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subgenomes by signatures of repetitive
DNA evolution
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Abstract

Background: Our understanding of polyploid genomes is limited by our inability to definitively assign sequences
to a specific subgenome without extensive prior knowledge like high resolution genetic maps or genome
sequences of diploid progenitors. In theory, existing methods for assigning sequences to individual species from
metagenome samples could be used to separate subgenomes in polyploid organisms, however, these methods
rely on differences in coarse genome properties like GC content or sequences from related species. Thus, these
approaches do not work for subgenomes where gross features are indistinguishable and related genomes are
lacking. Here we describe a method that uses rapidly evolving repetitive DNA to circumvent these limitations.

Results: By using short, repetitive, DNA sequences as species-specific signals we separated closely related genomes
from test datasets and subgenomes from two polyploid plants, tobacco and wheat, without any prior knowledge.

Conclusion: This approach is ideal for separating the subgenomes of polyploid species with unsequenced or
unknown progenitor genomes.
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Background
Researchers studying two traditionally distinct areas of
biology, metagenomics and polyploid genome evolution,
face a similar technical challenge: How do you separate
closely related genomes or subgenomes from a single
sample? Current approaches consist of either supervised
binning, requiring a database of known genomes, or un-
supervised binning using general genome characteristics
as a ‘genome signature’ to identify and separate DNA se-
quences from different species/subgenomes [1, 2]. Gen-
ome signatures can be any kind of bias (e.g. similarity to
known sequences, short nucleic acid sequences, GC con-
tent, sequence depth) that differs between genomes. In
particular, di- and tetra-nucleotide frequencies along
with contig co-abundance (a given species may have a

distinct abundance relative to others in a metagenome
sample) can be used to successfully bin sequences within
metagenomes [3]. These coarse approaches work best
with highly divergent taxa and there is much room for
improvement in sensitivity and accuracy when grouping
sequences appropriately at the species level. Further-
more, subgenomes within allopolyploids have the same
sequence depth profile and similar di- and tetra-
nucleotide frequencies, making these features unin-
formative. In fact, orthologous gene sequences between
the subgenomes in an allopolyploid (homeologous se-
quences) are far more similar to each other than they
are to other sequences within the same subgenome.
Polyploidization has played a large role in the evolu-

tion of all flowering plants and many extant species are
recent polyploids [4]. In addition, polyploidization has
played a role in the evolution of many fungal, fish and
amphibian species [5, 6]. A large fraction of polyploid
species are derived from the hybridization of different
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species and are termed allopolyploids. Understanding
the evolution and regulation of polyploid genomes re-
quires the creation of accurate assemblies for each sub-
genome. The high level of sequence similarity between
subgenomes makes this particularly challenging and
even state-of-the-art genome assembly algorithms often
collapse and/or incorrectly interweave chunks of homeo-
logous chromosomes. Significantly, without high reso-
lution genetic maps or related data these errors remain
undetected. These errors are not necessarily resolved by
long-read technologies, since such assemblies are still
fragmented in many thousands of pieces [7]. Lack of
subgenome resolution for allopolyploid genomes is a
major obstacle to studying the origin, evolution, and
functional properties of allopolyploid genomes [8].
For some allopolyploid species, extant diploid species

similar to the true progenitors can be used to disentan-
gle the subgenomes [7]. However, for many allopoly-
ploids [9, 10], the diploid parents are unknown or
extinct. Even when extant progenitor-like species exist,
they may differ substantially from the genomes of the in-
dividuals that gave rise to the allopolyploid. Thus, un-
guided methods for identification and extraction of
subgenomes within allopolyploids would be extremely

useful. Recently a phasing method was developed for the
highly heterozygous sweet potato genome [11]. However,
this method is limited to highly polymorphic genomes
and is restricted to single-copy sequence present in each
subgenome that can be accurately genotyped.
Deliberate integration of synthetic transposons with

molecular barcodes is a common experimental approach
to label subpopulations of DNA or cells to allow subse-
quent retrieval from complex mixtures [12]. Nature’s
equivalents of synthetic molecular barcodes include
transposons, viruses, and other classes of repetitive
DNA. These elements rapidly proliferate and evolve in
natural populations, thus labeling the recent evolution-
ary history of an organism’s genome (Fig. 1) [13]. Trans-
poson families may dramatically expand and contract
over short periods of evolutionary time, during which
they may also significantly change in sequence identity.
For example, the size of the Oryza australiensis genome
doubled in just a few million years due to the amplifica-
tion of a few long terminal repeat (LTR) retrotransposon
families [14]. Removal of LTR retrotransposons by il-
legitimate recombination can eliminate megabases of se-
quence over similar timescales [13, 15]. Thus, two
recently diverged species may quantitatively differ in the

Fig. 1 Overview of the strategy for determining species/subgenome of origin for sequences based on their profile of repetitive k-mers. The
algorithm takes sequences from a sample containing one or more species/subgenome. Each species has both common and divergent repetitive
k-mers scattered throughout its genome. Each k-mer is indicated by a different color (for clarity, only divergent k-mers are shown). We construct
a graph where sequences are nodes and shared instances of repetitive k-mers are edges. By connecting all instances of a given repetitive k-mer
we are able to connect and subsequently group sequences derived from a common species/subgenome
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frequency of transposon families they harbor and the se-
quence identity of those families.
In the context of allopolyploids, repeats in the parental

