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ABSTRACT

The amount of tissue-specific expression variability
(EV) across individuals is an essential characteristic
of a gene and believed to have evolved, in part,
under functional constraints. However, the deter-
minants and functional implications of EV are only
beginning to be investigated. Our analyses based on
multiple expression profiles in 41 primary human
tissues show that a gene’s EV is significantly
correlated with a number of features pertaining to
the genomic, epigenomic, regulatory, polymorphic,
functional, structural and network characteristics of
the gene. We found that (i) EV of a gene is encoded,
in part, by its genomic context and is further
influenced by the epigenome; (ii) strong promoters
induce less variable expression; (iii) less variable
gene loci evolve under purifying selection against
copy number polymorphisms; (iv) genes that
encode inherently disordered or highly interacting
proteins exhibit lower variability; and (v) genes with
less variable expression are enriched for house-
keeping functions, while genes with highly variable
expression tend to function in development and
extra-cellular response and are associated with
human diseases. Thus, our analysis reveals a
number of potential mediators as well as functional
and evolutionary correlates of EV, and provides new
insights into the inherent variability in eukaryotic
gene expression.

INTRODUCTION

The multitude of cell types in a multicellular organism
exhibit morphological and functional diversity, which
is characterized, and in large part determined, by the
distinct expression profile of each cell type (1). For

instance, perturbing a cell’s expression profile via transfec-
tion can change its identity (2,3). As a corollary, expres-
sion level of a gene can vary greatly across cell types.
Genes involved in fundamental cellular processes such
as metabolism, the so-called house-keeping genes, are
expressed ubiquitously across cell types at either high or
low level, while other genes may have restricted expression
in a few cell types, again, at either high or low levels.
In addition to the vast diversity in expression levels of a

gene in different cell types, expression of a particular gene
even within a particular cell type can vary considerably
across cells within the same tissue (4,5) and across indi-
viduals (6,7). For instance, genes RAGE and LRAP,
whose higher expression levels are associated with
diabetes, exhibit large intraspecific expression variability
(EV) (6), while transporters, channels and metabolizing
enzymes showed relatively low EV in human cell lines (8).
Although cell-to-cell variability of a gene’s expression is

considered to be stochastic variability or ‘noise’, previous
work has shown that the stochastic expression noise in
yeast, i.e. inter-cell EV of a gene, is strongly correlated
with the EV across environmental conditions and under
genetic perturbations, and to lesser degree even across
yeast species (9). Based on gene expression in
Lymphoblastoid cell line for two HapMap populations,
within-population EV levels in the two populations were
shown to be significantly correlated with each other, even
in the genes with significantly different expression levels
between the two populations (10). Moreover, the genes
with high or low EV have been shown to exhibit distinct
characteristics, in their evolutionary rate, interactions with
other genes (11) and association with diseases (10). Taken
together, the research thus far suggests that a gene’s tissue-
specific EV, much like tissue-specific expression level, is an
inherent property of the gene, and is therefore subject to
evolutionary pressures and is intimately linked with
evolvability of complex organisms (12).
Previous investigations of EV have either considered

cell-to-cell variability in identical yeast cells (9,11), i.e.

*To whom correspondence should be addressed. Tel: +1 301 405 8219; Fax: +1 301 314 1341; Email: sridhar@umiacs.umd.edu
Correspondence may also be addressed to Hector Corrada Bravo. Tel: +1 301 405 2481; Fax:+1 301 314 1341; Email: hcorrada@umiacs.umd.edu
Present address:
Dr. Joseph W. Carl Jr., United Therapeutics, 1077 Florida A1A, Satellite Beach FL 32937, USA.

Published online 15 January 2014 Nucleic Acids Research, 2014, Vol. 42, No. 6 3503–3514
doi:10.1093/nar/gkt1364

� The Author(s) 2014. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial
re-use, please contact journals.permissions@oup.com

-
,
,
``
''
,
,
,


stochastic variability, or considered population variability
in gene expression level for specific human cell type,
mainly the lymphoblastoid cell line (6,7,10,13). However,
the extent to which the intraspecific EV differs among
different primary human tissues is not known.
Moreover, while previous works have investigated correl-
ation between EV and evolutionary, functional and
network properties of a gene (14), a detailed investigation
of genomic and epigenomic correlates of EV has not been
reported.
In this study, we present a detailed survey of potential

genetic and epigenetic determinants of EV across samples
in 41 primary human tissues. First, we estimate tissue-
specific EV for each gene based on publicly available
genome-wide expression profiles for 41 primary human
tissues and numerous samples for each tissue type via a
rigorous statistical approach accounting for batch effect,
multi-experiment comparisons and expression level of a
gene. We then assess a comprehensive set of genic
properties in relation to EV, separately for each tissue
type. The genic properties considered here include
(i) genomic properties such as gene size, gene structure,
regulatory elements in the gene’s vicinity, etc., (ii) multiple
epigenomic marks such as DNAse hypersensitivity (DHS)
in various regions relative to the gene, (iii) interacting
partners of the gene’s protein product, (iv) pathways and
biological functions, (v) disease associations and (vi) re-
gions of natural structural variations in human popula-
tion. Based on a stringent statistical analysis, our results
suggest the following: (i) EV of a gene is partly encoded
by the genomic context of the gene and is further
modulated in a tissue-specific fashion by the tissue-
specific epigenome, (ii) genes transcribed by strong pro-
moters (those that elicit high gene expression) tend to have
less variable gene expression, (iii) genes with low tolerance
for EV tend to avoid genomic regions of structural poly-
morphisms, (iv) genes that encode inherently disordered
or highly interacting proteins exhibit lower variability,
(v) genes with lower variability are typically involved in
house-keeping functions, while those having high EV are
typically involved in extracellular response and develop-
ment and are associated with human diseases.
Overall, our analysis reveals a number of potential me-

diators as well as functional and evolutionary correlates of
EV, and provides new insights into inherent variability in
eukaryotic gene expression.

