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Abstract

RNA interference can be mediated by fully complementary siRNA or partially complementary miRNA. siRNAs are widely used
to suppress viral replication and the fully complementary siRNA bound Ago-2 in the RISC is known to degrade the target
RNA. Although other argonaute proteins lacking slicer activity can also bind oligonucleotides with both si and miRNA
structures, whether they can also contribute to antiviral effects is not entirely clear. We tested si and miRNA structured
oligos for target repression in dual luciferase assays as well as for inhibition of Dengue and West Nile virus replication in ES
cells expressing individual Ago proteins. In luciferase assays, both fully complementary and partially complementary oligos
effectively repressed their targets in all individual Ago expressing cell lines, although the efficacy with fully complementary
oligos was higher in Ago-2+ cells. However, partially complementary oligos had no effect on virus replication in any cell line,
while fully complementary siRNAs were highly effective in Ago-2 expressing, but not in cells expressing other Ago proteins.
This occurred irrespective of whether the target sequences were located in the coding region or 39UTR of the virus. We
conclude that Ago-2 slicer activity is essential for anti-viral efficacy of siRNAs and miRNA-mediated translational repression/
transcript destabilization is too weak to suppress the abundantly expressed flaviviral proteins.
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Introduction

RNA interference (RNAi) is a phenomenon where small double

stranded RNAs mediate sequence-specific regulation of gene

expression. Essentially, RNAi can be induced either by endoge-

nously encoded small RNAs called microRNAs (miRNAs),

endogenously generated small interfering siRNAs (siRNA) or

exogenously introduced siRNAs [1,2,3,4]. In either case, the 21–

23 nucleotide dsRNAs associate in the cytoplasm with the RNA-

induced silencing complex (RISC), whereupon one of the two

RNA strands (passenger strand) is discarded and the other guide

strand guides the RISC to mediate sequence-specific degradation

of the corresponding mRNA (in the case of siRNAs) and/or

translational repression/transcript destabilization by binding to

the 39 untranslated region (UTR) (in the case of miRNAs) [5,6].

While siRNAs are designed to be fully complementary to the

coding region of the mRNA target to be silenced, miRNAs are

imperfectly complementary, generally having sequence matches in

the 59 2-8nt seed sequence to the 39UTR of the target mRNA.

Also, while siRNAs primarily degrade the target mRNA, miRNAs

lead to translational repression/mRNA destabilization (reviewed

in [7]). Thus, although both mi and siRNAs use the same RNAi

machinery, the exact mechanism of gene silencing is different.

Argounate (Ago) proteins are key constituents of the RISC and

mammalian cells contain 4 Ago proteins, Ago1-4. Recent studies

suggest that both si and miRNAs are indiscriminately loaded into

all 4 Ago proteins in mammalian cells [8,9]. However, since only

mammalian Ago-2 has slicer activity, the role of other Ago

proteins in the siRNA pathway is unclear.

One of the important applications of siRNAs is to suppress viral

infection and proof of concept studies in cell lines, and various

animal models including mice, monkeys and chimpanzees suggest

that virtually any viral infection can be effectively silenced

(reviewed in [10]). In fact, the recently concluded Phase II human

clinical trial for RSV infection also underscores the antiviral

potential of siRNAs [11]. Several cellular miRNAs have also

been reported to affect the replication of different (primate foamy

virus, influenza virus, hepatitis B, HIV and HSV) viruses

[12,13,14,15,16,17,18]. Generally the miRNAs have perfect or

imperfect homology in the seed region to their target sites in the

viral coding region or 39UTR. Despite this, the miRNAs repress

the virus by either transcript degradation (even with only seed

matches) or translational repression. Thus, the exact mechanism of

miRNA mediated viral repression and which Ago proteins are

involved remain poorly understood. As described earlier, siRNAs

are designed to be perfectly homologous to the target sequence

and the targets are therefore amenable to be degraded by Ago-2.

However, whether siRNAs bound to other Ago proteins or
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synthetic siRNAs designed to mimick miRNA structure (being

only partially complementary at the ‘‘seed sequence’’ in the target)

can also be used to suppress viral infection is not known [19,20].

