
RESEARCH ARTICLE

Global discovery of human-infective RNA

viruses: A modelling analysis

Feifei ZhangID
1*, Margo Chase-ToppingID

2,3, Chuan-Guo GuoID
4, Bram A. D. van

BunnikID
1,2, Liam BrierleyID

5, Mark E. J. WoolhouseID
1,2

1 Usher Institute, University of Edinburgh, Edinburgh, United Kingdom, 2 Centre for Immunity, Infection and

Evolution, School of Biological Sciences, University of Edinburgh, United Kingdom, 3 Roslin Institute and

Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom,

4 Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China,

5 Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool, United

Kingdom

* Feifei.Zhang@ed.ac.uk

Abstract

RNA viruses are a leading cause of human infectious diseases and the prediction of where

new RNA viruses are likely to be discovered is a significant public health concern. Here, we

geocoded the first peer-reviewed reports of 223 human RNA viruses. Using a boosted

regression tree model, we matched these virus data with 33 explanatory factors related to

natural virus distribution and research effort to predict the probability of virus discovery

across the globe in 2010–2019. Stratified analyses by virus transmissibility and transmission

mode were also performed. The historical discovery of human RNA viruses has been con-

centrated in eastern North America, Europe, central Africa, eastern Australia, and north-

eastern South America. The virus discovery can be predicted by a combination of socio-eco-

nomic, land use, climate, and biodiversity variables. Remarkably, vector-borne viruses and

strictly zoonotic viruses are more associated with climate and biodiversity whereas non-vec-

tor-borne viruses and human transmissible viruses are more associated with GDP and

urbanization. The areas with the highest predicted probability for 2010–2019 include three

new regions including East and Southeast Asia, India, and Central America, which likely

reflect both increasing surveillance and diversity of their virome. Our findings can inform pri-

ority regions for investment in surveillance systems for new human RNA viruses.

Author summary

There is a lack of evidence on the factors driving the discovery of RNA viruses in general

globally. Here, we recorded the initial discovery sites of all 223 human RNA viruses and

revealed its global distribution pattern. By using a machine learning method, we found

that the virus discovery was driven by a combination of variables describing socio-eco-

nomic level, land use, climate and biodiversity, with GDP and GDP growth found to be

the two leading predictors. We also predicted the probability of virus discovery in 2010–

2019 across the globe, and identified three new areas (East and Southeast Asia, India, and

Central America) in addition to the historical high-risk areas. The further stratified
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analyses (distinguishing viruses transmissible in humans or strictly zoonotic, and vector-

borne or non-vector-borne) helped pinpoint the explanatory factors for the discovery of

specific categories of viruses and confirm the plausibility of the model. The results of our

study further understanding of the spatial distribution of human RNA virus discovery,

and map the likelihood of further discoveries across the world. By identifying where new

viruses are most likely to be discovered in the near future the study helps identify priority

areas for surveillance.

Introduction

Since the first identification of a virus in humans—yellow fever virus in 1901—viruses have

been recognised as a leading cause of human infectious diseases [1]. Numerous human dis-

eases, from the common cold [2] to life-threatening haemorrhagic fevers [3], are caused by

RNA viruses. RNA viruses such as dengue virus, norovirus, and HIV impose significant bur-

dens on global health and the global economy [4–6]. Despite the striking declines in the inci-

dence and mortality of RNA virus-related diseases in human following the introduction of

vaccination, infections due to measles virus, yellow fever virus, and Japanese encephalitis virus

continue to endanger human health and cause hundreds to thousands of deaths each year [7–

9], particularly in countries with limited resources to launch mass vaccination campaigns.

Human RNA viruses comprise a total of 214 International Committee on Taxonomy of

Viruses (ICTV)-recognised species as of July 2017, classified into 55 genera and 22 families [1].

Many of these—such as rabies virus, dengue virus, and measles virus—have circulated in

humans for thousands of years [6,9,10], though some—such as HIV-1 and SARS coronavirus

—have emerged much more recently. Typically, a virus is identified through investigation of

the aetiology of a human disease (e.g. yellow fever virus [11], measles virus [12]), although

some have been identified during active virus discovery programmes (e.g. rotavirus C [13],

parechovirus B [14]). Viruses such as hepatitis delta virus [15] and Highlands J virus [16] were

discovered by chance, as incidental findings as part of a disease investigation.