MATERIALS AND METHODS

Method overview

Our goal is to exhaustively characterize genetic and epi-
genetic determinants of gene EV in normal human tissues
(Figure 1 illustrates the overall pipeline). We obtained and
curated a large data set of gene expression experiments
from multiple tissues, preprocessed with advanced statis-
tical methods that control for batch effects and allow
direct comparison of arrays across experiments, and
measure correlation between a suitably defined tissue-
specific measure of EV and various features ascribed
to a gene locus. We used 688 microarray samples for

74 tissues, which were downloaded from the Gene
Expression Omnibus (GEO) (15). These were prepro-
cessed using single-chip normalization (16) and quality
assessment methods (17) that are robust to batch effect
and multi-experiment comparisons. We used a local like-
lihood method to estimate tissue-specific expected
variance for each gene as a function of its tissue-specific
average expression and defined a measure of EV for each
gene and tissue as the ratio of observed variance to
expected variance. We next created a large compendium
of genomic/epigenomic features for each gene locus, along
with additional gene features, e.g., association with disease
and interaction characteristics in the protein–protein
interaction (PPI) network. We used linear regression
(LR) as well as Wilcoxon test to estimate association
between EV and compiled gene features.

Affymetrix gene expression microarray data preprocessing
We downloaded CEL files for 7741 Affymetrix
HGU133plus2 microarrays from 175 studies in the Gene
Expression Omnibus (15). CEL files were preprocessed
with the frma (16) single-chip procedure. Expression meas-
urements were standardized using ‘Gene Expression
Barcode z-scores’ (18). We removed arrays that were
deposited multiple times into the repository (Euclidean
distance between arrays <1). We used the GNUSE
metric (17) to assess array quality and removed all
arrays from studies with median GNUSE >1.25 (95th per-
centile) and removed individual arrays with GNUSE >1.2
(95th percentile). We did further hand curation to retain
only normal, nondiseased, samples (n=688) from 74
tissues of which we used 41 with at least five samples.
‘SupFile1:‘‘Expression samples’’’ contains the complete
list of studies and samples used in the reported analyses.

Estimating the expression variance
We used a cutoff of 2.54 on the Gene Expression Barcode
z-score scale to determine when a probeset for a given
gene is expressed in each sample. We then calculated for
each probeset the average and standard deviation of ex-
pression in each tissue containing at least five samples in
our data set using only samples where the probeset is ex-
pressed. Our goal is to characterize genetic and epigenetic
determinants of EV across individuals. This requires a
measurement of variability that accounts for the known
relationship between mean expression and variance and
presents, on average, no relationship to overall expression.
Given a measurement with this property we can ascribe
variability beyond that expected given a gene’s overall
expression. The coefficient of variation, i.e. standard de-
viation divided by the mean, which is used as the standard
measurement of noise in the literature, does not satisfy this
requirement (Supplementary Figure S1) since for this type
of data it induces a very strong bias towards low expres-
sion genes. To satisfy this property, we used local polyno-
mial likelihood estimation (19) to model variance as a
function of mean expression for each probeset in each
tissue (Figure 2). Our measurement posits that we can
estimate expected variability for a probeset given its
overall expression using a gamma regression model. We
assumed variance was gamma distributed with canonical
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link function modeled as a locally weighted quadratic
polynomial. We obtained expected variance as a
function of average expression for each probeset using
the tissue-specific local likelihood estimates. We used the
ratio of observed variance to expected variance for each
probeset in each tissue as the statistic measuring EV. We
found that EV is insensitive to overall expression level
(Supplementary Figure S1) as desired.

We obtained Ensembl gene ids from the HGU133plus2
probeset annotation in the hgu133plus2.db Bioconductor
package (20) to obtain an EV value for each Ensembl
id. Probesets mapping to multiple Ensembl ids were dis-
carded, and multiple probesets mapped to single Ensembl
id were aggregated as follows: to determine if a gene is
expressed based on the Gene Expression Barcode, the
majority across probesets mapping to that gene was
used, and median EV across probesets mapping to each
gene was used as the EV measure. Using this procedure we
obtained EV for 13 059 Ensembl gene ids. To verify that
gene EV is not biased by aggregation across probesets we
measured correlation between across-probeset variability

in mean expression and EV and observed no significant
relationship (‘SupFile1: ‘‘ProbesetVar’’’). For some
tissues, the samples in our database were obtained from
multiple GEO experiments. To rule out the possibility of
EV being biased by probable batch effects related to
multiple experiments, we compared the distribution of
EV for tissues with samples obtained from single GEO
experiments to EV for tissues with samples obtained
from multiple GEO experiments, and found no significant
differences (Supplementary Figure S2).

