acquire images

d) parameters used to reconstruct images

e) type of images used to extract features (i.e., PET or both PET and CT)

f) “target” of texture analysis (e.g., primary tumor, lymph nodes, metastases)

g) application of PVC and/or a minimum lesion size/volume

h) method of segmentation (e.g., threshold uptake 40% of the SUVmax)

i) discretization method (e.g., fixed number of bins)

j) software

k) features and matrix computation method*

An appropriate statistical analysis should be used

Datasets of 10–15 patients per feature have been recommended to test the prognostic 
power of texture features

Textural features selection and validation

The use of the radiomics features insensitive to acquisition modes and reconstruction 
parameters is recommended. A correlation of conventional metrics (SUV, MTV, 
etc.) and texture features should be assessed to evaluate the potential complementary 
value of the measures. Independent validation datasets are needed to confirm the 
results.

Table 4.  Summary of relevant methodological issues in calculating and reporting FDG-PET/CT texture 
analysis. *A proposal for a consistent terminology is reported within the Supplementary material.
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Discussion
Texture features are of growing interest for tumor characterization in imaging. Nevertheless, on the basis of results 
published to date on FDG PET, it is unclear which indices should be used, what they represent, and how they are 
related to conventional parameters such as SUVs, MTV, and TLG46. We summarize the results of the available 
studies within Table 3. PET features differed significantly in malignant and non-malignant tissues (considering 
either primary lung tumors or lymph nodes)37, 46, 59 and also in Adk and Sqc60–62. However, literature data are 
really heterogeneous in this setting and, despite promising results, it isn’t possible to suggest for use a reproduci-
ble feature or a combination of features able to characterize definitely malignant tissues or lung cancer subtypes.

Again, different metrics, matrices, and methods (e.g., tumor segmentation, survival endpoints) have been 
reported in the evaluation of NSCLC prognosis based on PET features. Commonly, the term “heterogeneous” 
is used with different meanings. Concerning texture analysis, “heterogeneity” may result from one or more PET 
features positively or negatively related to treatment and/or outcome. Therefore clinical texture papers often use 
the term “heterogeneity” to summarize specific tumor characteristics expressed by PET features. Among these, 
“entropyHist” and “entropyGLCM” are most frequently reported to have an independent prognostic role, able to 
predict treatment outcome and/or survival in NSCLC patients13, 29, 35, 48, 78, 79, 83.

It is important for textural feature values to be directly comparable, both between and within patients, in 
order to derive meaningful conclusions from radiomic analysis and allow their use in clinical routine. However, 
the lack of a standardized method to calculate textural features prevents comparison between literature data and 
meta-analysis. Additionally, crucial information about texture extraction is not always available within the pub-
lished articles. In order to try to simplify the complexity of texture analysis and to facilitate comparison among 
different series, some mandatory information concerning specific methodological aspects should be reported. 
Specifically, in the drafting of a paper on PET texture analysis, the following should be indicated in the Methods 
section (Table 4). Specifically, in the drafting of a paper on PET texture analysis, the following should be indicated 
in the Methods section: (a) the scanner, (b) the method (e.g., respiratory motion, dynamic) and parameters used 
to (c) acquire and (d) reconstruct images, (e) the type of images used to extract features (i.e., PET or both PET and 
CT), (f) the “target” of texture analysis (e.g., primary tumor, lymph nodes), (g) the application of PVC and/or a 
minimum lesion size/volume, (h) the method of segmentation (e.g., threshold uptake 40% of the SUVmax), (i) the 
discretization method (e.g., fixed number of bins), (j) the software, and (k) the feature(s) and matrix computation 
method. As the published results are very preliminary, a preferred method for reconstruction, discretization, or 
segmentation cannot be recommended. Obviously, consistent terminology in respect of features (a proposal is 
reported within the Supplementary material) and an appropriate statistical analysis are mandatory. Datasets of 
10–15 patients per feature have been recommended to test the prognostic power of texture features. Moreover, 
use of the radiomics features insensitive to acquisition modes and reconstruction parameters is recommended. 
The correlation of conventional metrics (SUV, MTV, etc.) and texture features should be assessed to evaluate the 
potential complementary value of the measures. In addition, independent validation datasets are needed to con-
firm the results. Finally, there is a need for easy-to-use software tools for feature extraction (their main character-
istics have been very recently summarized by Hatt et al.85) since those available are handled only by non-clinician 
experts, are time consuming, and are able to produce a lot of textures from different matrices, many of which are 
probably unnecessary since their biologic significance is encapsulated within others.

In conclusion, standardization is mandatory to prove the value of the information that can be derived from 
medical images, enabling non-invasive in vivo characterization of lung lesions and accurate risk stratification for 
the purpose of decision making regarding treatment strategy.

Ethical approval.  This article does not contain any study with human participants or animals. The patient 
imaged in the Fig. 3, signed an inform consent to use his personal data including imaging, also for publica-
tion; however the figure is completely anonymized, preventing the possibility of discovering the identity of the 
individual.
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