species change and proliferate independently after those
species diverge creating species-specific genomic signa-
tures. Once reunited within a single cell of an allopoly-
ploid, these repeats are free to proliferate between the
subgenomes and these additional copies are specific to
the allopolyploid but not the progenitor species. If add-
itional subgenomes are added via subsequent additional
hybridizations, then the initial allopolyploid-specific re-
peat signatures may distinguish initial subgenomes from
subgenomes added during later rounds of inter-specific
hybridization. Fortuitously, the process of interspecific
hybridization may in fact trigger virus and transposon
proliferation [16]. Thus, naturally occurring repetitive
DNA can be used as molecular barcodes to distinguish
genomes and subgenomes.
Here we describe an algorithm that identifies natural

molecular barcodes that act as species of origin labels
for the DNA sequences in which they reside. Our
method creates and partitions a graph in which se-
quences are connected by edges, corresponding to spe-
cific signatures of repetitive DNA inferred from short
nucleotide sequences (k-mers). Our method allows ac-
curate separation of the subgenomes of polyploid species
without prior knowledge of the genomes or a database
of known sequences. We further built a toolkit of func-
tions, implemented as a python package called poly-
CRACKER (polyploid Cluster Repeats by Ancestral
Common K-mer Estimation and Retrieval), for the auto-
matic binning of sequence scaffolds from polyploid ge-
nomes. Our method draws its inspiration from other
unsupervised algorithms for binning sequences com-
monly applied to metagenome datasets, but by focusing
on repetitive k-mers with faster rates of divergence
between two species, rather than all k-mers or a ran-
dom sampling of k-mers, our method is not con-
founded by the overall high sequence similarity
between homeologous sequences in allopolyploids or
sequencing datasets containing genomes from mul-
tiple closely related species.

Results
We designed an efficient unsupervised learning algo-
rithm to automatically identify and bin DNA sequences
according to subgenome based on the shared presence
of short repeated DNA sequences (k-mers) that act as
naturally occurring molecular barcodes (Fig. 1). The
workflow is as follows: a polyploid genome is sequenced
and assembled to scaffolds that are unordered with re-
spect to their subgenome. Most scaffolds contain mul-
tiple k-mers derived from repetitive DNA elements. A
graph is constructed where sequences are nodes and

their profile of shared repeat-k-mers are edges. By con-
necting all instances of a given repetitive k-mer, we are
able to connect and subsequently group sequences de-
rived from each subgenome (Fig. 1). It is notable that
while both high and low copy k-mers may be specific to
one subgenome versus another, only high copy k-mers
provide the multiple edges between multiple different
sequence nodes necessary to group sequences together
by subgenome of origin.

polyCRACKER method for unsupervised partitioning of
sequence into species bins
Unsupervised partitioning of sequences proceeds in two
phases: 1) initial partitioning of sequences into subge-
nome bins via a nearest neighbors graph of repeat-k-
mers and 2) signal amplification from groups identified
in the first phase.

1) Initial partitioning of scaffolds into subgenomes can
be broken down into three main steps.
a. Repeat-k-mers are selected based on the

number of times they appear throughout the
entire genome, all subgenomes. Typically, as the
k-mer size is increased, the threshold for the
lowest allowable k-mer frequency should be re-
duced, due to a reduction in the number of re-
peat k-mers found per scaffold. This balance is
based on the requirement that any given contig
or scaffold in the assembly must have one or
more repeat-k-mers associated with it in order
for it to be portioned into a subgenome bin.

b. Sequences from a sparse count matrix of
scaffolds versus k-mers are projected into a
lower dimensional space, where the distance be-
tween points (scaffolds) is indicative of the de-
gree of shared repetitive k-mer content.

c. A nearest neighbors graph is constructed from
these projected data points. Each node
represents a sequence, while each edge
demonstrates that two sequences share a highly
similar distribution of repetitive k-mers. In this
sense, an edge is a proxy for connecting the in-
stances of shared repeat-k-mers. The scaffolds
are partitioned into bins, subgenomes, by cutting
this graph at regions with a low density of
connections.

2) The signal amplification phase consists of two
iterative steps that recruit previously unclassified
scaffolds to the appropriate subgenome bin.
a. Differential repeat-k-mers are identified between

the initially extracted subgenome bins. The fre-
quencies of those differential repeat-k-mers
within all genome scaffolds is used to recruit

Gordon et al. BMC Genomics          (2019) 20:580 Page 3 of 14



additional sequences into respective subgenome
bins.

b. A new set of differential repeat-k-mers pertaining
to the new subgenomes bins are identified, and
are once again used assign sequences to a
subgenome. These steps are iterated until the
new subgenome bins converge towards a fixed
size.

Polyploid genome analysis
The creation of polyCRACKER was motivated by prior
sequence binning applications, particularly in the un-
supervised metagenomics binning field. However, tools
designed for unsupervised binning of metagenomes ei-
ther require input that is not relevant for allopolyploid
analysis, such as multiple samples from different micro-
bial environments, or rely too heavily on large overall
differences in k-mer frequency that are typically not
found between highly similar allopolyploid subgenomes.
However, as discussed above, it has been shown that the
profile of repetitive k-mers may vary considerably be-
tween allopolyploid subgenomes. We therefore investi-
gated whether a method specifically focusing on the
tracking of repeat-k-mers in allopolyploid genomes
would enable database-free subgenome binning. Initial
results on simulated datasets representing mixtures of
closely related microbial genomes showed promise, even
when these genomes had relatively low levels of repeti-
tive DNA (Additional file 1). These results encouraged
us to turn our attention to the unsupervised separation
of subgenomes from the complex allopolyploid genomes
of tobacco and wheat.

