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Cellular oxidative stress plays an important role in retinal pigment epithelial (RPE) cell death during aging and the development
of age-related macular degeneration. Early reports indicate that during phagocytosis of rod outer segments, there is an increase
of RPE oxidative stress and an upregulation of PPARγ mRNA in these cells. These studies suggest that activation of PPARγ may
modulate cellular oxidative stress. This paper presents a brief review of recent studies that investigate RPE oxidative stress under
various experimental conditions. This is followed by a detailed review on those reports that examine the protective effect of the
natural PPARγ ligand, 15d-PGJ2, against RPE oxidative stress. This agent can upregulate glutathione and prevent oxidant-induced
intracellular reactive oxygen species accumulation, mitochondrial depolarization, and apoptosis. The cytoprotective effect of this
agent, however, is not shared by other PPARγ agonists. Nonetheless, this property of 15d-PGJ2 may be useful in future development
of pharmacological tools against retinal diseases caused by oxidative stress.

Copyright © 2008 Jason Y. Chang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. AGE-RELATED MACULAR DEGENERATION:
POSSIBLE INVOLVEMENT OF RPE

Age-related macular degeneration (AMD) is the leading
cause of legal blindness in individuals 50 years of age or older
in the United States and developed countries. AMD can be
divided into two major forms as follows: (i) nonneovascular
form, also known as “dry” or “nonexudative” form; as clin-
ical findings of this form include drusen and abnormalities
of the retinal pigment epithelium (RPE) and (ii) neovascu-
lar form, also known as “wet” or “exudative” form, which
is defined by the appearance of choroidal neovascularization
with subsequent subretinal fibrosis or disciform scarring. Pa-
tients with drusen larger than 63 μm in diameter (termed
“soft drusen”) have a high risk of developing choroidal neo-
vascularization [1].

There is evidence that pathological alterations of RPE
around macula area may be partially responsible for the de-
velopment of AMD [2, 3]. Clinical abnormalities of RPE in

AMD include clumping and atrophy of these cells. RPE is in-
volved in the ingestion of photoreceptor outer segments and
the general health of photoreceptors. As a result, pathologi-
cal changes of RPE can lead to photoreceptor cell death and
visual impairment. Study with human cadaver eyes indicates
that there is an age-dependent RPE apoptosis as evidenced by
TUNEL staining [4]. A separate study further indicates that
eye specimens from patients with AMD show statistically
more macular RPE apoptosis than those without AMD [5].

2. POSSIBLE ROLES OF OXIDATIVE STRESS IN AMD

Retina is exposed to a combination of sunlight, high concen-
trations of polyunsaturated fatty acids, and high oxygen envi-
ronment. It is proposed that reactive oxygen species (such as
hydrogen peroxide, superoxide anion, hydroxyl radicals, and
singlet oxygen) are constantly generated in this environment.
As a result, oxidative stress is believed to have an important
role in RPE apoptosis and in the development of AMD [2, 3].
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An increase of oxidative stress in RPE is associated with
an increase of cellular catalase, metallothionein [6], and glu-
tathione S-transferase [7], which should serve as a protective
mechanism to decrease the cytotoxicity caused by H2O2 and
other reactive oxygen species. This protective mechanism de-
clines with age. For example, a study analyzing metalloth-
ionein levels in RPE of macular region showed a significant
(68%) decrease in aged donors (mean age = 80-year-old) as
compared to those from younger donors (mean age = 58-
year-old) [8]. A separate report also concluded that there was
an age-dependent decrease of catalase activity in RPE [9].
These studies suggest that RPE cells in the elderly are more
susceptible to oxidative stress-induced damage.

3. STUDIES OF OXIDATIVE STRESS ON RPE:
PREVENTION BY PHARMACOLOGICAL AGENTS

Given the observations that RPE might be the prime tar-
gets for oxidative stress, a number of studies are con-
ducted to study this issue. A majority of research use di-
rect oxidative agents, such as hydrogen peroxide (H2O2)
or t-butylhydroperoxide (tBH), to initiate cellular oxidative
stress, as further discussed below. Other conditions of exper-
imental oxidative stress include: intense light [10–12], iron
[13], and oxidative metabolites that are toxic to cells, such as
A2E [14, 15], acrolein [16], and oxysterols [17–19].