The discovery curve of human viruses, for both RNA viruses and DNA viruses, was

described for the first time in 2008 [17]. Up to nine new human virus species have been

detected each year since the 1950s, and this is projected to continue in coming decades [17].

The factors driving the discovery of human viruses remain to be elucidated, though two previ-

ous studies have identified predictors of the emergence of infectious diseases more generally

[18,19]. In this paper, we take a spatiotemporal modelling approach to identify explanatory

factors influencing the discovery of RNA viruses in humans. We assume virus discovery is

determined by two underlying spatiotemporal patterns: the geographical distribution of

viruses in nature, and the process of virus detection—a human activity. Geographical ranges,

which vary from worldwide (e.g. Norwalk virus [4], HIV-1 [5]) to very localised (e.g. Hendra

virus [20], Menangle virus [21]), are mostly determined by virus natural history, vector distri-

bution (for vector-borne viruses), and non-human host distribution(s) (for zoonotic viruses)

[22]. In contrast, virus detection reflects scientific resources and research effort [18]. An

uneven distribution of research effort will lead to an uneven distribution of virus discoveries.

Geographical ranges and discovery effort are likely to have different drivers [23]. Previous

studies [18,24] have attempted to allow for variation in discovery effort, although this is hard

to do as no direct and effective measures are available. Here, we take a different approach by

identifying explanatory factors of the raw virus discovery data and then interpreting in the
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discussion whether these effects might relate to virus geographic range or discovery effort or

both.

Materials and methods

Methods overview

In this study, we followed methods and used code derived from Allen, et al [19]. We compiled

and geocoded the first reports in the peer-reviewed literature of human infection for each

RNA virus in our database over a period of 118 years from 1901 to 2018. A Poisson boosted

regression tree (BRT) model—a method that handles spatially dependent data well—was fitted

to the human RNA virus data with a set of variables thought to be potential explanatory fac-

tors. By matching the virus discovery count and all explanatory factors in each 1˚ resolution

grid cell (approximately 110 km at the equator) by decade, we ranked the contribution of each

explanatory factor to the predictions. We then used the parameter estimates from the best fit-

ting BRT model to predict the probability of virus discovery for all grid cells across the globe in

2010–2019 using the values of all explanatory factors in 2015. We also conducted stratified

analyses (distinguishing viruses transmissible in humans or strictly zoonotic, and vector-borne

or non-vector-borne) to find the explanatory factors for the discovery of specific categories of

viruses.

Data source of human RNA viruses and updating

Data on human RNA viruses were derived from an updated version of our previously pub-

lished database (https://datashare.is.ed.ac.uk/handle/10283/2970), which contains 214 viruses,

with discovery dates between from 1901 to 2017. Search terms, databases searched, and inclu-

sion or exclusion criteria for data collection was provided in our previous paper [1]. The

updated version to 2018 includes nine additional human virus species recently recognised by

ICTV or newly added to the database: Nairobi sheep disease orthonairovirus, Achimota virus 2,

Menangle rubulavirus, Madariaga virus, Pegivirus H, Central chimpanzee simian foamy virus,
Guenon simian foamy virus, Enterovirus H and Orthohepevirus C (S1 Table). The metadata

provide information on discovery date, transmissibility, transmission route, and host range

[1].

We defined “discovery” as the first report of an ICTV-recognised RNA virus species from

human(s) in the peer-reviewed literature, and the location of initial human exposure/infection

with the virus was taken as the discovery location. When the location was not given from the

original paper, the site of the research laboratory was used as the discovery location (n = 3). If

neither human exposure/infection location nor research laboratory site were available, the

address of the first author was used as the discovery location instead (n = 19). In our database,

locations of initial human exposure/infection were used for 201 (90%) viruses (S1 Table) and

none of these were contracted while travelling. The locations were georeferenced as precisely

as possible according to the original literature, ranging from precise coordinates of points to

polygon-level data (e.g., city, county, district, state, or country) (see S1 Text for details). For

unspecified locations covering more than one grid cell (S2 Table), sampling was used in our

bootstrap framework as described below.

Spatial explanatory factors

A set of 33 variables potentially affecting the spatial distribution of RNA virus discovery were

collated and used as explanatory factors. Full details of sources, original resolutions, along with

the definitions are provided in S3 Table. The variables were assigned to four groups: climatic,
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socio-economic, land use, and biodiversity. We expect GDP, GDP growth and university

count etc. to be correlated with discovery effort as they imply more resources that could be

invested in virus research [25,26]. Other groups of variables including land use, climate, and

biodiversity are more likely to be related to the natural geographic range of the virus [27], i.e.

these variables will affect discovery via the intermediate step of emergence.

