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Wood–plastic composites (WPCs) are a type of environmentally friendly materials widely
used in daily life. This paper selected low-value biomass, corn stalk (CS), as the
lignocellulosic resource for polyvinyl chloride (PVC)-based WPCs. To depict the
relationship between lignocellulosic composition (cellulose, hemicellulose, and lignin)
and mechanical performance of WPCs, pretreatments have been optimized to
selective removal of lignin using an alkaline-EtOH stewing process and selective
removal of hemicellulose using an acid stewing process. The αC sample, in which
both lignin and hemicellulose were removed, shows the highest degree of crystallinity
(72.60%) as estimated from X-ray diffraction analysis results and fibrous morphology with
the highest aspect ratio as seen in scanning electron microscopy images. Compared with
PVC/CS, PVC/αC gives a substantial increase in tensile strength and modulus by 37.21
and 21.66% and flexural strength and modulus by 29.98 and 34.88%, respectively. These
improvements lie in the reinforcing effect of a fibrous structure and the improved interfacial
compatibility as proven by scanning electron microscopy and dynamic mechanical
analyzer results. Considering the extracted lignin and hemicellulose can be further
developed to valuable biochemicals, the pretreatment to CS adds value to both WPC
materials and biorefinery products.
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INTRODUCTION

The environmental and climate problems caused by massive petroleum consumption have
accumulated to a stage where people have to respond quickly. The global plastic demands are
approximately 300 Mt/year nowadays (Liminana et al., 2018) and are still dominantly fulfilled by
petroleum-based plastics. To replace petroleum-based plastics, at least partially, with materials from
renewable resources or bio-based wastes is one practical approach to reduce the carbon footprint
(Tahir et al., 2017; Andreeßen and Steinbüchel, 2019; Quiles-Carrillo et al., 2019). Wood–plastic
composites (WPCs) composed of thermoplastics and wood powders have been developed since the
1990s and are nowadays widely applied as furniture and domestic/outdoor building materials (Liu
et al., 2019; Sun et al., 2019; Mu et al., 2021). WPCs are generally regarded as a type of
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environmentally friendly materials due to their partial biomass
origin. Low-value lignocellulosic biomass, e.g., corn stalk (CS),
and recycled thermoplastics, can also be involved to minimize
carbon footprint.

High-density polyethylene and polypropylene were most
exploited as the thermoplastic matrix for WPCs due to their
high production amount, high durability, and ease of processing
(Tserki et al., 2005; Hao et al., 2020). Lignocellulose is mainly
composed of cellulose, hemicellulose, and lignin, each playing a
particular structural role and self-assembled to support the plant
(Boerjan et al., 2003). Their compositions vary depending on the
origin of the resource and therefore impose influences on the
properties of the resulting WPCs (Nourbakhsh and Ashori,
2010). WPCs filled with highly crystalline lignocellulosic fibers
showed significantly improved tensile, flexural, and impact
properties (Michell et al., 1976; Tian et al., 2009; Ashori and
Nourbakhsh, 2010). Filling with hemicellulose-extracted
lignocellulose could improve the tensile strength and water
resistance of the composites (Enayati et al., 2009; Hosseinaei
et al., 2012). Incorporation of lignin ormodified lignin intoWPCs
has found improvement in weatherability and thermal stability
(Kharade and Kale 1999; Maldhure et al., 2012).

Lignocellulose contains large amounts of polar functionalities
(e.g., -OH), especially in the cellulose and hemicellulose
components. Therefore, the lignocellulose is basically
incompatible with the hydrophobic polyolefin matrix (Alvarez-
Valencia et al., 2010; Ayrilmis et al., 2011) and results in poor
interfacial adhesion between the lignocellulose and
thermoplastics domains and inefficient stress transfer from the
ductile matrix to the rigid lignocellulose reinforcements
(Kazayawok et al., 1999; Chaharmahali et al., 2008). To
enhance the mechanical properties of the composites,
compatibilizers such as ethylene-acrylic acid copolymer (Szabo
et al., 2018), ethylene-vinyl acetate copolymer (Alexy et al., 2004),
maleic anhydride (Cazacu et al., 2004), and grafting modifiers
(Casenave et al., 1995) were explored as functional additives.