Transcription factor binding site identification and
Motif clustering
For each enhancer sequence and each of the 981 positional
weight matrix for vertebrate transcription factors (TF) in
TRANSFAC database (21), we used our previously pub-
lished tool (22) to identify binding sites based on a score
threshold of 95th percentile. For each enhancer only
presence/absence of a motif was noted. Motifs were clus-
tered based on similarity due to structural similarities
between the corresponding TFs. All pairwise motif

Figure 1. Overall analysis pipeline. Our goal is to exhaustively characterize genetic and epigenetic determinants of gene EV in normal human tissues.
We obtained and processed a curated data set of gene expression experiments from multiple tissues and estimated tissue-specific measure of
expression variation (EV) for each gene. We then created a large compendium of genetic and epigenetic features for each genic region, along
with additional gene features, e.g. association with disease and interaction characteristics in the PPI network. Finally we analyzed the relationships
between EV and various genic features using LR, Wilcoxon test and Fisher test, as appropriate.
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similarity scores for the 981 vertebrate motifs were obtained
from the author of STAMP (23). Using pairwise similarity,
the motifs were hierarchically clustered using the ‘hierarchy’
module in SciPy’s ‘cluster’ package (www.scipy.org) for
Python based on Euclidean distance and complete
linkage. The resulting tree was trimmed using the
module’s ‘fcluster’ function with a maximum co-phenetic
distance criterion that produced 42 disjoint clusters.

The features

Genomic features. We used Ensembl gene and transcript
annotation (www.ensembl.org). The 50 most transcript
start was used as the gene start location and the 2-kb
region upstream considered as the proximal promoter.

We identified TF binding sites in 2 kb proximal
promoter for vertebrate TFs as described above.
Additionally we calculated the following features:

(i) Gene size—genomic span of the longest transcript;
(ii) Number of transcripts; (iii) Longest transcript size;
(iv) Total number of disjoint exons for all transcripts of
a gene; (v) CG fraction in proximal promoter;
(vi) Conservation of proximal promoter—PhastCons
score based on mammalian 17-way alignment was
obtained from UCSC database (genome.ucsc.edu);
(vii) Total number of distinct TF clusters with at least 1
binding site in proximal promoter; (viii) Total number of
miRNAs targeting a gene; and (ix) Presence of binding
sites for each of the 42 TF clusters.
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Figure 2. Extreme expected variability is not correlated across tissue types. Across-sample variability as a function of average expression across
samples in astrocytes samples (A). We model expected across-sample variability (y-axis) of a given probeset as a function of average expression across
samples (x-axis) using a gamma local regression method (red line). We show a smoothed density estimate over 54 613 probesets, where darker color
indicates more probesets fall into that region of the plot. We found that probesets tend to be hypo or hypervariable in few number of tissues (B and
C, respectively), indicating that neither hyper nor hypovariability for a given probeset is consistent across tissues.
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Epigenomic features. We investigated DHS, and three
histone marks—H3K4me3, H3K27me3, H3K36me3 for
the tissues that we identified, based on name and descrip-
tion, as being common to our data sets. We downloaded
broad peak BED files for DHS and other epigenomic
marks from UCSC database (genome.ucsc.edu); details
are provided in ‘SupFile1: ‘‘ENCODE-Epi’’’. In cases
where two biological replicates were present for each
tissue, only the first replicate was used, as there is high
correlation between replicates (>0.9). For each tissue, and
for each genic region (2 kb upstream, 5 kb upstream, gene
body and gene body±10kb), we obtained the fraction (x)
of the region overlapping a broad peak for a certain
epigenomic mark, using our tool. The fraction x was
transformed as ln(x/(1�x)) after values of 0 and 1 were
substituted with the minimum non-0 and maximum non-
1values in the same sample.

Quantifying inherent disorder in proteins
For each protein sequence, we used the MobiDB database
(24) of multisource annotation of disordered regions to
obtain a consensus annotation of disorder. We then
calculated the fraction of protein covered by contiguous
disordered regions of at least consecutive 30 amino acids.
This fractional value x was then transformed as ln(x/
(1�x)) as for epigenomic marks.

Protein–protein interactions
Detailed protein links data were obtained from the
STRING database (25), which was then filtered for
human interactions and experimental tracks. The data
were mapped from Ensembl protein IDs to gene IDs.
The resulting data were used to compute node degrees
for each gene with the average node degree calculated
for multiple proteins encoded by the same gene.

Regions of Copy Number Variation
Copy Number Variation data were obtained from the
Database of Genomic Variants version 10 (http://
projects.tcag.ca/variation). Only variation types marked
as CopyNumber were included. Gene symbols were con-
verted into Ensembl IDs, and the set of genes used in this
study was noted as either being present or absent from the
polymorphic regions.