Subgenome analysis of the allotetraploid plant, Nicotiana
tabacum
Nicotiana tabacum is thought to have formed less than
200,000 years ago by the hybridization of two diploid spe-
cies similar or identical to N. sylvestris (source of the S-
subgenome) and N. tomentosiformis (source of the T-
subgenome). The genome of N. tabacum is slightly
smaller than the combined sizes of its diploid progenitors
due to the preferential loss of repetitive sequence from the
T-subgenome [17]. Initial studies comparing the N. taba-
cum genome to the genomes of N. sylvestris and N.
tomentosiformis assigned about 80% of the assembly to
the S- or T-subgenomes [7, 18]. A recent study used op-
tical and genetic maps to assign 64% of the assembled N.
tabacum sequence to pseudomolecules [7]. A significant
complicating factor in the separation of the S- and T-
subgenomes is the large number of translocations that
have occurred between the S- and T-progenitor chromo-
somes [4]. Thus, identifying and separating the ancestral
S- and T-subgenomes from the modern allopolyploid re-
quires classification of alternating stretches of contiguous

DNA within chromosomes and not simply labeling of
whole chromosomes.
We created an initial dataset for testing and verifica-

tion of polyCRACKER by splitting the sequences within
the pseudomolecule-anchored portion of the N. taba-
cum genome into non-overlapping 250 kb segments.
This later allowed us to visualize subgenome classifica-
tion with respect to position within pseudomolecules.
This was particularly important for N. tabacum due to
the numerous translocations that have occurred between
subgenomes and the uncertainty of whether poly-
CRACKER could accurately assign progenitor of origin
to pseudomolecules containing sequences from different
progenitors. We validated the assignment of progenitor
of origin by polyCRACKER by using, in this case, the
known (and also assembled) progenitors of the allopoly-
ploid, N. sylvestris and N. tomentosiformis. We quanti-
fied agreement between polyCRACKER subgenome
assignments and the subgenome assignments deter-
mined by comparison to the progenitor genome se-
quences. Relationships between N. tabacum sequences
are depicted in principal component analysis (PCA)
plots (Fig. 2a,b) and a spectrally embedded graph (Fig.
2c). Each data point in the PCA plot corresponds to a
250 kb segment and the proximity of the points indicates
the degree of shared repetitive k-mers. Points were col-
ored by their inferred progenitor of origin via poly-
CRACKER (Fig. 2a) or by comparison to the diploid
progenitor genomes (Fig. 2b). Segments were linked to
their 20 nearest neighbors to create a network graph.
The energy minimization of a non-repulsive force-
directed graph of the 20 nearest neighbors yields spec-
trally embedded data (spectral embedding/laplacian
eigenmaps); polyCRACKER groups sequences by cluster-
ing the spectral embedding of the dimensionality re-
duced data. This is depicted in Fig. 2c, in which nodes
(sequences) are colored according to their species of ori-
gin assignment based on comparison to the diploid pro-
genitor genomes. Spectral clustering performs k-means
clustering on the spectrally embedded data in Fig. 2c,
analogous to making cuts in the weakest links in the
graph.
PolyCRACKER correctly classified 99.3% of sequence

estimated to belong to the ancestral S-subgenome and
99.7% of sequence belong to the ancestral T-subgenome,
based on comparison to the subgenome assignments
made using the diploid progenitor genomes. The inter-
section of polyCRACKER classification and classification
based on the diploid progenitor genomes constituted
86.5% of the total N. tabacum assembly, with the
remaining sequence almost entirely unclassified by either
method (very short scaffolds). We graphically show the
high similarity between polyCRACKER and reference-
genome based subgenome classification in Fig. 3b, c. We
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explored k-mer length as a parameter for polyCRACKER
performance and found k-mers as short as 15 nucleo-
tides were sufficient to confidently distinguish the to-
bacco subgenomes (Table 1). Increasing k-mer length
(specificity) can decrease sensitivity by decreasing the
frequency of repeat-k-mers spread across the genome se-
quences, but this can in part be compensated for redu-
cing threshold for defining a k-mer as repetitive (Fig. 4,
Table 1). Sensible recommendations for selecting this k-
mer length can be ascertained by observing the number
of repetitive k-mers per fragment of the fragmented N.
tabacum assembly (Fig. 5). If the number of repetitive k-
mers per fragment is low, as in our initial test with two
fragmented algae assemblies (Additional file 1: Figure
S1), then the k-mer length should be decreased, at the
expense of introducing k-mers with less specificity to a
given repeat signature.
The N. tabacum analysis described above was based

on the subset of sequences anchored into pseudomole-
cules [7] in order to show the classification agreement
distributed across the chromosomes. However, only 64%
of the assembled N. tabacum sequence is assigned to

pseudomolecules. In order to both provide a compre-
hensive analysis of N. tabacum subgenomes and to show
that polyCRACKER works efficiently and accurately on
fragmented draft assemblies, we repeated our analysis on
the Illumina/454 draft genome assembly from the same
study. This draft assembly was produced prior to long-
range scaffolding with optical mapping and has a contig
L50 of only 8.9 kb (scaffold L50 of 278 kb). Although this
assembly was already composed of many small subse-
quences, we still split larger scaffolds of this assembly
into non-overlapping 100 kb segments in order to par-
tially normalize subsequence lengths. polyCRACKER
works best with datasets that do not have wide disper-
sion in length. Subsequences are later easily tracked back
to their origin. We then combined subsequences with all
scaffolds greater than 2.5 kb. Scaffolds less than 2.5 kb
were excluded because they do not contain enough
repetitive k-mers for confident classification. After re-
moving the smallest sequences, this dataset contained
94% of the N. tabacum genome assembly, and Poly-
CRACKER was able to assign 99.5% of sequence esti-
mated to belong to the S subgenome (2.1 Gb, 990Mb