Polyvinyl chloride (PVC) is another type of thermoplastics
extensively used in daily life. Compared with high-density
polyethylene and polypropylene, it contains non-protonic
polar C-Cl bonds in its macromolecules, which impart higher
compatibility with the lignocellulosic fillers. Due to the intrinsic
flame retardance of PVC, PVC-based WPCs are especially
suitable for domestic applications. Researchers studied a few
PVC-based WPCs with various lignocellulose resources,
including eucalyptus wood, rice husk, bamboo, CS, and sisal
(Petchwattana et al., 2012; Chen et al., 2017; Chen J. et al., 2018;
Zong et al., 2020; Qi et al., 2021). Wood flour treated with an
aminosilane modifier was reported to provide improved
mechanical properties (Yim and Kim, 2012). However, the
research about PVC-based WPCs is far less intensive
compared with that for polyolefin-based WPCs. It is still
unclear how the composition in lignocellulose plays a role in
the mechanical performance of PVC-based WPCs.

In this paper, low-value biomass, CS, has been selected as the
lignocellulosic resource for PVC-based WPCs. To distinguish the
contribution of the components (cellulose, hemicellulose, and
lignin), pretreatments have been optimized to selective removal of

hemicellulose or/and lignin from CS. The raw CS and the residue
compounds have been examined to analyze their composition,
structure, and morphology. PVC-based WPCs have been
prepared with the raw CS and the residue compounds as
fillers and characterized to depict the relationship between
lignocellulosic composition and mechanical performance of
the resulting WPCs.

EXPERIMENTAL AND MATERIALS

Materials
Pretreatment reagents and processing additives were purchased
from Aladdin Company. PVC was purchased from Tianye
Group, China. CS was obtained from a local factory in
Lianyungang, China, which was smashed and screened to
40–60 mesh and dried at 100°C to constant weight. The
composition of the raw CS (on a dry weight basis) is 35.90 wt
% of cellulose, 24.8 wt% of hemicellulose, 19.7 wt% of lignin,
3.9 wt% of ash, and 15.7 wt% of unknown components.

Methods
Characterization of Lignocellulose
The composition of lignocellulose samples was analyzed according to
National Renewable Energy Laboratory procedures (Sluiteret al.,
2008). The acid hydrolysate was quantified by high-performance
liquid chromatography (Waters 1525–2414) with a refractive index
detector, using an Aminex HPX-87H ion exclusion column (300 ×
7.8mm; Bio-Rad Laboratories, Hercules, CA, USA). The mobile
phase was 5.0-mM H2SO4 at a flow rate of 0.6 ml min−1; the
temperature of the column was 55°C. Lignin was determined by
gravimetric analysis (calcined acid-insoluble residue at 575°C for
24 h) and ultraviolet–visible spectroscopy.

Fourier-transform infrared spectroscopy (FT-IR) analysis was
conducted using Thermo Scientific IS-5 with a universal attenuated
total reflection accessory. FT-IR spectra were collected from 4,000 to
500 cm−1 for 16 scans. Morphology analysis was conducted using a
scanning electron microscope (SEM, FEI Quanta 200 FEG SEM) at
2 kV and 5,000 magnification. Thermogravimetric analysis (Netzsch
STA449F3) of lignocellulosic sampleswas conducted from25 to 600°C
at 10°Cmin−1 under nitrogen flow (40mlmin−1). The crystallinity of
lignocellulosic samples was characterized by an X-ray diffractometer
(Bruker D8). The samples of particle size less than 100 mesh were
scanned from 10 to 40 at a speed of 10°min−1 in the 40-kV voltage and
40-mA current.

Characterization of Wood–Plastic Composites
The dynamic mechanical properties of WPCs were characterized
by the dynamic mechanical analyzer (DMA 450, France, Metra-
vib). The samples (20 × 8 × 3 mm) were scanned in a tensile mode
at 1 Hz with a strain amplitude of 15 μm, in a temperature range
from 25 to 140°C at 3°C min−1. The tensile and flexural properties
of WPCs were characterized using a universal testing machine
according to the GB/T 1040.2–2006. The dumbbell tensile
samples (160 × 20 × 4 mm) were tested at a tensile rate of
5 mmmin−1. The flexural samples (80 × 10 × 4 mm) were
tested at a rate of 2 mmmin−1.
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Experimental
Pretreatment of Corn Stalk
Typically, 1-kg CS was placed in a 10-L autoclave with 6 L of 80/
20 vt% ethanol/water, 8 wt% NaOH, and 1 wt% anthraquinone
and pretreated at 130°C for 60 min under stirring to selectively
remove the lignin component. Afterward, the mixture was
filtrated and washed with deionized water to be neutral, and
the residue was dried and labeled as HC.