By using H2O2 or tBH as the direct source of oxida-
tive stress on RPE, a number of studies focus on strategies
to build up cellular defense mechanisms against the insult.
Several reports explore the importance of cellular antioxida-
tive enzymes, such as catalase [20], glutathione-S-transferase
[21, 22], superoxide dismutase [23], and methionine sulfox-
ide reductase [24]. Growth factors including lens epithelium-
derived growth factor [25], keratinocyte growth factor [26],
and pigment epithelium-derived factor [27] are also protec-
tive against oxidative stress. Other proteins that can enhance
RPE antioxidative mechanism against H2O2 include bcl-2
[28], alpha B-crystallin [29], melatonin [30], and poly(ADP-
ribose) polymerase [31].

In addition to those protein factors discussed above,
many investigators seek the use of small-molecule pharma-
cological agents to prevent RPE damage caused by H2O2

or tBH. Examples of these pharmacological agents include:
(R)-alpha-lipoic acid [32], 17-beta-estradiol [33], flavonoids
[34], and L-carnitine [35]. The endogenous PPARγ lig-
and, 15-deoxy-delta-12,14-prostaglandin J2(15d-PGJ2), is al-
so very effective in preventing RPE oxidative stress, as further
discussed below.

4. PREVENTION OF OXIDATIVE STRESS-INDUCED
RPE DEATH BY 15d-PGJ2

15d-PGJ2, a prostaglandin derivative, is normally present in
tissues at low levels (<1 nM), but can reach high concentra-
tions during infection and inflammation [36]. Under in vitro
conditions, it can be induced by chemical [37] or physical
[38] stress. It has a very potent anti-inflammatory effect [39].
For example, it is a potent inhibitor of macrophage [40–42]
and microglia [43–45] activation.

During RPE ingestion of rod outer segments, there is a
generation of H2O2 [6, 46] and a 10-fold upregulation of
PPARγ mRNA [47]. Based on these observations, it is likely
that PPARγ is involved in RPE cellular responses toward
H2O2. One can hypothesize that PPARγ agonists should
modulate cellular defense against oxidative stress.

We reported earlier that the PPARγ agonist, 15d-PGJ2,
protected H2O2-induced RPE cell death [48]. With primary
human RPE cells, pretreatment of cells overnight with 15d-
PGJ2 dose-dependently prevented H2O2-induced cytotoxic-
ity, such that the viability raised from ∼25% (H2O2 only)
to ∼80% of control. Maximal protection was observed at
∼2 μM 15d-PGJ2. Similar protection was made in the hu-
man ARPE-19 cell line. While H2O2 caused significant nu-
clear condensation, a sign of apoptosis; this was largely pre-
vented by 1 μM 15d-PGJ2 (see Figure 1). However, it should
be mentioned that the protective effect by 15d-PGJ2 was not
shared by other PPARγ agonists, such as ciglitazone, azelaoyl
PAF, or LY171883. These results raised the possibility that
the protective effect by 15d-PGJ2 was not mediated through
PPARγ activation. This idea was supported by other investi-
gators, as further discussed below.

The cytoprotective effect of 15d-PGJ2 on H2O2-treated
RPE was further studied by Qin et al. [49]. These investi-
gators confirmed that 1 μM 15d-PGJ2 effectively prevented
H2O2-induced cell death. Other PPARγ agonists, such as
AGN195037 or Roziglitazone, had no protective effects. Im-
portantly, reduction of PPARγ by siRNA did not block the
protective effect of 15d-PGJ2. This set of experiments to-
gether with those described above strongly suggests that
15d-PGJ2 protect RPE cells through a PPARγ-independent
mechanism. Some properties of 15d-PGJ2 are independent
of PPARγ activation, as reviewed by Straus and Glass [39].