Fig. 2 Unsupervised grouping of 250 kb fragments derived from the pseudomolecule-anchored portion of the N. tabacum genome by polyCRACKER
using repetitive k-mers and intact repeats. (a and b) PCA of repetitive k-mer count matrix of k-mers versus 250 kb genome segments for N. tabacum.
S and T genomes are colored green and blue respectively, ambiguous segments are labeled red. a Sequences labeled by similarity to the known
progenitor-like species. b Sequences labeled by polyCRACKER’s k-mer analysis. Note that a and b are nearly identical. c Spectral embedding of N.
tabacum dimensionality reduced information, in which edges (grey lines) represent shared repetitive k-mer profiles) that connect sequences.
Sequences labeled by similarity to the known progenitor-like species. d-f Analogous unsupervised grouping as above, but using informative and
differential repeats rather than k-mers. Color labels as described above. d Sequences labeled by similarity to the known progenitor-like species. e
Sequences labeled by polyCRACKER’s repeat analysis. Note that a, b, d and e are nearly identical. f Spectral embedding of N. tabacum dimensionality
reduced information, in which edges (grey lines) represent shared repeat element profiles that connect sequences. Sequences labeled by similarity to
the known progenitor-like species. Note the increased number of ambiguous subsequences in f as compared to c is due to the fact that there are
fewer repeats than k-mers in any given scaffold. This is analogous to the effect of increasing k-mer size substantially
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more sequence than that anchored to psuedomolecules)
and 99.1% of sequence estimated to belong to the T subge-
nome (1.7 Gb, 262Mb more sequence than that anchored
to psuedomolecules). Sequence assigned to the same sub-
genome by both polyCRACKER and comparison to the
progenitor species constituted 99.2% of the genome
(Table 2).

Subgenome classification in the complex allohexaploid,
Triticum aestivum
To show the scalability of our method, we applied poly-
CRACKER to group sequences by subgenome of origin
for wheat, Triticum aestivum [9]. The enormous allohex-
aploid wheat genome is approximately five times larger
than the human genome and its three subgenomes are
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designated A, B, D. Diploid species similar to the pro-
genitors of two of the subgenomes have been identified:
Aegilops tauschii for the D subgenome and Triticum
urartu for the A subgenome. A chromosome-scale gen-
ome assembly of Aegilops tauschii, the D-genome pro-
genitor of wheat, was recently published [19] and
assembled scaffolds are available for T. urartu [20]. We
used an alignment-based method to assign progenitor of
origin to 250 kb non-overlapping segments of the 15 Gb
T. aestivum assembly [9]. We used this draft genome of
T. aestivum, rather than the more recent chromosome-
scale assembly, as the draft genome is still a relatively
fragmented genome (N50 contig size of 232,659 bases),
which is reflective of more typical of assemblies for

large, complex, allopolyploid genomes. We used 250 kb
subsequences for initial clustering and included all pos-
sible smaller sequences later via signal amplification.
PolyCRACKER grouped 12.5 Gb of sequence into one of
three sequence bins. Overall agreement between poly-
CRACKER groups and classification based on alignment
to Aegilops tauschii and Triticum urartu was 0.997
(Cohen’s Kappa) (Table 2).
In Fig. 6c, the PCA plot of scaffolds versus repeat-k-

mers (Fig. 6a) were subset and colored by scaffolds be-
longing to the polyCRACKER-identified A and D ge-
nomes. There is a high correspondence between this
plot and a PCA plot with the same set of scaffolds col-
ored by their reference-based classification (Fig. 6d).

Table 1 Increasing k-mer length decreases the ability of polyCRACKER to assign N. tabacum genome sequences to a subgenome.
The threshold for minimum counts for k-mers scales inversely to the k-mer length

Kmer length Minimum k-mer
count threshold

Cohen’s Kappa: unambiguous;
all sequences

Amount Sequence Agreement /
Total Genome

Number of k-mers
used

15 150 0.998, 0.991 0.868 929,119

23 150 0.998, 0.989 0.867 296,059

26 150 0.998, 0.985 0.865 195,362

33 120 0.998, 0.986 0.866 108,370

43 100 0.997, 0.975 0.859 35,058

53 80 0.993, 0.996 0.826 13,061

Fig. 4 Increasing k-mer length decreases the frequency of repetitive-k-mers spread across the genome. A range of k-mer lengths were tested for
N. tabacum
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Repeat annotation and analysis in N. tabacum
In addition to using k-mers to separate subgenomes,
PolyCRACKER can use repetitive elements, such as
LTRs and other transposons, found via common repeat
finding programs such as RepeatModeler and RepeatSc-
out, to separate subgenomes by identifying differential
repetitive elements.
Using the pseudomolecule-anchored scaffold set, chosen

because of a lower dispersion in subsequence length as
compared to the unanchored scaffolds, 300 differential re-
peats were identified, then used to separate the subge-
nomes of N. tabacum following the same approach used
for k-mers (Fig. 2d-f). A total of 2.3 Gb out of 2.9 Gb,
79.5% of the total pseudomolecule-anchored genome se-
quence, was successfully assigned to the S and T subge-
nomes that were also in agreement to progenitor-mapped
labels. The subgenome assignments from the repeat ana-
lysis demonstrated 0.87 agreement with the progenitor
mapped labels (Cohen’s Kappa) (Fig. 2 d-f).
In addition, polyCRACKER identified enriched sub-

classes of repeat elements that contributed significantly to
the subgenome assignments by comparing the categorical
distribution of the informative differential consensus re-
peats to the null distribution, and assigning a high chi-
squared value to repeat subclasses that are over or under
represented in the group of informative differential re-
peats. The top subclass, unknown, with a highest chi-

squared value of 780.74, was found. The same analysis
was done for top subclass two, Simple Repeats, and top
subclass three, LTR/Gypsy (Additional file 1: Table S3).