Typically, 1-kg CS was placed in a 10-L autoclave with 6 L of
deionized water. The pH of the mixture was adjusted to 5.5 using
72 wt% H2SO4. The mixture was stirred at 150°C for 60 min to
selectively remove the hemicellulose component. Afterward, the
mixture was filtrated and washed with deionized water to be
neutral, and the residues were dried and labeled as HR.

Preparation of Wood–Plastic Composites
Typically, the CS was dried at 105°C for 24 h before use. WPCwas
prepared according to the following formulation: 1,000 g of PVC,
200 g of CS, 60 g of Ca-Zn stearate, 30 g of acrylate copolymer,
100 g of chlorinated polyethylene, 5 g of stearic acid, and 4 g of
polyethylene wax. The components mentioned earlier were first
mixed in a high-speed blender, then melt-compounded using a
twin-roll miller at 175°C for 5–10 min, and finally, compression-
molded at 185°C for 5 min.

RESULTS AND DISCUSSION

Pretreatment of Corn Stalk
To selectively delignify CS with maximum removal of lignin and
highest retention of cellulose and hemicellulose, we explored the
delignification of CS using alkaline-organic solvent stewing
method as inspired by previous studies (Tang et al., 2017;

Chen X. et al., 2018; Zhong et al., 2018; Chen et al., 2019). As
shown in Table 1, pretreatment systems with different
concentrations of NaOH and EtOH were evaluated in removal
rate of lignin and retention rate of cellulose and hemicellulose.
The residue compound, labeled as HC, were examined using the
National Renewable Energy Laboratory procedures to quantify
each component (cellulose, hemicellulose, and lignin). As shown
in Entries 1‒3, simply increasing the concentration of NaOH
from 0% to 8 w% led to a higher delignification rate, but the
retention rate of cellulose and hemicellulose decreased rapidly,
which is not desirable. In Entry 4, the amount of EtOH was
increased to 80 v% compared with that in Entry 3 (60 v%). The
delignification rate was improved to 87.23%, whereas the
retention rate of cellulose and hemicellulose also moderately
increased. When we elevated the stewing temperature to
150°C, as shown in Entry 5, the delignification rate reached a
maximum, but the retention rate of hemicellulose significantly
decreased, suggesting that hemicellulose is more sensitive to
harsher temperatures. Anthraquinone has been reported to be
able to oxidize the aldehyde end-groups of cellulose and
hemicellulose and to retard the exfoliation of the carbohydrate
components during the pretreatment (Nascimento et al., 2016).
To further improve the retention rate of cellulose and
hemicellulose, we added 1 wt% anthraquinone to the stewing
system of Entry 4 and achieved a delignification rate of 89.98%,
and the retention rates of cellulose and hemicellulose were 94.69
and 82.32%, respectively. Therefore, the optimal delignification
conditions can be regarded as 8 wt% NaOH, 80 vt% ethanol
solution, and 1% anthraquinone at 130°C for 60 min.

Hemicellulose is one of the main components in lignocellulose
and can be hydrolyzed to pentose under acid stewing conditions
(Li et al., 2020; Shen et al., 2020; Sun et al., 2021). To selectively
remove the hemicellulose component, CS was pretreated via acid

TABLE 1 | Delignification conditions and the corresponding composition analysis.