Correlating expression variance with various features
via LR
We measured dependence of expression variance (EV) on
each feature tested using LR: for gene i in tissue j we define
model vij= b0j+b1j * xij for feature xij. In this model par-
ameter b1j measures the association between the feature
and EV in tissue j. We performed two-sided t-tests for
null hypothesis of no association (b1j=0), report the t-
statistic obtained from the least-squares estimate of b1j

tj ¼
b1j

seðb1jÞ

� �
and note the prevalence of significant tests

across tissues. Our interpretation of relationship between
a feature and EV is based on prevalence of significant
relationship across 41 tests corresponding to 41 tissues,
instead of a priori filtering the results using multiple
testing correction. We verified our inferences using a
Wilcoxon rank-sum test by categorizing the 10 and 25%

of genes with highest EV as hypervariable and the 10 and
25% with lowest EV as hypovariable in each tissue and
tested for rank differences against a background set con-
taining the remaining 50% of the genes. The LR and
Wilcoxon test based results are provided in
Supplementary File S1. In addition we also obtained a
trend plot relating top X% of hyper-/hypovariable genes
to the range of feature values for each feature, where X is
varied from 5 to 50. These are shown in Supplementary
File S2.

RESULTS

Note: All results are compiled in Supplementary File S1 in
various sheets and will be referred to as ‘SupFile1:‘‘sheet
name’’’. In addition, trends of relationships between EV
and different covariates are shown in Supplementary
File S2 referred to as ‘SupFile2: figure-index’. Besides
the trend plots, two additional figures are included in
Supplementary File S2. A default P-value threshold of
0.05 is used. The results are summarized in Table 1,
which shows for each feature the number of tissues a sig-
nificant trend was observed. In what follows we present
our results along with immediately pertinent discussion
and defer additional discussion until later in the discussion
section.

Genomic correlates of EV

We first assessed whether a gene’s EV is related to
genomic features, which pertain to the gene (Table 1).
The features included those related to gene size and struc-
ture as well as composition, conservation and regulatory
elements in a gene’s proximal promoter. All assessment
was based on LR, Wilcoxon test and visual inspection
of trends (see ‘Materials and Methods’ section) and was
performed independently in each tissue type.

Gene length related features
As shown in ‘SupFile1: ‘‘Genomic Features LinReg’’’ and
‘SupFile2: 18,20,22’, we found by using LR that the
features related to gene’s overall length (gene’s genomic
span, number of exons and longest transcript length) were
positively related to gene’s EV. For instance, as
summarized in Table 1, in 35 tissues a significant
positive trend was found between gene length and EV.
This may reflect inherent noise associated with
transcribing and processing long transcripts, consistent
with reports showing length bias in detection of differen-
tial expression (26). However, this is not likely due to po-
tentially greater number of transcripts being associated
with longer transcripts, while the measurement ambiguity
associated with multiple transcripts ultimately manifests
as expression noise at the gene level. Instead, we found
that the number of transcripts for a gene is negatively
correlated with the gene’s EV (‘SupFile1: ‘‘Genomic
Features LinReg’’’, ‘SupFile2: 19’).
To verify the robustness of our inference we assessed the

correlation between EV and various genomic features
using an alternative approach. In each tissue we identified
the top 10 and 25% most variable (hypervariable), bottom
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Table 1. Summary of detected associations between EV and various genic features

Feature Association with EV

LR Wilcoxon hyper 

10/25% 

Wilcoxon hypo 

10/25% 

Total 

tissues 

Positive Negative Higher Lower Higher Lower 

Gene length 
While overall the length related features are positively correlated 

with EV, when analyzed separately, we found that both hyper- 

and hypovariable genes have shorter lengths relative to 

background genes 

35 0 
3 29 0 37 

41 
3 20 0 37 

Number of exons 22 3 
0 36 1 35 

41 
0 33 1 37 

Longest transcript length 35 0 
3 29 0 37 

41 
3 20 0 37 

Number of transcripts Negative correlation 0 29 
0 40 1 9 

41 
0 41 3 4 

CG ratio in 2 kb 

promoter 
Negative correlation 3 27 

6 13 27 1 
41 

7 9 28 4 

Promoter conservation None 1 1 
3 8 1 3 

41 
5 7 3 5 

Number of TF clusters 

cis elements represented 

in promoter  

Overall positive correlation. This trend is consistent at single 

TFCluster level 
18 0 

12 6 0 25 

41 
10 3 0 26 

miRNA 
Overall positive correlation, but both Hyper- and Hypovariable 

genes show fewer miRNA sites than the background genes 
18 5 

1 31 0 38 
41 

3 24 1 36 

DHS 

Negative correlation 

0 8 
0 10 3 2 

10 
0 9 3 2 

H3K4me3 0 6 
0 6 2 0 

6 
0 6 4 0 

H3K36me3 0 1 
0 1 1 0 

2 
0 1 1 0 

H3K27me3 Positive correlation 3 0 
3 0 0 2 

3 
3 0 0 2 

ChromHMM promoter  
In both tissues Hypervariable genes are enriched for weak promoters and Hypovariable genes are enriched for strong 

promoters 
2 

Number of interacting 

partners 
Negative correlation 0 38 

0 39 22 3 
41 

0 39 29 1 

Inherent disorder Negative correlation 0 19 
0 24 8 1 

41 
0 23 12 1 

Disease genes Positive correlation 31 0 
31 0 1 10 

41 
25 0 0 19 

Copy number variation Hypovariable gene loci are depleted for CNV 8 0 
1 11 0 23 

41 
2 3 0 23 

GO terms 
Genes that respond to extracellular cues are hypervariable while those involved in cellular house-keeping functions are 