Discussion
The ability to accurately separate closely related ge-
nomes or subgenomes without prior knowledge of their
composition, relationship or a database of known species
is a significant advancement for the study of polyploid
genomes. We analyzed test datasets comprised of mul-
tiple closely related species and real polyploid genomes
to demonstrate the ability of polyCRACKER to separate
genomes ranging from small fungal genomes with little
repetitive DNA (Additional file 1: Table S1) to enormous
repeat-rich polyploid plant genomes (Table 2). By enab-
ling subgenome-specific analysis polyCRACKER can ac-
celerate rapid advancements in our understanding of
polyploid genome evolution and regulation. In particular,
it will enable functional studies of genes according to
subgenome, promote a deeper understanding of genome
dominance and enable comparative studies of diverse
polyploids to discern any rules governing polyploid gen-
ome evolution.
PolyCRACKER will be particularly useful for the latter

by allowing analysis of polyploid species that do not have
advanced genetic resources like genetic maps. It should
be noted that our overall primary goal for developing

Fig. 5 Distribution of the number of repeat-mers for all genome fragments of N. tabacum’s psueodomolecule-anchored assembly

Table 2 Unsupervised separation of subgenomes from polyploid plants using PolyCRACKER’s differential k-mer analysis

Species Fragment
length

k-mer
length

Genome
Size

Cohen’s Kappa (only
unambiguous)

Cohen’s Kappa (including
ambiguous)

Sequence in agreement /
total sequence

N. tabacum (including unanchored
sequences)

100 kb 26 3.8 Gb 0.999 0.984 0.992

N. tabacum (only anchored sequences) 250 kb 26 2.9 Gb 0.998 0.985 0.865

N. tabacum (only anchored sequences),
repeat elements

250 kb n/a 2.9 Gb 0.995 0.87 0.795

Triticum aestivum 250 kb 26 15.3 Gb 0.993 0.993 0.997
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polyCRACKER is beyond simply assigning sequences to
their subgenome within the modern allopolyploid.
Assignment of sequences to their location within the
modern allopolyploid can be accomplished by ever im-
proving technologies including optical maps, genetic
maps, Hi-C data, and various long-read sequencing tech-
nologies. Rather, the goal of polyCRACKER is to assign
sequences to their ancestral progenitor subgenome and
clarify what sequences were donated by which ancestral
progenitor (even a possibly extinct progenitor). Poly-
CRACKER is not limited to the analysis of only genomes
with long-range contiguity or scaffolding, as demon-
strated by our use of fragmented draft genome assem-
blies. However, if the analyzed genome does have
sufficient long-range information, additional insight can
be gleaned in the form of identification of translocations
between the original progenitor genomes. As shown in
Fig. 3, modern chromosomes of tobacco are a mosaic of
the original progenitor genomes. While this is known
for tobacco, due to the availability and prior identifica-
tion of its progenitor species, for many allopolyploid
species the progenitors of origin are unknown or extinct.
Therefore, polyCRACKER may be particularly useful

when applied to genomes with long-range information.
In allopolyploid genomes with long-range scaffolding,
polyCRACKER can uncover the frequency and nature of
chromosomal translocations between ancestral progeni-
tor genomes. Nonetheless, biological translocations
within the evolutionary history of a species is not the
only means by which chromosomal mosaics of ancestral
progenitors is observed. Indeed, errors in genome as-
sembly of allopolyploids in which a subsequence of one
homeologous chromosome is inserted in place of the
true sequence often produces the same observation. This
occurs frequently in allopolyploid genome assemblies as
many sequences within homeologous chromosomes are
virtually identical (with the exception of transposons,
viral DNA and other repetitive sequences). Thus poly-
CRACKER may be useful check for evaluating assembly
accuracy and identifying potential mis-assemblies in al-
lopolyploid genomes.
Repetitive DNA is a major component of eukaryotic

genomes. While polyCRACKER exploits the rapid turn-
over and evolution of repetitive elements to separate
closely related genomes, it can also be used as tool to
study the origin, evolution, and impact of repetitive

Fig. 6 Unsupervised grouping of Triticum aestivum subsequences by progenitor of origin using repeat-k-mers. a PCA labeled by database-free
grouping of 250 kb genome segments by polyCRACKER (Subgenomes a, d and ss are colored green, blue, and red respectively). b Spectral
embedding of Triticum aestivum dimensionality reduced information (reduction to 4-dimensions, visualized in 3-dimensions), in which edges
(grey lines) represent shared repeat-mer profiles that connect genome sequences. c Database-free grouping of a and d subgenomes by
polyCRACKER, and (d) sequences colored by their similarity to T. urartu (green) and A. tauschii (blue)
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DNA on the entire genome. We used the differential k-
mers identified by polyCRACKER to assign assembled
repeats to subgenomes. This also placed the k-mers into
the context of intact repetitive elements. We also dem-
onstrated that subgenome-specific repetitive elements
could be used to bin subsequences by subgenomes.
Existing unsupervised methods used to separate subge-