Although miRNAs were thought to bind to their target in the

39UTR, recent data from several laboratories suggest that seed

matches in the coding region can also serve as effective targets for

miRNAs [21,22,23,24]. In fact as mentioned earlier, several

cellular miRNAs that are known to repress viral replication also

bind to viral coding regions. If miRNA-mediated translational

repression/transcript destabilization can be used in conjunction

with siRNA mediated transcript degradation, it could enormously

enhance RNAi antiviral efficacy. Thus, in this study, ES cells

expressing individual Ago proteins were tested for suppression of

viral replication by fully complementary siRNAs or partially

complementary oligos resembling miRNAs.

Results

All the 4 mammalian Ago proteins can mediate target
repression by oligonucleotides with both si and miRNA
structures in reporter assays

We have previously identified siRNAs that potently suppress

dengue and West Nile virus infection in vitro and in vivo

[25,26,27]. To test whether the different Ago proteins can bind si

and miRNA structured oligonucleotides and mediate target

repression, we used a dengue virus siRNA as base. We constructed

a dual luciferase reporter with 1 copy of fully complementary

target sites for dengue siRNA (siFvED) in the renilla luciferase

39UTR. This plasmid was transfected along with fully comple-

mentary or partially complementary dengue virus siRNA

(sequence differing at nts 9-11, Table 1) into ES cells expressing

only Ago-1, Ago-2, Ago-3 or Ago-4 [9] and analyzed for target

repression after 24h. Partially complementary dengue miRNA

mimicking siRNA could repress the target (40–60%) in cells

expressing individual or all the Ago proteins (Fig. 1). Although

fully complementary siRNA also repressed the target to a similar

extent in Ago-1, Ago-3 and Ago-4 expressing cells, the target

repression was more profound in Ago-2 and in all 4 Ago

expressing cells (.90%). Thus, oligonucleotides with both si and

miRNA structure can bind to all the Ago proteins and repress

targets, although the efficacy is highest for siRNAs in Ago-2

expressing cells.

Only Ago-2 bound fully complementary siRNAs suppress
viral replication

Because in the reporter assay, both si and miRNA structured

oligos repressed targets in all individual Ago expressing cells, we

tested if these oligos could also suppress viral infection. First we

determined that all individual Ago expressing cells were

susceptible to virus infection, although for unknown reason, the

parental ES cells expressing all Ago proteins showed the lowest

levels of infection (Fig 2A). To test antiviral efficacy of RNAi, all or

individual Ago expressing cells were transfected with dengue si or

mi RNA mimicking oligos, infected with dengue virus 24h later

and assessed for infection 72h after infection. To detect infection,

cells were stained with a dengue virus envelope-specific monoclo-

nal antibody and analyzed by FACS. As shown in Fig 2A, the fully

complementary siRNA effectively suppressed the virus replication

in Ago-2 and all Ago protein expressing parental cell line.

However, the siRNA did not significantly affect virus replication in

Ago-1, Ago-3 or Ago-4 expressing cells and the miRNA structured

oligos failed to significantly suppress virus replication in any of the

individual Ago expressing cell line.

One reason why the miRNA resembling siRNA failed to

suppress virus replication in the above experiment is that both the

si and miRNAs were designed to target the coding region in the

virus (encoding the viral envelop gene), whereas endogenous

miRNAs generally target the 39UTR sequences. To test if this is

indeed the case, we also tested si/miRNA resembling oligos that

target the viral 39 UTR. Initially we tested several potential

siRNAs targeting West Nile virus 39 UTR and identified one that

potently suppressed viral replication in HeLa cells (not shown). We

used this siRNA and its counterpart miRNA structure (Table 1) for

virus inhibition in individual Ago expressing cells by FACS

analysis as well as testing the culture supernatants for released

virus particles by qPCR. Even in this case, the completely

complementary siRNA effectively suppressed virus replication in

all 4 Ago expressing parental cell line and Ago-2 only expressing

cells, but failed to significantly inhibit the virus in Ago 1, Ago 3

and Ago 4 expressing cells (Fig 2B and 2C). Moreover, the miRNA

resembling siRNA failed to suppress virus replication in all cell

lines. These results are not due to variability in the transfection

efficiency in different cell lines, because all the individual Ago

expressing cells were equally amenable for transfection with FITC

labeled siRNA (Fig. 2D). Taken together, our results suggest that

siRNAs designed to mimic miRNA structure fail to inhibit

flavivirus replication whether the target is in the coding region

or 39 UTR.