Entries Pretreating conditions Residue/
%

Composition/% Delignification rate/% Retention rate/%

NaOH/
w%

EtOH/H2O v% Temp./
°C

Cellulose Hemicellulose Lignin Cellulose Hemicellulose

1 0 60/40 130 74.8 45.82 28.04 15.63 40.66 95.46 84.56
2 4 60/40 130 64.2 52.16 30.56 6.47 78.93 93.27 79.12
3 8 60/40 130 52.4 60.82 28.54 4.84 83.78 88.77 60.31
4 8 80/20 130 53.6 61.63 33.77 1.54 87.23 92.01 72.98
5 8 80/20 150 57.8 56.63 23.18 0.75 91.01 91.17 54.03
6a 8 80/20 130 58.5 58.15 34.92 0.26 89.98 94.69 82.32

a1 wt% anthraquinone added.

TABLE 2 | Acid stewing conditions and the corresponding composition analysis.

Entries Conditions Residue/% Composition/% Removal rate
of hemicellulose/%

Retention rate/%

pH Time/min Cellulose Hemicellulose Lignin Cellulose Lignin

1 5.0 30 60.2 56.12 14.19 28.88 65.55 94.11 88.25
2 5.5 30 58.4 59.30 17.57 29.45 58.63 96.46 87.29
3 5.5 60 50.8 66.46 6.19 34.02 87.32 94.04 87.72
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stewing at 150°C with different pH and stewing times, and the
resulting residue compound was labeled as HR. Table 2 shows the
pretreatment conditions and the corresponding results of
composition analysis. Compared with a pretreating system of
pH 5.0 (Entry 1), the system of pH 5.5 (Entry 2) gave an inferior
decrease in removing hemicellulose but a slightly higher retention
rate of cellulose. When we extended the stewing time from 30 to
60 min (Entry 3), the removal rate of hemicellulose dramatically
increased to 87.32%, and meanwhile, a reasonably high retention
rate of cellulose (94.04%) and lignin (87.72%) was still obtained.
Also, considering the corrosion to equipment and difficulty in
dealing with acidic wastewater, a higher pH is preferable.
Therefore, the optimal condition for selective removal of
hemicellulose was regarded as acid stewing at pH 5.5 for
60 min. To obtain both lignin- and hemicellulose-removed
samples, CS was pretreated consecutively with the conditions
of Entry 6 inTable 1 and the conditions of Entry 3 inTable 2. The
resulted compound was labeled as αC and examined to contain
78.27 wt% of cellulose, 2.97 wt% of hemicellulose, and 5.52 wt%
of lignin.

Analysis of Pretreated Corn Stalk
FT-IR was used to characterize CS, HC, HR, and αC as shown in
Figure 1, and the attribution of characteristic peaks is

summarized in Table 3. The spectra for HC and αC are
highly similar because these two samples are mainly composed
of polysaccharides. The characteristic peaks for lignin at 1,723
(C�O), 1,605, 1,511, and 1,455 cm−1 (aromatic ring skeleton
vibration in lignin) are obviously found in CS and HR but
vanish for HC and αC, indicating that in these two samples,
lignin was effectively removed. These results are consistent with
the composition analysis data (Tables 1 and 2).

The morphology of CS, HC, HR, and αC was characterized by
SEM, as shown in Figure 2. The original CS sample shows large
sheets or blocks, whereas the pretreated samples exhibit
cylindrical or fibrous shapes with smaller sizes and higher
aspect ratios, especially for the αC sample revealing thin fiber-
like morphology with the highest aspect ratio. Lignin and
hemicellulose are generally regarded as adhesives to glue the
cellulose fibrils in the plant cell walls, and the removal of these
components leaves more cellulose fibrils exposed, as presented in
the SEM image of αC. Because lignin is not directly bonded to
cellulose molecules, the HC sample with selective removal of
lignin still presents thick sheets and blocks rather than thin fibers.

The crystal form of cellulose in all these samples was detected
and analyzed by X-ray diffraction analysis, as shown in Figure 3.
As previously reported, the crystal type I of cellulose gives
characteristic 2θ diffractions at 16.5 and 22.5° (Segal et al.,
1959), which can also be seen in all samples, suggesting that
the crystal form of cellulose did not change during the
pretreatment. The degree of crystallinity (Cr I) for each
sample was estimated based on the intensity of characteristic
diffractions (Eq. 1) (Segal et al., 1959).