nomes were developed to bin genomes from metagenome
samples and are ill-suited for classifying allopolyploids be-
cause the homeologous chromosomes often have more
similar overall k-mer profiles than the profiles of chromo-
somes within their respective subgenomes. In contrast to
previous algorithms and approaches for grouping se-
quences by species of origin, we focus on the fact that
even closely related species often differ in the frequency of
repeat sequences present throughout their genome. This
is particularly useful for polyploid subgenomes because
such subgenomes are usually so closely related that they
do not differ in coarse genome features like tetranucleo-
tide frequency, GC content, or codon usage. The k-mers
used by polyCRACKER may correspond to sequences as-
sociated with transposons, viruses, and other parasitic se-
quences that have proliferated in one species relative to
another. PolyCRACKER groups scaffolds into bins that
correspond to distinct species by: 1) counting the number
of instances of short and/or long repeat k-mer sequences,
2) creating a sparse matrix of number of instances of k-
mers by the subsequences on which they occur, 3) redu-
cing the dimensionality of the sparse matrix by one of
several known (Table 3) applying a clustering method
(Table 3). PolyCRACKER can then further increase signal
by taking the resulting binned sequences and 1) counting
k-mer frequency, 2) identifying k-mers that are enriched
in one bin versus other bins, and 3) use the presence of
enriched k-mers on previously ambiguous sequences to
group them into the appropriate species bin.
Biased loss of repetitive sequence is often observed in

allopolyploids and in the case of N. tabacum, repetitive
sequence appears to have been preferentially lost from
the T-subgenome [17]. Indeed, both polyCRACKER and
database-dependent classification of N. tabacum confirm
that the S-subgenome is substantially larger than the T-
subgenome as suggested by others previously, and con-
sistent with biased repetitive sequence loss from the T
subgenome. We also identify several classes of repeats
that are enriched in each subgenome. Our observation
of significant enrichment of simple repeats in the T-
subgenome is consistent with the previous observation
that some classes of satellite repeats are several-fold
more prevalent in N. tomentosiformis than in N. sylves-
tris [17, 21]. Our observation of significant enrichment
of tranLTR/Gypsy and unknown elements in the S-
subgenome of N. tabacum is consistent with the prior
suggestion that N. sylvestris, but not N. tomentosiformis,

had recent bursts of repeat element proliferation, likely
involving Gypsy transposable elements [17]. In conclu-
sion, polyCRACKER is a robust method for classifying
sequences according to species of origin that will be im-
portant in future studies of allopolyploids.

Methods
We describe a method to group sequences belonging to
the same subgenome that consists of connecting
sequences within a graph in which edges are shared pro-
files of repetitive k-mers. The network graph is estab-
lished by considering a user-supplied number of regions
with closest repeat distributions (number of nearest
neighbors). The distance between sequence nodes in the
graph is indicative of the level of shared k-mers. Thus,
polyCRACKER groups sequences by species of origin by
connecting nodes, representing sequences, by edges that
represent the common occurrence of repetitive DNA se-
quences unique to that species or subgenome. This tech-
nique was applied to highly fragmented draft genome
assemblies or simulated assemblies. Scaffold lengths
were normalized by splitting larger sequences into
shorter subsequences. PolyCRACKER identifies poten-
tially informative k-mers that occur above a minimum
frequency. This greatly reduces the number of k-mers
that are subsequently mapped to the scaffolds to deter-
mine their per scaffold frequency.
PolyCRACKER creates a sparse matrix, in which rows

correspond to fragments and columns are unique k-
mers, and each intersection contains the frequency of
each unique k-mer on each scaffold subsequence. Then,
it performs dimensionality reduction on the sparse
matrix, projecting the high-dimensional data into a
lower-dimensional space, where each subsequence is
represented by a point in the lower dimensional space.
At this point we can visualize the data in three-
dimensional graphical plots (Figs. 2 and 6). In order to
assign sequences to species or subgenomes, poly-
CRACKER performs unsupervised clustering on the
low-dimensional data via clustering. Any ambiguous se-
quences are removed, but may be used later through a
signal amplification method described below.
To assign additional subsequences to species bins,

polyCRACKER identifies highly differential k-mers be-
tween the initially grouped scaffolds and uses these k-
mers to recruit the remaining, ambiguous subsequences.
Similar to above, we identify unique k-mers for each
preliminary group of scaffolds, and then identify k-mers
that differentiate those already grouped sequences by
comparing the number of occurrences of a particular k-
mer in one group versus the others. K-mers that occur
frequently in one group, but not in at least one of the
others, past a certain threshold, are output to a FASTA
file as differential k-mers for that group. PolyCRACKER
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maps each set of the differential k-mers against the en-
tire set of scaffolds in the assembly. We then find the
total counts for the sum of all differential k-mers of a
particular group for each subsequence. The results of
the aforementioned step may be plotted across entire
chromosomes (Fig. 3) as a cross-check for the test case,
which was done using shinyCircos [22] (polyCRACKER
formats the input data for shinyCircos). When the total
counts of an inferred subgenome’s differential k-mers in
a region are substantially larger than that of the differen-
tial k-mers of another inferred subgenome in that re-
gion, polyCRACKER extracts the binned sequences and
stores them in FASTA format. The now larger set of
grouped subsequences can be used as the new input for
another round of differential k-mer analysis to recruit
more subsequences. The previous steps (recruiting dif-
ferential k-mers and binning sequences) are repeated
until the number of iterations reaches a user-defined
cutoff, and the user can select the species bins from
any iteration of the binning process. The final results
and spectral graph can be visualized in several ways,
including force-directed physics simulations of the K-
nearest-neighbors graph to visualize changes in the
data’s structure over time. An analogous approach can
be taken for binning sequences by repeat elements,
although the k-mer analysis results must be used as
an input for that algorithm to identify the initial dif-
ferential repeat elements.
Below is a high level overview the methodology:

� Break the assembly into fragments of a fixed size,
keeping track of the scaffolds from which these
fragments came from.