We also tested 2 additional siRNAs that we had earlier

identified as potent suppressors of West Nile virus (WNV)

[26,28]. Even in this setting, both the tested siRNAs effectively

inhibited WNV infection in Ago-2 expressing cells and the

parental cell line, while they were ineffective in other Ago

expressing cells (Fig. 2E). Thus Ago-2 mediated target cleavage

appears to be essential for antiviral efficacy of siRNAs. These

results also suggest that siRNAs bound to Agos 1, 3 and 4 only

serve to dilute the siRNA effect.

Although P-bodies are lost following flaviviral infection,
RNAi function is not affected

Many of the proteins involved in the RNAi pathway accumulate

in discrete cytoplasmic bodies called the processing or P bodies

[29]. Moreover GW182, a key component of the P- body,

associates with all Ago proteins as well as with mRNA and is

essential for miRNA-mediated target repression [30]. A recent

report suggests that flavivirus infection leads to loss of stress

granules as well as P bodies [31]. We therefore tested if P bodies

are indeed lost following flaviviral infection and if this could be

why the miRNA mimicking siRNAs are ineffective in silencing

viral replication. Compared to control HeLa cells, in HeLa cells

infected with dengue or WNV, P bodies were dramatically

diminished as revealed by staining with DCP-1 antibody (Fig 3A).

Table 1. Sequence of siRNA and miRNA mimicking
oligonucleotides.

siRNA/miRNA sense strand sequence (59R39)

siFvED ggatgtggattatttggaa

miFvED ggatgtggtaaatttggaa

siWN-3UTR tgtagtgttcatagcaatt

miWN-3UTR tgtagtgtagttagcaatt

SiRNAs were designed to completely match the target sequence, while miRNA
mimicking siRNAs were designed to contain central 3 mismatches (nts 9-11-nts
depicted in bold letters).
doi:10.1371/journal.pone.0027551.t001

Ago-2 Is Essential for Antiviral RNAi
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Similar results were also seen after transfection of HeLa cells with

WNV replicon (not shown), confirming the previous report as well

as showing that introduction of the replicon is sufficient to induce

the loss of P bodies. To test if the loss of microscopically visible P

bodies is due the loss of GW182, we also performed qRT-PCR

and Western blot for GW182. GW182 mRNA as well as protein

levels were not decreased in replicon containing cells as compared

to control HeLa cells (Fig 3B). We also tested if RNAi machinery is

ineffective because of loss of P bodies. si/miRNA mimicking

oligonucleotides were transfected into dengue replicon expressing

cells along with the luciferase construct containing the target

sequence in the 39UTR. As shown in Fig 3C, both si and miRNA

structured oligos were effective in repressing luciferase although as

expected, siRNA was more effective than miRNA structured oligo.

Collectively, these results suggest that although microscopic P

bodies were diminished in infected cells, the GW182 protein itself

was not and it did not affect the RNAi response. This finding is

also consistent with a recent report in drosophila S2 cells that

suggests that P-body formation is a consequence rather than the

cause of RNAi-mediated silencing [32].

Discussion

Our results suggest that although effective in reporter assays,

completely complementary siRNAs loaded to Agos1, 3 and 4 and

siRNAs mimicking miRNAs with only seed matches to the viral

targets in the coding region or 39UTR loaded to any of the Agos

fail to suppress an acute flaviviral infection.