All explanatory factors and virus locations were matched by a 1˚ spatial grid cell, having

rescaled or transformed the data where necessary (details of data transformation are provided

in S2 Text). Our model matched the RNA virus discovery count in each grid cell with histori-

cal decadal climatic variables, population, GDP, and land use data (described below), so we

extrapolated the data for these variables back to 1901 (see S2 Text for details).

BRT modelling approach

By fitting a Poisson BRT model, we estimated the relative risk of RNA virus discovery for each

1˚ resolution of grid cell across the world as a function of the 33 explanatory factors. BRT is a

tree-based machine learning method beginning to be widely used in ecological studies [28,

29]. It applies the technique of boosting to combine many simpler tree models adaptively, and

renders improved predictive performance [30,31]. Tree-based learning methods are useful

tools for modelling non-linear relationships and higher order interactions between variables.

In addition, BRT handles spatially dependent data well, as it can capture complex structures

within the data that many other modelling methods cannot [32]. We calculated Moran’s I (an

index of spatial dependence) to estimate the ability of the BRT model to account for spatial

dependence in the virus data, using package spdep in R v. 3.5.1 (fixed distance weights were

generated based on spherical distance, with the cut-off values ranging from one time to thirty

times of distance of 1˚ resolution grid cell at the equator, i.e. 110km to 3300km) [33]. Unlike

the traditional, significance-based approaches, BRT assesses the individual effect of each vari-

able by estimating the relative importance of each variable to the predictions.

The bootstrap resampling approach was applied to account for spatial uncertainty in the

location of virus discoveries and generated 95% quantiles. For viruses with imprecise discovery

locations, one grid cell was randomly selected each time. For each grid cell with virus discov-

ery, two grid cells with no discovery were randomly selected from all cells throughout the

world that were “virus discovery free” at all time points. So, in each model, 223 grid cells with

virus discovery and 446 with no virus discovery were included. We matched the virus data

with all explanatory factors (using the same decade for time-varying explanatory factors, e.g.

2010 values of variables were matched with viruses discovered in 2005–2014). We assumed

that the virus count in any given grid cell in each decade follows a Poisson distribution, and

used the virus discovery count in each grid cell by decade as the response variable.

Using bootstrap resampling, we fitted 1000 replicate BRT models and generated relative

contribution plots and partial dependence plots with 95% quantiles. The relative contribution,

or the influence/weight, of each variable is an indicator of that variable’s importance for pre-

dicting virus discovery counts. The relative contributions of all variables of a BRT model sum

to 100%, with higher numbers indicating stronger influence on the response. We defined the

most influential explanatory factors as those whose relative contributions were greater than

the mean level (i.e. 100/(total explanatory factors counts�100); this study: 100/(33�100) =

3.03%) [28]. Partial dependence plots are a method of visualizing the relationships between a

BRT’s predictive variables and its outcome after accounting for the average effects of all other

variables. The means of the predictions of all 1000 models were used to predict the probability

of virus discovery across the globe in 2010–2019, using 2015 values of the 33 explanatory fac-

tors. Using the equation of Poisson probability distribution, we converted the continuous
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prediction map to a probability map. We used the packages dismo and gbm in R v. 3.5.1 to fit

BRT models. Parameters including tree complexity (reflecting the number of nodes in a tree),

learning rate (shrinking the contribution of each added tree), and bag fraction (specifying the

proportion of data to be selected at each step) were set following Elith et al. [31] to make sure

each resampling model contained at least 1000 trees. The final parameters of the optimal

model had the following values: tree complexity = 5, learning rate = 0.003, bag fraction = 0.5.

A cross-validation stagewise function was used to identify the optimal number of trees in each

model [31]. With these parameters, the 1000 replicate BRT models fitted a mean of 1214 trees.

The model’s predictive performance was assessed by calculating the deviance of the boot-

strap model, as well as by conducting 50 rounds of ten-fold cross-validation. Details of model

validation are provided in S3 Text and S4 Table.

We also performed sensitivity analyses by i) using data from 1980 to 2000 only (as explana-

tory variables are available without extrapolation only for this period), and ii) removing the 22

discovery reports that were not locations of infected humans (as these are less precise). Model

parameters are provided in S5 Table.