hypovariable 
41 

Colors represent direction of correlation (green: positive, red: negative). Lighter shade is used to denote exception. The
numbers denote the number of tissue in which a specific test was significant. For Wilcoxon tests, both top 10 and 25% versus
background comparison are shown separated by horizontal line. For instance, top 10% hypervariable genes had higher
(lower) GC fraction in 6(13) tissues and top 25% hypervariable genes had higher (lower) GC fraction in 7(9) tissues.
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10 and 25% (hypovariable) and the background (middle
50%) genes, and we then compared each of the feature
values directly using a Wilcoxen test between hypervari-
able versus background and hypovariable versus back-
ground genes. Using this method, we found that the
relationship between length-related features exhibited a
nonmonotonic relationship with EV, which is visible in
the trend plots. We found that both hypervariable and
hypovariable genes have shorter genes and transcripts
and fewer exons relative to the background genes
(‘SupFile1: ‘‘Genomic Features Wilcox’’’, ‘SupFile2:
18,20,22’). For instance, as shown in Table 1, in 29
tissues hypervariable genes are significantly shorter and
in 37 tissues hypovariable genes are significantly shorter
than the background. This nonmonotonic relationship
may indicate multiple mechanisms governing the relation-
ship between gene length and EV. A depletion of long
genes among the most hypervariable genes may reflect
the fact that long genes have a greater number of
domains and thereby a greater number of interaction
partners, which is known to associate with low EV (11).
However, a depletion of long genes among the most
hypovariable genes may reflect the noise associated with
transcribing long genes, as mentioned above.

Promoter
We investigated three properties of the proximal (2 kb)
promoter—evolutionary conservation, GC fraction and
number of nonredundant regulatory motifs. We found
that EV was not significantly associated with evolutionary
conservation, although there was a weak negative associ-
ation in a small number of tissues where hypovariable
genes tend to have slightly more conserved proximal
promoter. This suggests that broadly speaking EV is
either not an evolutionarily conserved property, or
promoter attributes potentially mediating EV are not ad-
equately captured by overall sequence conservation.
Further elucidation will require a more detailed under-
standing of promoter architecture (27).

We found that genes with GC-rich promoters tend to be
hypovariable in their expression (‘SupFile1: ‘‘Genomic
Features LinReg’’, ‘‘Genomic Features Wilcox’’’). For
instance, in 27 tissues a significant negative trend was
found between GC content and EV (Table 1). This is con-
sistent with the fact that GC-rich promoters correspond to
genes with ubiquitous expression that are engaged in
house-keeping functions (28), which have constrained
expression due to greater number of interactions (29)
and other homeostasis requirements (30). Interestingly,
we observed an overall positive correlation between the
number of distinct cis elements in a promoter to the
gene’s EV. This observation is not due to compositional
properties of regulatory motifs; the average GC fraction
of motifs used in this study is 0.44, and there is small
positive correlation (although significant) between a gene
promoter’s CG composition and the number of distinct
TF motifs it has. We assume that the number of distinct
motifs approximately reflects the number of regulators.
Although precise effect of regulators on the EV of its
target genes may depend on specific network topology
(31), our observation is consistent with previous reports,

based on a highly controlled experiment, demonstrating a
positive correlation between expression noise and number
of regulators (32). When we repeated the analysis inde-
pendently for each TF (‘SupFile1: ‘‘Genomic TFclusters
LinReg’’’) the trend was broadly consistent, with few
exceptions. Our findings based on LR are consistent
with analyses using the Wilcoxon test (‘SupFile1:
‘‘Genomic Features Wilcox’’, SupFile2: 17,21,23’). Our
attempt to repeat this analysis based on in vivo binding
(ChIP-seq) data was hampered by insufficient data, and
was inconclusive, but not inconsistent with motif-based
results (SupFile1: ‘‘TF ChIP-seq LinReg’’).
To assess whether positive correlation between number

of motifs and EV is not simply due to variability in the
amount of regulatory proteins, we tested whether TFs are
enriched among hypervariable genes in each tissue using a
Fisher test. We found that in most tissues TFs are signifi-
cantly depleted among hypervariable genes (SupFile1:’’TF
EV’’).
We also repeated the above analysis using the number

of miRNAs putatively regulating a gene. As for TF
motifs, we obtained for each gene the number of predicted
miRNA regulators from MicroRNA.org database and re-
peated the LR and Wilcoxon tests. Similar to TF motifs,
based on LR, the number of miRNA regulators was posi-
tively related to EV (‘SupFile1: ‘‘Genomic Features
LinReg’’’). However, the Wilcoxon test showed that
both hypo- and hypervariable genes had fewer miRNA
regulators than the background (‘SupFile1: ‘‘Genomic
Features Wilcox’’’).