Subsequent studies by Qin et al. [49] indicated that 15d-
PGJ2 could upregulate glutamylcyteine synthetase, the rate-
limiting enzyme that regulates glutathione (GSH) synthe-
sis. These investigators reported that 15d-PGJ2 at 1-2 μM in-
duced GSH levels to∼300% of control. With 1 μM 15d-PGJ2,
the maximal induction occurred at 18–24 hours after treat-
ment. This GSH induction appeared to depend on JNK and
p38 pathways because inhibitors of these pathways greatly re-
duced GSH induction by 15d-PGJ2. Induction of GSH by
15d-PGJ2 is also observed in other cell types [37, 50, 51].
Since intracellular GSH is very important in cellular defense
against oxidative stress, the induction of GSH should have
an important role in the protective effect caused by 15d-
PGJ2 treatment. Even though induction of heme oxygenase-
1 (HO-1) was associated with cytoprotective effects of 15d-
PGJ2 in other studies [52], this enzyme had no roles in the
protection observed in this experimental system.

If 15d-PGJ2 greatly induced intracellular GSH, one
would expect that this agent should reduce oxidant-induced
intracellular reactive oxygen species generation. Indeed, we
reported earlier that 15d-PGJ2 could reduce H2O2- and tBH-
induced reactive oxygen species in human ARPE-19 cells
[53]. For example, pretreatment of cells with 1 μM 15d-
PGJ2 reduced 1 mM H2O2-generated reactive oxygen species
to ∼80% of untreated cells challenged with H2O2. Simi-
lar reduction was observed in cells challenged with tBH.
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Figure 1: Prevention of H2O2-induced nuclear condensation by 15d-PGJ2. The human RPE cell line ARPE-19 cells were treated with 1.5 mM
H2O2 for various periods of time, and then processed for nuclear staining by bisbenzimide (Hoechst 33258) to identify apoptotic cells [48];
(a): untreated cells; (b): 4 hours; (c): 12 hours; (d): 16 hours after treatment. Arrows in (c) point to representative cells with condensed
nuclei, an indication of apoptosis. (e): Cells were pretreated with 1 μM 15d-PGJ2 overnight, followed by 1.5 mM H2O2 for 16 hours (without
15d-PGJ2). The number of apoptotic cells was greatly reduced by 15d-PGJ2. Scale bar: 100 μm.

This reduction apparently was enough to keep free radical
levels under a critical threshold, thus rendering cells survive
an otherwise detrimental oxidant insult.

Our study further indicated that 15d-PGJ2 helped RPE
cells to maintain mitochondrial integrity [53]. This is sig-
nificant because mitochondria are intimately involved in
apoptosis. Oxidative stress can induce mitochondria dys-
function, which is a critical event that leads to cytochrome c
release and subsequent activation of caspases, a group of en-
zymes that executes apoptosis [54, 55]. An important event
associated with mitochondrial dysfunction is a drop of mi-
tochondrial membrane potential (ΔΨm), that is, mitochon-
drial depolarization. This event initiated by oxidative stress
was largely prevented by 1 μM 15d-PGJ2 (see Figure 2). This
is likely to prevent cytochrome c release and subsequent ac-
tivation of the apoptosis pathway.

5. CYTOPROTECTIVE VERSUS CYTOTOXIC EFFECTS
OF 15d-PGJ2

In addition to those studies described above regarding the
protective effect of 15d-PGJ2 against oxidative stress on RPE,
this agent is cytoprotective toward other retinal cells. For ex-
ample, Aoun et al. [56] reported that glutamate could in-
duce oxidative stress and cell death in the rat retinal gan-
glion cell line, RGC-5 cells. This cell death was prevented by
1–5 μM 15d-PGJ2. Outside of retina, 15d-PGJ2 was effective
in preventing glutamate-induced cell death of primary cor-
tical neurons [51]. Both groups attributed the protective ef-
fect through the antioxidative property of 15d-PGJ2. In this
respect, it should be noted that this agent can also prevent
cell death caused by toxic metabolites of oxidative stress. For

example, we reported earlier that 15d-PGJ2 prevented cyto-
toxicity of oxysterols, toxic cholesterol metabolites generated
under oxidative stress [57]. The cytoprotective effect of 15d-
PGJ2 in other experimental systems were also described in
reports by Kawamoto et al. [58] and Itoh et al. [59].