Stratified analysis

Two stratified analyses were conducted to find explanatory factors specific to discoveries of

different categories of virus. The first stratified analysis distinguished 131 viruses that are

strictly zoonotic (all human infections are acquired from an infection in a non-human reser-

voir) and the 92 viruses that can spread within human populations (i.e. are transmissible,

directly or indirectly, between humans) (S1 Table), based on previously published data [34]. A

second stratified analysis was performed separately for 93 vector-borne viruses and 130 non-

vector-borne viruses (S1 Table). We used the same BRT modelling approach for stratified

analyses as we described before, and relative contribution plots and partial dependence plots

with 95% quantiles were drawn for each category of virus. Model parameters are provided in

S5 Table. Based on stratified BRT models, predictions of discovery probability for each cate-

gory of viruses in 2010–2019 were also performed by using 2015 values of the 33 explanatory

factors.

All statistical analyses were performed using R software, version 3.5.1 (R Foundation for

Statistical Computing, Vienna, Austria), and all maps were visualised by using ArcGIS Desk-

top 10.5.1 (Environmental Systems Research Institute). The world shapefile used in the study

was obtained from Data and Maps for ArcGIS (formerly Esri Data & Maps, https://www.

arcgis.com/home/group.html?id=24838c2d95e14dd18c25e9bad55a7f82#overview) under a

CC-BY license (S4 Text). Raw data and supporting R scripts used to generate figures for the

full model are presented in S1 R script.

Results

The five regions with the highest virus count were eastern North America, Europe, central

Africa, eastern Australia, and north-eastern South America (Fig 1A). Strictly zoonotic viruses

and vector-borne viruses were mostly discovered from central Africa and north-eastern South

America while transmissible viruses and non-vector-borne viruses were mostly discovered

from eastern North America and Europe (S1 Fig). The cumulative discovery count increased

slowly before 1950s, and thereafter increased at a constant rate (Fig 1B). There is variation for

the rate of discovery by geographic region (S1 Video). More viruses have been discovered in

North America and Europe, but the numbers have decreased in recent decades. By contrast,

an increased number of viruses have been discovered in Asia. Transmissible viruses and non-

vector-borne viruses showed a similar temporal pattern with the curve for all human RNA
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viruses, with an obvious increase in 1950 (S1 Fig). Strictly zoonotic viruses and vector-borne

viruses showed a similar pattern in the early phase, with an obvious increase in 1925, but the

number of new vector-borne viruses decreased after 1980 (S1 Fig).

Based on the full BRT model involving all 223 viruses, twelve variables had relative contri-

butions greater than the mean (3.03%) (Fig 2), including two socio-economic variables (GDP

growth: 12.7%, GDP: 9.9%), four variables concerning urbanization [urbanized land: 8.7%,

urbanization of secondary land (i.e. the percentage of land area change from secondary land to

urban land; secondary land is natural vegetation that is recovering from previous human dis-

turbance, see S3 Table for details): 4.8%, growth of urbanized land area: 3.6%, and urbaniza-

tion of cropland (i.e. the percentage of land area change from cropland to urban land, see S3

Table for details): 3.3%], five climatic variables (minimum temperature: 6.3%, precipitation

change: 5.0%, latitude: 4.3%, total precipitation: 3.6%, minimum precipitation: 3.5%), and

one biodiversity variable (mammal species richness: 5.1%). The partial dependence plots

shown in S2 Fig showed the relationships between these explanatory factors and virus discov-

ery. For the majority of explanatory factors, the relationship with discovery probability is non-

linear, with large effects often seen over a narrow range of values. For example, discovery prob-

ability fell sharply if GDP growth was negative, and for very low GDP and low percentage of

urbanized land; whereas it rose sharply for high minimum temperature and high mammal

richness.

Our full BRT model reduced the Moran’s I for the raw virus data from a range of 0.04–0.31

to 0.007–0.065 (S3 Fig), indicating that this modelling method with 33 explanatory factors

effectively removed the spatial dependence of the model residuals. Sensitivity analyses (the

analysis using data from 1980 to 2000 and the analysis after removing the 22 viruses with least

certain discovery locations) revealed consistent trends with the full model, though with several

changes of relative contribution.