� Bin the fragments by subgenome.
� Optionally, merge the binned fragments back

together based on their scaffold of origin (or bin the
entire original scaffold based on the total counts of
differential repetitive sequence). In addition, there is
an option available to assign remaining unassigned
fragments to a subgenome bin based on the consensus
assignment of all its neighboring fragments in the
original assembly.

Sensible recommendations for selection of PolyCRACKER
parameters
While the search space of polyCRACKER’s parameters
remains fairly unexplored, the algorithm provides a few

functions that can make recommendations on how to
set the parameters to achieve reasonable performance.
Of vital importance is making sure that there is not too
little repetitive content and not too much. If there is not
enough repeat content included in the genome frag-
ments, then they will be hard to bin. The function num-
ber_repeatmers_per_subsequence plots a histogram of
the number of repeat-mers present in each chunked
genome fragment. If this histogram is skewed to lower
k-mer counts in each fragment, then reducing the k-mer
size, increasing the length of the fragments, decreasing
the minimum genome-wide k-mer frequency for k-mer
inclusion, amongst other changes can help increase the
repetitive content of each fragment, thereby improving
the initial binning of these fragments into subgenomes.
There exists help documentation in the polyCRACKER
source code repository that can help inform about sens-
ible binning practices. Too much repetitive content can
be problematic because analyzing the excessive number
of repetitive k-mers is computationally demanding, and
reductions in the k-mer size could lead to the inclusion
of k-mers that are not unique to a particular subgenome.
This can be dealt with by subsampling as described
below.

Propagating PolyCRACKER labels via the relative position
of fragments
Since polyCRACKER performs best when the length
of the input sequences are similar, we split scaffolds
into fragments of similar length as we did when we
prepared the N. tabacum input dataset. However, it is
still possible to use prior information about the loca-
tion of the fragments in scaffolds. For example, if one
or several fragments belonging to a scaffold are classi-
fied to a subgenome, it is likely that other subse-
quences from the same scaffold are also associated
with that same subgenome. PolyCRACKER uses this
information by passing subgenome labels of classified
subsequences through a semi-supervised label propa-
gation algorithm that takes into account labels as well
as relative genomic positions from which subse-
quences are derived to infer the labels of the unclassi-
fied subsequences. Conversely, when interrogating
unvalidated assemblies, discordance between scaffold
labels and species assignment may indicate assembly
errors that can be fixed by breaking scaffolds.

Table 3 Dimensionality reduction and clustering techniques used in polyCRACKER for this study

Species Dimensionality reduction technique Clustering technique

N. tabacum (including unanchored sequences) KPCA with cosine kernel Bayesian Gaussian Mixture Models

N. tabacum (only anchored sequences) KPCA with cosine kernel Spectral Clustering

Triticum aestivum KPCA with cosine kernel Spectral Clustering
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Random sampling of repeat k-mers for datasets too large
to include all k-mers
PolyCRACKER can randomly subsample repeat k-mers
when the data set is too large to include all k-mers with
available computational resources. For example, there were
550,790,662 unique k-mers with frequencies between 3 and
100 within the Triticum aestivum genome. A matrix 550,
790,662 columns by many thousand rows is too computa-
tionally intensive to construct and subsequently analyze.
We therefore randomly sampled 2,420,450 k-mers to gener-
ate initial partitions of the subgenomes, and further sub-
sampled differential k-mers to obtain 568,637 k-mers for
the final partitioning of Triticum aestivum subgenomes.

Subgenome validation for complex allopolyploid species
For validating polyCRACKER subgenome groups in the
context of the N. tabacum and Triticum aestivum ge-
nomes in which subgenomes were not already labeled,
we used the progenitor species to assign species of origin
to respective sequences. The PolyCRACKER progenitor-
Mapping function exploits seal.sh function within the
bbtools toolkit (sourceforge.net/projects/bbmap/) to bin
subsequences based on reference progenitors, and serves
as a tool to compare polyCRACKER to reference-based
binning solutions. Progenitor mapped labels and binned
sequences are output from this analysis and can be visu-
alized on the PCA or the spectral embedded data. If
polyCRACKER is used to separate species from an input
genome instead of subgenomes, the original species la-
bels for the subsequences can be recovered.

Quantitative analyses on the classification and clustering
polyCRACKER results
The polyCRACKER function final_stats was used to per-
form quantitative analyses on polyCRACKER’s classifica-
tion and clustering results, with comparisons to the
results achieved by the reference-based progenitorMap-
ping and to the ground truth species extraction with
known species. For a classifier comparison of poly-
CRACKER’s results to the progenitor mapped subge-
nomes, the lengths of each subgenomes from both
analyses were found and compared to each other and
the original progenitor subgenome sizes, and amongst
other measures, Cohen’s Kappa and Jaccard. Similarity
between the amount of unambiguous sequence shared
between both analyses were calculated as measures of
agreement between the reference based and unsuper-
vised methods. For accuracy measures of polyCRACKER
versus ground truth labeling, such as when the subge-
nomes or species of each region/chunk are already
known, the amount of sequence correctly classified, pre-
cision, recall, and f1 scores were reported for each spe-
cies/subgenome and averaged, amongst other reported
metrics. Confusion matrices for each of the two

classification test types are output from the analysis.
Analyzing the clustering results, total sequence lengths
for each cluster is found and Silhouette and Calinski-
Harabaz scores can be calculated if supplying the ori-
ginal PCA data along with the final polyCRACKER out-
put labels. If either ground truth labels or progenitor
mapped labels are supplied, some measure of agreement,
homogeneity, and completeness between the two results
can be found.