The tissue-specific epigenome provides further context to
tissue-specific EV

Next, we tested whether presence of certain tissue-specific
epigenomic marks in various genic regions affect the
gene’s EV. We selected DHS and three histone modifica-
tions (H3K4me3, H3K27me3 and H3K36me3) that
have previously been shown to be associated with gene
expression (33–35) and which were available for a subset
of the tissues in our data set. Note that the epigenomic
data are available mostly in cell lines and less so in
primary tissues. We quantified each of the four features
in four genic regions—2kb upstream, 5 kb upstream, gene
body and±10kb flanking regions of gene body (see
‘Materials and Methods’ section). Independently in each
tissue, for each epigenomic mark available for the tissue,
and for each genic region, we assessed the correlation
between EV and the mark based on LR and Wilcoxon
test. As shown in ‘SupFile1: ‘‘Epi Linreg’’, ‘‘Epi Wilcox’’
and SuplFile2: 1–16’, in all genic regions, EV is posi-
tively related to the repressive mark, H3K4me3, and is
negatively related to DHS and the two activating his-
tone marks. This observation is not biased by the
absolute expression level, as we quantified expected EV
as function of a gene’s average expression (see ‘Materials
and Methods’ section). Overall, our results suggest that
transcriptionally active loci generally have a lower EV,
while less active or heterochromatic loci exhibit variable
expression consistent with previous experimental data in
yeast (5).
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Genes with strong promoters have less variable expression

We characterized how chromatin state affects EV.
ChromHMM integrates multiple chromatin marks into
a genome-wide annotation of chromatin state (36).
Specifically, we obtained the promoters characterized as
‘strong’ or ‘weak’ for two tissues found in our data set:
breast epithelial cells and skin fibroblasts. We performed
this analysis on the subset of genes in the array (see
‘Materials and Methods’ section) whose promoters
were annotated as either strong or weak according to
ChromHMM. We then compared the fraction of
hypervariable (or hypovariable) genes that were annotated
strong or weak relative to the background genes using a
Fisher Exact Test. As shown in ‘SupFile1: ChromHMM
Fisher’, in both tissues, we observed that the hypervariable
genes are significantly depleted for strong promoters
(Odds ratios ranging from 0.32 to 0.61) and consistently,
hypovariable genes are significantly enriched for strong
promoters (Odds ratios ranging from 1.09 to 1.43). Since
we estimate expected variance as a function of average
expression, this result is not due to variability due to
lower expression for weak promoters. In fact our conclu-
sions do not change even after we randomly sample from
weak and strong promoters while controlling for mean
cross-sample expression values. This suggests that genes
that exhibit increased EV are under relatively weak regu-
latory control, consistent with the results above showing
hypervariability of genes in heterochromatin regions.

Genes encoding inherently disordered proteins have
low EV

Inherently disordered proteins (IDP) lack a stable struc-
ture in isolation and adopt a confirmation when bound to
their partners (37). By virtue of their flexibility and ability
to bind multiple partners they tend to occupy central roles
in biological networks (38), and are enriched in proteins
involved in transcription, cell signaling and chromatin
modification activities (39). Previous works have sug-
gested that dosage sensitivity may be a driver for
reduced noise in gene expression (12,40), and consistently,
in yeast, dosage sensitive genes have low EV (9).
Moreover, IDPs have been found to be dosage sensitive
(41), which would suggest that genes encoding IDPs have
low EV. Consistent with this theoretical expectation we
found that in 19 tissues, inherent disorder score (see
‘Materials and Methods’ section) was significantly nega-
tively correlated with EV based on LR (‘SupFile1:
Genomic Features LinReg’), and based on Wilcoxon
test (‘SupFile1: Genomic Features Wilcox’). Also see
‘SupFile2: 25’. Our results strongly suggest that genes
encoding IDPs have low EV.

Genes that encode highly interacting proteins exhibit
lower variability

Genes whose protein product is engaged in a large number
of PPIs exhibit lower EV in yeast (11) as well as in human
olfactory neurosphere-derived cell and nose fibroblasts
(42). To characterize the prevalence of this observation
across a large number of primary human tissues, we

obtained PPI data from STRING database (25). We
then tested for association between the number of inter-
actions for each gene (measured as the number of edges in
the PPI network for encoded proteins) and EV. We found
that EV is negatively correlated with the number of
protein interactions in all but three tissues (‘SupFile1:
Genomic Features LinReg, Genomic Features Wilcox’,
‘SupFile2: 27’). Our result coincides with previous obser-
vations and further generalizes them to a large number of
tissues. Given that the PPI data are not tissue-specific, the
tests in various tissues may seem redundant. However we
note that the genes’ EV is highly tissue-specific; most
genes are hyper- or hypovariable in a small set of tissues
(Figure 2) supporting the independence of analyses in dif-
ferent tissues. Overall our results suggest that low EV is a
general characteristic of highly interacting proteins.

Disease genes have more variable gene expression

Gene EV has been linked to neurological disease (42);
expression variance of genes in a few core networks were
found to be less variable in Schizophrenic patients
compared with normal subjects, while in Parkinson’s
disease patients the opposite trend was observed.
Hypervariable gene expression has also been linked with
cancer (43), HIV susceptibility and several human diseases
(10). Here we extended previous analyses performed on
specific cell lines to multiple primary tissues from
normal subjects. We obtained a list of 9692 genes
that have been linked to various human diseases from
OMIM database (www.ncbi.nlm.nih.gov/omim) and
tested the correlation between EV and gene–disease asso-
ciation, independently for each tissue. Consistent with
previous reports, we found that EV was positively
correlated with disease in 32 out of 41 tissues based on
LR (‘SupFile1: Genomic Features LinReg’, ‘SupFile2: 26’)
and was consistent using Fisher test (‘SupFile1: Genomic
Features Wilcox’). Phenotypic plasticity is an essential
component in the molecular basis of many diseases
(44,45). Our result suggests gene expression plasticity, as
measured by EV, plays an important role in disease.