Because only Ago-2 has slicer activity and also because

extensive pairing with the target is required for slicing, siRNAs

bound to Ago-2 can degrade the target mRNA whereas siRNAs

bound to Agos 1, 3 and 4 as well as miRNAs bound to any Ago

protein can only mediate target repression by translational

repression/transcript destabilization [5]. Intrinsically, miRNAs

are meant to fine tune gene expression and their activity reduces

the target proteins only to modest levels. Moreover, after

degrading a target, the Ago-2 bound siRNA is free to attack the

next target molecule, whereas oligos bound to other Agos

presumably need to interact continuously to mediate translational

repression/destabilization. Thus, Ago-2 mediated siRNA effects

are likely to be catalytic and thus more robust than siRNAs bound

to other Agos as well as the miRNA effects. Our results are entirely

in agreement with this hypothesis. Our results have a number of

implications: since siRNAs are distributed between all Agos in

mammalian cells of which only Ago-2 bound siRNA has antiviral

effect, most of the input siRNAs are ineffective and are wasted,

although the actual portion bound to each Ago when all Agos are

expressed is not known. In other words, siRNAs required for

actual antiviral effect is likely to be only a fraction of what appears

to be needed. Moreover, the siRNAs bound to Agos 1, 3 and 4

may interfere with the binding of the endogenous miRNAs,

thereby resulting in toxicities. Thus, if siRNAs can be designed to

be only loaded to Ago-2, it might both improve antiviral efficacy

and at the same time reduce toxicities. In this regard, cellular pre-

miRNA 451 has recently been shown to bypass dicer cleavage to

be directly processed by Ago-2 [33]. Conceivably, antiviral

siRNAs could be designed in the context of pre-miRNA 451 that

is directly processed by Ago2 and incorporated into Ago-2 bound

RISC.

Many viruses also encode miRNAs that are completely or

partially homologous with their viral targets and cellular miRNAs

have also been proposed to affect viral replication [19,20,34].

Although in several cases, the targeted region appears to be in the

39 UTR, several cellular miRNAs are known to target the coding

region to repress the target gene [21,22,23,24]. Although several

cellular miRNAs have also been reported to affect many viral

replication by binding to viral coding region or 39UTR, our results

suggest that synthetic siRNAs designed to mimic miRNA having a

seed match to the viral sequences may not be enough for antiviral

activity in an acute flaviviral infection. This may be because the

miRNA-like effects are generally mild and only serve to

moderately reduce the target protein levels, which may not be

able to affect the abundantly expressed viral proteins. Recently,

dual functional siRNAs that are both completely complementary

to a viral target and at the same time possess seed matches in the

39UTR have been proposed to improve the functionality of siRNA

[35]. Again, the additive effect of seed matches in the coding

region is likely to be minimal in suppressing flaviviral infection.

Figure 1. All 4 Ago proteins bind both fully complementary siRNA and partially complementary miRNA resembling oligos and
repress target gene in reporter assays. Parental ES cells expressing all ago proteins and ES cells expressing individual Ago proteins were
transfected with dual luciferase reporter vector containing dengue virus siRNA target sequences in the Renilla luciferase 39UTR along with fully or
partially complementary dengue virus siRNAs and the dual luciferase expression measured after 24 h of transfection. Rluc/Fluc expression normalized
to control irrelevant GFP siRNA is shown. Error bars represent mean of quadruplicates +/2 SD.
doi:10.1371/journal.pone.0027551.g001

Ago-2 Is Essential for Antiviral RNAi

PLoS ONE | www.plosone.org 3 November 2011 | Volume 6 | Issue 11 | e27551



Many of the proteins involved in the RNAi pathway

accumulate in P bodies [29]. In HIV infection, P bodies are

used to suppress infection: miRNA 29 family that represses the

viral replication as well as the viral transcripts associate with P

bodies and disruption of P body components by siRNA results in

enhancing HIV replication [36,37]. In contrast, Dengue and

West Nile virus infection result in the progressive loss of P bodies

and resistance to stress granule formation. Although inhibition of

stress granule formation may be due to the recruitment and

sequestration of TIA-1 and TIAR into the viral replication

complex [31], the reason for loss of P bodies is not known [31].

Our results suggest that disappearance of microscopic P bodies is

not due to the loss of GW182 protein in infected cells. It is

possible that similar to TIAR, GW182 could also be recruited

into the replication complex. Alternatively, other essential

proteins needed for P body formation such as LSm proteins,

RCK/p54 or Ge-1 [29] may be affected. Whatever the

mechanism of loss of P bodies, our results suggest that GW182

protein, which is essential for miRNA-mediated repression is not

affected and both the siRNA and miRNA pathways remain intact

after flaviviral infection. Thus, lack of antiviral effect of miRNA-

structured siRNAs is not due to loss of P bodies, but most likely,

as mentioned earlier because the miRNA mimicking siRNA

effects are too weak to suppress the abundantly expressed

flaviviral proteins.

