The use of ultrasound for the estimation of muscle mass: one site fits most?

During the last two decades, DXA-derived appendicular lean soft tissue mass has served as a major criterion for diagnosing the age-related loss of skeletal muscle mass (i.e. sarcopenia).¹ From a clinical perspective, however, DXA measurements are costly, and the device has limited availability. A possible alternative method for measuring muscle size (e.g. muscle thickness) in humans may be B-mode ultrasound. It is well known that ultrasound is a non-invasive, quick, valid, and reliable imaging technique to estimate muscle thickness in muscles of the extremity and trunk.^{2,3}

With this in mind, we read with great interest the article by Nijholt and colleagues⁴ where they reported the validity and reliability of ultrasound to quantify musculature in older adults. The authors also reported on two prediction equations for estimating DXA-derived muscle mass. Although not reported within this paper, we previously noted that two of those prediction equations selected by Nijholt et al. included systematic error.⁵ Over the last couple of years, we have published several prediction equations for estimating DXA-derived appendicular lean mass in older adults.^{6–8} Unfortunately, those equations were not included in the article by Nijholt et al.⁴ Interestingly, a single site measurement of forearm muscle thickness was found to be good predictor of DXA-derived lean soft tissue mass in older Caucasian adults,⁶ and the equation was also found to be accurate in older Japanese adults.⁷ Notably, the standard error of the estimate was 1.95 kg for the equation that used a single muscle thickness site, whereas the standard error of the estimate of the equation that included eight predictors was 1.13 kg.⁶ The amount of time required for a single ultrasound measurement is generally less than 1 min per person, so this estimate appears both valid and pragmatic.

In summary, our previous studies^{6,7} suggest that forearm muscle thickness measurements are a tolerable and less demanding assessment to use for older adults, and ultrasound estimated appendicular lean mass from the forearm muscle thickness may be a useful indicator for evaluating muscularity in older adults. Although additional research is needed, our recent work along with others noted within the Nijholt et al.⁴ review may be useful with the development of ultrasound evaluation for health screenings as well as for the primary diagnosis of sarcopenia.

Acknowledgements

The authors certify that they comply with the ethical guidelines for authorship and publishing of the Journal of Cachexia, Sarcopenia and Muscle.⁹

Takashi Abe

Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, & Recreation Management, The University of Mississippi, University, MS 38677, USA t12abe@gmail.com

Jeremy P. Loenneke

Kevser Ermin Applied Physiology Laboratory, Department of Health, Exercise Science, & Recreation Management, The University of Mississippi, University, MS 38677, USA

Robert S. Thiebaud

Department of Kinesiology, Texas Wesleyan University, 1201 Wesleyan St, Fort Worth, TX 76105, USA

References

 Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working

Group on Sarcopenia in Older People. *Age Ageing* 2010;**39**:412–423.

© 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

- Abe T, Loenneke JP, Thiebaud RS, Loftin M. Morphological and functional relationships with ultrasound measured muscle thickness of the upper extremity and trunk. *Ultrasound* 2014;**22**:229–235.
- Abe T, Loenneke JP, Thiebaud RS. Morphological and functional relationships with ultrasound measured muscle thickness of the lower extremity: A brief review. Ultrasound 2015;23:166–173.
- 4. Nijholt W, Scafoglieri A, Jager-Wittenaar H, Hobbelen JS, van der Schans CP. The reliability and validity of ultrasound to quantify muscles in older adults: A systematic review. *J Cachexia Sarcopenia Muscle* 2017;**8**:702–712.
- Abe T, Loenneke JP, Young KC, Thiebaud RS, Nahar VK, Hollaway KM, et al. Validity of ultrasound prediction equations for total and regional muscularity in middle-aged and older men and women. *Ultrasound Med Biol* 2015;41:557–564.
- Abe T, Thiebaud RS, Loenneke JP, Young KC. Prediction and validation of DXA-derived appendicular lean soft tissue mass by ultrasound in older adults. Age (Dordr) 2015;37:114.
- Abe T, Fijita E, Thiebaud RS, Loenneke JP, Akamine T. Ultrasound-derived forearm muscle thickness is a powerful predictor for estimating DXA-derived appendicular

lean mass in Japanese older adults. *Ultrasound Med Biol* 2016;**42**:2341–2344.

- Abe T, Loenneke JP, Thiebaud RS, Fujita E, Akamine T, Loftin M. Prediction and validation of DXA-derived appendicular fat-free adipose tissue by a single ultrasound image of the forearm in Japanese older adults. J Ultrasound Med 2017; https://doi.org/10.1002/jum.14343.
- 9. von Haehling S, Morley JE, Coats AJS, Anker SD. Ethical guidelines for publishing in the Journal of Cachexia, Sarcopenia and Muscle: update 2015. *J Cachexia Sarcopenia Muscle* 2015;**6**:315–316.