Hypovariable gene loci evolve under purifying selection
against structural polymorphisms

Much like single-nucleotide polymorphisms, numerous
Copy Number Variations (CNV) have been recorded in
normal human populations (projects.tcag.ca/variation).
CNV-induced dosage changes are expected to have a dele-
terious effect on the genes with low EV and therefore we
expect naturally occurring CNVs to be depleted for genes
with low EV. Consistent with this expectation, the tissue-
wise LR showed overlap with CNV regions to be signifi-
cantly positively correlated with EV in 8 of the 41 tissues
(‘SupFile1: Genomic Features LinReg’). Also, hypovari-
able genes are significantly depleted in CNV regions in 23
of the 41 tissues compared with background using the
Fisher test (‘SupFile1: Genomic Features Wilcox’,
‘SupFile2: 24’). Importantly, we did not see a significant
enrichment for CNVs among hypervariable genes ruling
out the possibility that CNVs underlie the observed vari-
ability. Taken together, our results suggest that there is a
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negative selection against CNV in the regions harboring
hypovariable genes. This result along with our observed
weak negative correlation between hypovariability of
greater evolutionary conservation in the promoter region
may suggest that hypovariable expression is a functionally
critical property of a gene, which is evolutionary main-
tained through selection.

Genes with hyper- and hypovariable expression are
involved in distinct cellular functions

We performed functional term enrichment analysis to
characterize the function of genes that show extreme
(high or low) EV in a specific tissue. In each tissue we
used the top 25% most variable and bottom 25% least
variable genes and determined enrichment of Gene
Ontology categories based on these sets independently
for each tissue. We found that in general, categories
involving signaling and response (i.e. extracellular
processes) are enriched in the set of hypervariable genes,
whereas categories involving metabolic and other cellular
processes are enriched in the set of hypovariable genes.
The details are provided in (‘SupFile1: GO Hyper and
GO Hypo’). This suggests that EV is an essential aspect
of gene function, consistent with previous reports (10,42)
and findings reported above.

DISCUSSION

EV has been investigated at different scales—cell-to-cell
variability in a homogeneous cell population
(stochasticity) (46), spatiotemporal variability in an
organism (expression complexity) (1), interindividual vari-
ability, both within and across populations (10). Although
these contexts are distinct from each other, previous
studies suggest that EV is correlated across these
contexts. For instance, cell-to-cell variability, or
stochasticity, was shown to significantly correlate with
EV across different conditions in yeast (9). EV within a
population was shown to be correlated with EV between
populations (10). Also, as we have shown above, genes
with low EV tend to be ubiquitously expressed house-
keeping genes, i.e. with low spatiotemporal variability.

It is possible in principle that part of cross-individual
EV may be due to differences in regulation across individ-
uals rather than stochastic variability. However, the role
of regulation may be limited in this case for the following
reasons. First, Expression Quantitative Trait Loci (eQTL)
studies show that amount of expression variance explained
by genetic variability is extremely small (<5%), (47), while
various measures of variability predict noise with an R of
0.52 (9). Second, in previous studies of EV within and
across populations show that even in cases where a gene
is differentially expressed in different populations, its
within-population EV remains similar (10). Third, for a
typical gene, hypervariability is rare, even when consider-
ing only the tissues in which a gene is expressed (Figure 2),
which rules out genetic regulation as a reason for EV.
Fourth, we show that the genes encoding TF regulators
are no more likely to be hypervariable than other genes,
which suggest that gene regulation is not a significant

causal agent of EV in general. We cannot rule out the
role of epigenomic differences, but that can also vary sto-
chastically, and is poorly explained by genetics. Overall,
the relatedness of EV across various contexts, the afore-
mentioned arguments, as well as heritability of EV (48)
strongly suggests that EV is an inherent property of a
gene encoded either in the genome or heritable epigenome,
thus motivating the present study.
Here we report a first comprehensive survey of potential

determinants of EV by leveraging the vast compendium
of genome-wide expression profiles in dozens of primary
human tissues processed using rigorous statistical methods
to control for batch effects. Because we measure expected
EV relative to average gene expression (see ‘Materials and
Methods’ section), the results presented here are not ex-
plained by underlying changes in variability concomitant
to changes in expression level (Figures 1 and 2). Based on
multiple quantitative (LR and Wilcoxon test) and quali-
tative (trend plots) assessment of associations between
tissue-specific EV and various genic features, our investi-
gation shows that a gene’s EV is significantly correlated
with a number of features pertaining to the genomic,
epigenomic, regulatory, polymorphic, functional, struc-
tural and network characteristics of the gene. Our
findings are summarized in Table 1.
Our results show that, overall, EV is regulated by