In summary, robust suppression of viral infection can only be

achieved by completely complementary siRNA bound Ago-2-

mediated target cleavage and miRNA mediated translational

repression/mRNA destabilization or other Ago proteins appear to

have no role in the anti-flaviviral RNAi.

Figure 2. Only Ago-2 bound fully complementary siRNA shows antiviral activity. A, B) ES cells expressing individual Ago proteins were
transfected with fully or partially complementary siRNAs, infected with dengue virus (A) or WNV (B) and virus replication measured by FACS analysis
after 72 h following infection. siGFP was used as negative control. C) WNV particles released into ES supernatant in (B) were quantified by QRT-PCR.
D) Transfection efficacy in different ES cells was assessed using FITC labeled siRNA. E) ES cells were transfected with 2 different anti-WNV siRNAs,
infected with WNV and virus replication determined as in A). Error bars represent mean of duplicates +/- SD.
doi:10.1371/journal.pone.0027551.g002

Ago-2 Is Essential for Antiviral RNAi
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Materials and Methods

siRNAs and miRNA mimicking oligonucleotides
SiRNA and miRNA mimicking oligos were obtained from

Dharmacon (Lafayette, CO). The sense strand sequences from 59

to 39 end were: siFvED (siRNA against dengue virus) ggatgtggat-

tatttggaa; miFvED (miRNA mimic) ggatgtggtaaatttggaa; siWN-

3UTR (siRNA against WNV 30 UTR) tgtagtgttcatagcaatt; miWN-

3UTR (miRNA mimic against WN 39UTR) tgtagtgtagttagcaatt;

siFvEJW (siRNA against WNV) gggagcattgacacatgtgca; si6 (siRNA

against WNV), ctgtgacattggagagtca; siDV1 (negative control

siRNA) cagcatattgacgctggga; siGFP (negative control siRNA)

ggctacgtccaggagcgca.

Dual-luciferase constructs and assay
Reporter was constructed by cloning the DNA oligos containing

the target sequence between the XhoI and NotI sites downstream

of the Renilla luciferase gene in the psiCHECK2 vector (Promega,

Maddison, WI). The DNA oligos for the dengue siRNA (siFvED)

target ggatgtggattatttggaa was synthesized at IDT.

Ago1-4 expressing ES cells and HeLa cells were cultured as

described previously [9]. One day before transfection, the cells

were trypsinized and diluted to 105 cells/ml and seeded in 96 well

plates in a volume of 100 mL/well. Reporter plasmids (20 ng of

psiCHECK2 plasmid harboring the target region) together with

siRNA or miRNA structured oligos (1 pmol siRNA/miRNA

oligos) were cotransfected using Lipofectamine 2000 (Life

Technologies, Carlsbad, CA). After 24 h, Renilla and firefly

luciferase activities were measured according to the manufactur-

er’s instructions using the Dual-Glo luciferase assay kit. The ratio

of Renilla to firefly luminescence was normalized to the negative

control siRNA (siGFP or siDV1). Luminescence activity values

represented an average of four replicates.

Testing siRNA/miRNAs for antiviral activity
The antiviral activity of si/miRNAs was tested as previously

described [25,26]. Briefly, ES cells were seeded in 48-well plates at

46104 cells per well one day before transfection. The siRNAs

(8 pmol) were transfected into cells with RNAiMax (Invitrogen)

per the manufacturer’s instructions. 24 hours after transfection,

the cells were infected with Dengue-2 (NGC strain, ATCC) or

West Nile virus (B956 strain, ATCC) (moi = 1-5). 72 hours later,

the cells were stained with anti-flavivirus envelope specific

antibody (4G2, ATCC), followed by flow cytometric analysis to

determine inhibition of virus replication.