Cr I(%) � (I002 − Iam)/I002 × 100%. (1)

where I002 is the intensity for the 2θ diffraction at 22.5°; Iam is the
intensity for the 2θ diffraction at 16.5°. The αC sample shows the
highest degree of crystallinity (72.60%), which is in line with its
highest content of cellulose and the highest aspect ratio (Ouajai
and Shanks, 2005). HR exhibits a degree of crystallinity of 53.90%,
higher than that for CS (42.18%). These results confirm that
removing the amorphous lignin and hemicellulose components
enriches cellulose in the residue compounds, leading to a higher
degree of crystallinity. However, HC contains 58.15 wt% of
cellulose, much higher than that for CS (35.90 wt%), but
shows a similar degree of crystallinity (42.23%), suggesting
that a large proportion of crystalline cellulose has been
disordered and turned into amorphous cellulose during the
alkaline-organic solvent stewing process.

FIGURE 1 | Fourier-transform infrared spectroscopy spectra results of
αC, HR, HC, and CS.

TABLE 3 | Assignment of Fourier-transform infrared spectroscopy absorption.

Wavelength/cm−1 Peak assignments Corresponding the components
of lignocellulose

1,723 Unconjugated carbonyl C�O stretching Lignin
1,638 O-H Bound H2O
1,605, 1,511, and 1,455 Aromatic ring skeleton vibration Lignin
1,421 C-H bending Lignin and polysaccharides
1,030 C-O-C stretching Polysaccharides
898 β-glycosidic bond stretching Cellulose
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The thermal stability of CS, HC, HR, and αC was studied by
thermogravimetric analysis, as shown in Figure 4. All samples give
a slight weight loss at <100°C, which was attributed to moisture
evaporation. When the temperature reaches above 200°C, the
decomposition process gradually speeds up as hemicellulose
and low molecular weight component such as phytowax;
oligosaccharides start to degrade and leave. This is especially
prominent for the CS sample because it was not pretreated and
retains a higher amount of lowmolecular weight components. This
decomposition stage for the HC sample took place at a lower
temperature than those for the HR and αC samples because it was
delignified and contained a higher amount of hemicellulose than

the other two. When the temperature reached 270–380°C, the
glycosidic bond in cellulose cleaves and the C-O bond in lignin also
breaks up, resulting in rapid weight loss for all samples (Gibson,
2016), reaching a maximum loss rate at 315°C for the CS sample,
331°C for the HC and αC sample, and 351°C for the HR sample.
The residue weight reached a plateau at >380°C for the HC and αC
samples, whereas the weight loss for HR and CS is still slowly
taking place. This weight loss is attributed to the ongoing
degradation of the lignin component where the C-C backbone
breaks up at this temperature range. The HR sample with selective
removal of hemicellulose has the highest content of lignin, and
therefore, its DTG peak shifted to a higher temperature range.

Morphology and Mechanical Properties of
Wood–Plastic Composites
To investigate the effect of lignocellulosic compositions on the
properties of PVC-based composites, WPC samples filled with CS,
HC, HR, and αC were prepared by traditional thermal compounding
and compression molding techniques (Liu et al., 2014). The mass
ratio of the PVC matrix and the filler was controlled to be 100:20.
Necessary functional additives such as thermal stabilizer (Ca-Zn
stearate), lubricants (stearic acid and polyethylene wax), and
toughening modifiers (acrylate copolymer and chlorinated
polyethylene) were blended in before thermal compounding.

The tensile and flexural properties of WPCs are shown in
Figure 5. Compared with the PVC/CS sample, the WPC samples
with HC, HR, and αC show similar elongation at break
(3.80–4.95%) but higher tensile and bending performance in
both strength and modulus. The reinforcing effect in the PVC/
αC sample is especially prominent, showing a significant increase
in tensile strength and modulus by 37.21 and 21.66% and in
flexural strength and modulus by 29.98 and 34.88%, respectively.

FIGURE 2 | SEM of different lignocellulose components (A) CS, (B) HC, (C) HR, and (D) αC.

FIGURE 3 | X-ray diffraction analysis results of CS, HC, HR, and αC.
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FIGURE 4 | Thermal analysis of CS, HC, HR, and αC (A) thermogravimetric analysis results; (B) DTG results.

FIGURE 5 | Tensile properties and flexural properties of WPCs (A) Tensile results; (B) Flexural results.