multiple mechanisms operating in distinct ways. In few
cases, EV shows a significant monotonic relationship
with genetic or epigenetic features (e.g. breast stroma in
‘SupFile 2: 26’) indicating that a determinant is involved
directly in the regulation of both hyper- and hypovariabil-
ity in gene expression. By far, the most predominant trend
we observed shows that features are related exclusively
to ‘one’ of hyper- or hypovariability (e.g. all significant
results, except CD4+ T-cells in ‘SupFile 2: 1’). This
suggests that mechanisms regulating hyper- and hypovari-
ability are distinct, and when involved in the regulation
of EV, the large fraction of determinants tested in this
study is involved exclusively in one of these mechanisms.
Finally, we also observed instances where features were
significantly related to both hyper- and hypovariability
in gene expression (for example, gene size and other
length-related genomic features ‘SupFile 2: 18’). In this
case, we suggest that these features participate, along
with other determinants, in the regulation of EV.
Specifically, these determinants may provide a ‘protective’
function, whereby extreme feature values (e.g. long gene
length) permit other mechanisms specific to the regulation
of either hyper- or hypovariability to act. Our results are
generally consistent with biological intuition as well as
with previous findings in few cases where they overlap,
while also revealing a few less obvious possibilities,
discussed next.
The overall increase in EV with the length and number

of exons in a gene may suggest accumulated variability in
processing long and multi-exonic transcripts, consistent
with previously reported length bias in detection of differ-
entially expressed genes (26). This could also be due to am-
biguity in expression measurements when we consider that
longer transcripts are more likely to have greater number
of (known and unknown) transcripts. But surprisingly, we
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see a negative relationship between EV and number of
known transcripts, which may possibly be due to func-
tional redundancy and mutual exclusion among tran-
scripts, consistent with recently observed cell-to-cell
variability in transcript usage (46). Although hypervari-
able genes are longer than hypovariable genes, interest-
ingly, they are shorter than the genes with moderate
variability suggesting an alternative mechanism relating
gene length and EV. We can speculate that a depletion
of long genes among the most hypervariable genes may
reflect the fact that long genes have a greater number of
domains and thereby a greater number of interaction
partners, which is associated with low EV (11).
In the promoter regions, although not significantly

based on our criteria, the promoters of hypovariable
genes tend to be more conserved, which may suggest the
functional importance and need to conserve hypovariabil-
ity leading to conservation on promoters to the extent it
mediates EV in mammals. It is possible that with an
improved understanding of promoter elements mediating
EV, we may see a clear relationship between promoter
conservation and EV (27). EV is also lower for genes
with GC-rich proximal promoters, likely to be performing
house-keeping functions (28). This may be either because
of functional constraints on house-keeping genes due to a
greater number of interactions (29) or homeostasis re-
quirements (30), or an alternative mechanism, the same
one underlying low EV for genes in active chromatin con-
figuration as well as with strong promoters, and high EV
for genes with weak promoters and in heterochromatic
regions, observed previously (5). We also noted, independ-
ent of CG, an overall positive correlation between number
of distinct cis elements in the promoter, as well as number
of targeting miRNAs in the 30 Untranslated Region
(UTR) of a gene and the gene’s EV, consistent with
previous reports showing positive correlation between ex-
pression noise and number of regulators (32). However,
for the number of miRNAs targeting a gene, Wilcoxon
test showed a more nuanced relationship; while initially
EV increases with number of miRNA regulators, at higher
values of the number of miRNA regulators, EV decreases,
pointing to an alternative mechanisms relating number of
miRNAs regulating a gene to the gene’s EV. We speculate
that this specific effect in case of miRNA, but not for TFs,
may be related to suppressive effect of miRNA on mRNA
levels.
Besides relationships between EV and genomic/

epigenomic features, we also found that genes encoding
intrinsically disordered or highly interacting proteins
exhibit constrained EV. While it has been observed that
these proteins tend to have high abundance, our result is
not a by-product of increased abundance because our EV
measurement controls for mean average expression. This
is likely due to a greater dosage sensitivity of highly inter-
acting proteins (which IDPs tend to be) and relationship
between dosage sensitivity and low EV (9,12,40,41). We
also found that, consistent with dosage sensitivity,
hypovariable genes are depleted in CNV regions in
normal human population. Our finding that genes
involved in human diseases tend to be hypervariable sug-
gesting that the EV of a gene perhaps makes certain genes

more likely agents of disease processes. Our finding is con-
sistent with previous reports (10,43), as well as mechan-
isms that relate phenotypic plasticity (EV in our case) to
diseases (44,45). Finally, consistent with previous reports
(10,42), we found that genes involved in common and fun-
damental cellular processes tend to have low EV while
genes responding to environment tend to be more
variable in their expression.

The features investigated here are not necessarily inde-
pendent of each other. For instance intrinsic disorder and
tendency for a greater number of interactions are highly
correlated. Various features related to gene length are
correlated. Promoter composition, function and inter-
actions are also mutually correlated. A similar situation
arises in investigating potential correlates of protein evo-
lutionary rates, where numerous correlates have been
reported but a clearer view of independent mechanistically
based determinants of protein evolutionary rates are only
starting to emerge (49). Disambiguating independent
mechanisms driving EV will require further study
involving larger, controlled data sets and targeted experi-
ments. Notwithstanding, here we provide a first compre-
hensive survey of potential determinants of EV and have
discussed potential driving mechanisms and relationships
among them providing a point of departure for future
studies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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