Hela cells stably expressing WNV replicon
WNV replicon pWIIREPG-Z [38] was transfected into HeLa

cells using lipofectamine 2000. The stably transfected HeLa cells

were selected using DMEM medium supplemented with 300 mg/

ml Zeocin for 5–7 days followed limited dilution cloning. One

clone (HeLa-WNR) expressing GFP and harboring full-length

WNV replicon (as assessed by RT-PCR) was selected.

Immunostaining and Western blot
Untransfected, WNV replicon transfected and WNV or Dengue

virus infected HeLa cells were immunostained for P bodies. Cells

grown on cover slips were washed in PBS, fixed in 4%

paraformaldehyde, permeabilized with 0.5% Triton X-100, and

blocked (2% bovine serum albumin, 5% normal horse serum, and

10 mM glycine in phosphatebuffered saline). The cells were then

incubated with a rabbit anti -DCP1a antibody (Abcam) and West

Nile or DENV-2 specific antibodies (US Biologicals), followed by

incubation with appropriate secondary antibodies (AlexaFluor

594-conjugated anti-rabbit antibody and fluorescein isothiocya-

nate-conjugated anti-mouse antibody (Invitrogen). The cells were

visualized for WN/DENV-2 and DCP1a staining using a Nikon

Eclipse fluorescence microscope.

For Western blot analysis, normal, replicon expressing and virus

infected cell lysates were electrophoresed on 12% Nu-PAGE gels

(Invitrogen) and electroblotted onto polyvinylidene difluoride

membranes (Immobilon-P transfer membrane; Millipore). Follow-

ing a blocking step with Tris-buffered saline containing 0.1%

Tween-20 and 5% dry milk, the membranes were incubated with

Figure 3. Flavivirally infected cells lose microscopic P bodies, but not GW182 and exhibit both si and miRNA-mediated target
repression. A) Uninfected and dengue or West Nile virus infected HeLa cells were stained with DAPI, DCP1a and dengue/WNV antibody and
examined for P bodies by microscopy. B) Control HeLa cells and HeLa cells expressing WNV replicon (HeLa WNR) were tested for GW182 isoform
expression at mRNA level by QRT-PCR (left) and protein level by Western blot (right). C) West Nile replicon expressing HeLa cells were transfected
with luciferase reporter with si/miRNA and analyzed as in Fig 1a. siDV1 represents control irrelevant siRNA. Error bars represent mean of
quadruplicates +/2 SD.
doi:10.1371/journal.pone.0027551.g003

Ago-2 Is Essential for Antiviral RNAi
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a GW182 (TNRC6A) antibody (Abcam), followed by horseradish

peroxidase-conjugated secondary antibody (Peirce). Bound horse-

radish peroxidase was visualized with an ECL substrate kit

(Thermo Scientific). Membranes were stripped and reprobed with

a rabbit anti b-actin antibody (Cell Signaling) as a loading control.

QRT-PCR
Total RNA was isolated from HeLa cells and stable HeLa

expressing WNV replicon or from WNV infected ES cell

supernatants using RNeasy kit (Qiagen). Reverse transcription

was performed using superscript III first-strand synthesis superMix

(Invitrogen). Quantitative real-time PCR was performed using a

SYBR green PCR master Mix (Applied Biosystems) on 7900HT

fast real-time PCR system (applied Biosystems). Amplification

conditions were as follows: 95uC for 10 min, followed by 40 cycles

of 95uC for 15 s, and 60uC for 1 min. The forward and reverse

primers to amplify GAPDH were atggggaaggtgaaggtcg and

gggtcattgatggcaacaatatc, and that for TNRC6 A, B and C

isoforms were gaaatgctctggtccgctaca & atctcctcttcactggcaaactca;

ggagcaaaagcacaccacctg & tgctcctgtatcatccatctcg; cccgccgcacctgtct-

ct & ctgctgctctttggtctgc, respectively and for WNV were atcgcc-

ggacttatgttcg & ctttcgctagagcctgtgattt. Relative TNRC6 mRNA

expression was normalized with GAPDH mRNA and calculated

using the dCt method.

Statistical analysis
Student’s t test (two-tailed, assuming equal variances on all

experimental data sets) was used to compare two groups of

independent samples.
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