FIGURE 6 | SEM of WPCs (A) PVC/CS, (B) PVC/HR, (C) PVC/HC, and (D) PVC/αC with lignocellulosic domains circled.
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These improvements are highly related to the morphology of the
fillers, as observed in Figure 4. αC has the highest content of
crystalline cellulose and shows fibrous appearance with the
highest aspect ratio and therefore acts as the most efficient
reinforcement for stress transfer and load-bearing (Gibson,
2016). The PVC/HR sample gives superior mechanical
properties than the PVC/HC sample because HR has more
fibrous structures, although not as fine and regular as αC.

We also studied the morphology of the lignocellulosic fillers in
WPCs by SEM (Figure 6). The PVC/CS sample shows a coarse
cross-section where a large block of CS can be found as circled in
Figure 6A, whereas the rest samples, especially for the PVC/αC
sample, present smoother appearance with smaller filler domains,
which suggests enhanced interfacial interactions between the
lignocellulosic reinforcements and the PVC matrix, and this is
crucial for the reinforcing effect in polymer composites. Lignin
has been reported to have better compatibility with non-protonic
polymers than the carbohydrate components due to its higher
hydrophobicity (Li et al., 2021). The leftover lignin after
pretreatment was more exposed rather than well-assembled inside
the origin lignocellulosic structure and therefore may perform as a
compatibilizer to improve the interfacial adhesion. This may also
explain why PVC/HC gives a relatively weak reinforcing effect, as in
HC, the lignin component is almost completely removed.

The dynamic mechanical properties of WPCs were studied via
DMA, as shown in Figure 7. The storage modulus (E′) for all
samples shows the same trend, which is staying relatively stable at
the low-temperature range and decreasing rapidly at >80°C due to
the glass transition of PVC macromolecules. The loss modulus
(E″) and the loss factor (tan δ) curves give a peak at the glass
transition, and the peaked temperature (Tg) and maximum values
for the tan δ curves are listed in Table 4. The Tg for all samples
appears at 92.1–93.2°C, demonstrating that these micro-sized
lignocellulosic fillers impose little influence on the glass
transition behavior of PVC. The tan δmax for PVC/CS is
apparently higher than those for the rest samples, which

confirms the poorer interfacial adhesion between PVC and CS
as also presented in the SEM image (Figure 6). The friction at the
interface of lower compatibility consumes more energy during
dynamic stress–strain movement and therefore leads to a higher
loss factor (Schirp and Wolcott, 2006; Fang et al., 2014).

CONCLUSION

In summary, we have optimized the alkaline-EtOH stewing process
to selectively remove lignin from CS, achieving the HC sample,
and explored the acid stewing process to selectively remove
hemicellulose achieving the HR sample. These optimal processes
were combined to pretreat CS obtaining the αC sample with both
lignin and hemicellulose removed. The αC sample shows the
highest degree of crystallinity (72.60%) as estimated from X-ray
diffraction analysis results and fibrous morphology with the
highest aspect ratio as seen in SEM images. PVC-based WPCs
with CS, HC, HR, and αC fillers were prepared using the traditional
thermal compounding process. Compared with PVC/CS, PVC/αC
gives a substantial increase in tensile strength and modulus by
37.21 and 21.66% and flexural strength and modulus by 29.98
and 34.88%, respectively. PVC/HR and PVC/HC also present
superior mechanical properties than the PVC/CS sample. These
improvements in mechanical properties lie in the reinforcing effect
of a fibrous structure and the improved interfacial compatibility as
proven by SEM and DMA results. Therefore, better than nature,
the removal of lignin and hemicellulose can be one potential
approach to prepare efficient reinforcements for PVC-based
WPCs, and the extracted lignin and hemicellulose can be
further developed to valuable biochemicals, which adds value
into both WPC materials and biorefinery products.
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FIGURE 7 | DMA curves of WPCs (A) storage modulus E′, (B) loss modulus E″, and (C) loss factor tan δ.

TABLE 4 | Dynamic mechanical analysis data of WPC.

PVC/CS PVC/HC PVC/HR PVC/αC

Tg (°C) 93.2 92.1 93.0 93.0
tan δmax 1.01 0.93 0.92 0.89
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