It is clear now that 15d-PGJ2 can induce intracellular ox-
idative stress [60, 61]. It is likely that this agent at low con-
centrations (1–5 μM) can cause low levels of oxidative stress,
thus inducing the build up of cellular defense mechanisms
against oxidative stress. However, at high concentrations, this
agent can cause severe oxidative stress and cell death [60, 61].
Induction of apoptosis by this agent was reported in several
cell types [62–64]. This interesting bifunctional property of
15d-PGJ2 has been reported [50], and is a subject of review
by Na and Surh [65]. This also prompts a recent microarray
study analyzing the regulation of prosurvival and prodeath
genes by this agent [66].

6. CONCLUDING REMARKS

Oxidative stress is believed to play an important role in RPE
cell death during aging and the development of age-related
macular degeneration. During phagocytosis of rod outer seg-
ments, there is an upregulation of PPARγ in RPE cells. The
natural PPARγ ligand 15d-PGJ2 has a potent protective ef-
fect for RPE under oxidative stress. This agent can upreg-
ulate GSH and prevent oxidant-induced intracellular reac-
tive oxygen species accumulation, mitochondrial depolariza-
tion, and apoptosis (see Figure 3). There is also evidence that
15d-PGJ2 can prevent glutamate-induced death of cultured
retinal ganglion cells. Current data suggests that this cyto-
protection is not mediated through the activation of PPARγ.
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Figure 2: Prevention of H2O2-induced mitochondrial membrane depolarization by 15d-PGJ2. Binding of the JC-1 dyes to mitochondria leads
to the appearance of two peaks. The green peak (at ∼545 nm) represents JC-1 monomers of this dye. The red peak (at ∼595 nm) represents
JC-1 aggregates, which is caused by the negative charge of mitochondrial membrane. Depolarization of mitochondrial membrane causes
a shift in the emission spectrum from red to green color, which can be quantified by a fluorescence plate reader. The relative intensity of
these two peaks is a measurement of relative mitochondrial potential such that a higher ratio represents more mitochondrial membrane
depolarization. (a)–(d): The JC-1 emission spectra between 520 nm to 620 nm were determined for cells under various conditions [53]; (a):
untreated cells; (B): cells treated with 1 μM 15d-PGJ2 overnight; (c): cells treated with 1.5 mM H2O2 for 2 hours; (d): Cells treated with 1 μM
15d-PGJ2 overnight, then with 1.5 mM H2O2 (without 15d-PGJ2) for 2 hours. Note H2O2 caused a shift of the relative intensity of the peaks,
and 15d-PGJ2 pretreatment restored membrane potential to a condition closer to untreated cells. (e)-(f): Cells were pretreated with 1 μM
15d-PGJ2 overnight, then with 1.5 mM H2O2 (without 15d-PGJ2) for 2 hours (e) or 4 hours (f); then the 545/595 emission intensity ratios
were determined. Note in either 2-hour or 4-hour treatment, H2O2 caused an increase of the 545/595 emission intensity ratio, indicating
mitochondrial depolarization. 15d-PGJ2 pretreatment restored the ratio to that similar to control value (P < .001 between H2O2-treated and
15d-PGJ2+H2O2-treated cells in (e) and (f)).
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Figure 3: Protective effects of 15d-PGJ2 against oxidative stress. Ox-
idative stress on RPE cells can lead to intracellular accumulation
of reactive oxygen species. This can result in mitochondrial dys-
function, which in turn causes activation of the apoptosis pathway.
Current data suggests that 15d-PGJ2 can block each of these events.
One mechanism that causes this protection is through upregulation
of GSH synthesis by activation of the glutamylcystein synthetase.
There is a possibility that other cytoprotective mechanisms are also
activated that lead to prevention of apoptosis. This remains to be
studied.

The antioxidative property of 15d-PGJ2 may be useful in fu-
ture development of pharmacological tools against retinal
diseases caused by oxidative stress.

Finally, based on anti-inflammatory effects of 15d-PGJ2,
we would like to speculate that this agent might be effective
in the treatment of other ocular diseases such as idiopathic
autoimmune anterior uveitis. To confirm our hypothesis, we
intend to explore the effect of 15d-PGJ2 on experimental au-
toimmune anterior uveitis (EAAU) which serves as an ani-
mal model of idiopathic human autoimmune anterior uveitis
[67, 68].
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