Repeat annotation and analysis in N. tabacum
PolyCRACKER studies annotated repeats that are iden-
tified using RepeatModeler, which uses the de-novo re-
peat finding programs RECON [23] and RepeatScout
[24] to employ complementary computational methods
for identifying repeat element boundaries and family re-
lationships. RepeatModeler builds, refines and classifies
consensus models of putative interspersed repeats from
RECON and RepeatScout output. We further filtered re-
peat annotations using Pfam, and PANTHER annota-
tions of predicted repeats. The final non-redundant de
novo repeat database was then used with RepeatMasker
to annotate repeats across the genome sequence.

Subgenome classification using genome-wide annotated
repeats in N. tabacum
Genome-wide RepeatMasker annotation of repeats was
used with TE_cluster_analysis to generate a sparse
matrix of the subsequences by their distribution of re-
peats belonging to a particular family, family member,
class, and subclass (had a specific consensus sequence
label) via repeatGFF2Bed and sam2diffk-mer_clustering-
matrix. Each row of this matrix was labeled by poly-
CRACKER’s k-mer analysis final subgenome labeling,
and the highly informative repeats were found by calcu-
lating the chi-squared statistic of each column of the
matrix. PolyCRACKER transformed this matrix into a
matrix depicting the total counts of a particular repeat
for each subgenome (the differential repeat subgenome
matrix), and labeled a repeat by a subgenome if it was
differentially present in one subgenome above a user-
specified threshold. The consensus repeats were assigned
a higher chi-square statistic if their assembly frequency
was indicative of greater dependence between repeat and
species label and polyCRACKER denotes these repeats
as highly informative. The consensus repeats with the
highest chi-square statistic were chosen from the differ-
ential repeats to find the most informative differential
repeats, and the same number of repeats were selected
from each subgenome for subsequent analysis. To clus-
ter and extract the subgenomes using a repeat count
matrix, this matrix was fed into subgenome_extraction_
via_repeats, which finds the most highly informative
differential repeats, feature selects the matrix by these
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repeats, performs dimensionality reduction using PCA,
finds a neighborhood community graph and clusters the
resulting dataset via Spectral Clustering. Signal amplifica-
tion is employed on these clusters analogous to the k-mer
analysis in order to iteratively recruit more subsequences
to the final bins. PolyCRACKER also employs multiple al-
gorithms to discover repeat element subclasses that are
important and informative for differentiating the subge-
nomes, as discussed in the Additional file 1.

Distinguishing species of origin using de novo repeat
annotations
PolyCRACKER grouped N. tabacum’s pseudomole-
cule-anchored assembly (broken into 250 kb frag-
ments) by species of origin using de novo repeat
annotations in a similar method as used for k-mers.
A matrix of scaffolds vs repeats was constructed. Dif-
ferential repeats were identified as defined by a five-
fold greater presence in one subgenome versus the
other. Subgenome labels found via polyCRACKER’s k-
mer based binning were then used to identify highly
informative repeats (features with high chi-squared
value). Intersection of differential repeats with the
150 most informative repeats from each subgenome
yielded 300 informative differential repeats. Poly-
CRACKER then performed feature selection on the
matrix, keeping columns/repeats corresponding to
highly informative repeats. PolyCRACKER performed
principal component analysis and clustered the fea-
ture selected matrix to find new labels of scaffolds
and to see if repeats can distinguish subgenomes. In
this clustering process, nodes, representing scaffolds,
were linked by edges that connected two nodes with
similar consensus repeat coverage/content, and Spec-
tral Clustering was used to perform normalized cuts
of this graph to form initial partitions. Using the
same process as outlined for k-mers, differential re-
peats were identified between the initial sequence
bins by being eight or greater times present in one
genome versus the other, and then they were used to
recruit more subsequences via the signal amplification
process, finding the total hits of these differential re-
peats in each bin. PolyCRACKER reassigned subge-
nome labels if their ratio of hits of the total
differential repeat counts is greater than a threshold,
in this case 3 times greater. The process of identifying
differential repeats and then re-binning by the ratio
of total repeat counts for each scaffold is reiterated
via a bootstrap process until convergence, in which
after a number of trials, the amount of sequence
assigned to each bin does not appear to make large
changes, converges on a set amount of sequence, and
the number of times this process can be run is left to
the user’s discretion.

Identification of informative repeat classes
Consensus repeats, identified during de novo repeat
finding and labelled by unique identifiers were identified
by polyCRACKER as differential if the number of identi-
fied instances of that consensus repeat were five or more
times more frequent in one subgenome versus the other.
Out of all differential repeats identified, polyCRACKER
selected 400 (200 from each subgenome) of these re-
peats (from the unanchored N. tabacum scaffolds) as
subgenome signatures. The repeats were grouped to-
gether by their subclass annotation. Specific subclasses
of repeats were found by polyCRACKER to be highly in-
formative if their number of informative differential
consensus repeats was statistically significantly under or
over represented versus a similar distribution of the
consensus repeats across the entire genome (via a chi-
squared statistic).

Additional file

Additional file 1: Supplementary data. This files contains supplementary
data about polyCRACKER performance on simulated datasets comprised
of mixtures of subsequences from multiple closely-related species and
highly differential repeat subclasses between N. Tabacum subgenomes.
(DOCX 380 kb)
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