Fig 1. Spatiotemporal distribution of human RNA virus discovery count from 1901 to 2018. (A) Spatial distribution. The red spots indicate discovery points or

centroids of polygons (administrative regions)–depending on the preciseness of the location provided by the original paper, with the size representing the

cumulative virus species count. Centroid is the coordinate of the centre of mass in a spatial object. (B) Temporal distribution. The red curve indicates the

cumulative virus species discovery count over time.

https://doi.org/10.1371/journal.ppat.1009079.g001
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In the transmissibility-stratified BRT model, ten variables had relative contributions greater

than 3.03% for discovering strictly zoonotic viruses (Fig 3A, partial dependence plots in S4A

Fig), including four climatic variables (minimum temperature: 13.1%, latitude: 6.2%, precipi-

tation change: 5.3%, total precipitation: 3.6%), three land use variables (urbanized land: 7.7%,

urbanization of secondary land: 5.6%, growth of urbanized land area: 5.2%,), two socio-eco-

nomic variables (GDP: 8.3%, GDP growth: 7.9%), and one biodiversity variable (mammal spe-

cies richness: 5.6%). In contrast, eight variables had relative contributions greater than 3.03%

for discovering viruses transmissible in humans (Fig 3B, partial dependence plots in S4B Fig),

including four explanatory factors involving urbanization (urbanized land: 13.6%, urbaniza-

tion of cropland: 9.3%, urbanization of secondary land: 6.6%, growth of urbanized land area:

3.6%), three socio-economic variables (GDP growth: 14.4%, GDP: 14.0%, population growth:

3.6%), and one climatic variable (minimum precipitation: 5.0%).

In the vector-borne-stratified BRT model, thirteen variables had relative contributions

greater than 3.03% for discovering vector-borne viruses (Fig 4A, partial dependence plots in

S5A Fig), including five climatic variables (minimum temperature: 17.1%, precipitation

change: 7.9%, latitude: 6.2%, total precipitation: 3.8%, maximum precipitation: 3.3%), two

socio-economic variables (GDP growth: 7.4%, GDP: 4.4%), one biodiversity variable (mammal

species richness, 6.7%), and five land use variables (urbanization of secondary land: 4.8%,

urbanized land: 4.1%, growth of cropland area: 3.7%, growth of urbanized land area: 3.6%,

growth of pasture area: 3.4%). In contrast, seven variables had relative contributions greater

than 3.03% for discovering non-vector-borne viruses (Fig 4B, partial dependence plots in S5B

Fig), including four land use variables (urbanized land: 19.6%, urbanization of secondary land:

7.5%, urbanization of cropland: 4.5%, growth of urbanized land area: 3.5%), two socio-eco-

nomic variables (GDP: 18.7%, GDP growth: 12.4%), and one climatic variable (minimum pre-

cipitation: 3.3%).

Fig 2. Relative contribution of explanatory factors to human RNA virus discovery in the full model. The boxplots show the median (black bar) and interquartile range

(box) of the relative contribution across 1000 replicate models, with whiskers indicating minimum and maximum and black dots indicating outliers.

https://doi.org/10.1371/journal.ppat.1009079.g002
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Fig 3. Relative contribution of explanatory factors to human RNA virus discovery in the stratified model by transmissibility. (A) Strictly zoonotic, (B) Transmissible

in humans. The boxplots show the median (black bar) and interquartile range (box) of the relative contribution across 1000 replicate models, with whiskers indicating

minimum and maximum and black dots indicating outliers.

https://doi.org/10.1371/journal.ppat.1009079.g003
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Fig 4. Relative contribution of explanatory factors to human RNA virus discovery in the stratified model by transmission mode. (A) Vector-borne, (B) Non-vector-

borne. The boxplots show the median (black bar) and interquartile range (box) of the relative contribution across 1000 replicate models, with whiskers indicating

minimum and maximum and black dots indicating outliers.

https://doi.org/10.1371/journal.ppat.1009079.g004
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The summary of the cumulative relative contribution of each group of explanatory factors

to human RNA virus discovery in each model is shown in Fig 5. In comparison with non-vec-

tor-borne viruses and human transmissible viruses, the discovery of vector-borne viruses and

strictly zoonotic viruses is better predicted by climatic variables and biodiversity than by socio-

economic variables and land use.

By applying 2015 values of all 33 explanatory factors (S6 Fig) to the fitted full BRT model,

we obtained a predicted probability of human RNA virus discovery in 2010–2019 (Fig 6).

Comparison with Fig 1 indicates that virus discoveries remain relatively likely in eastern

North America, Europe, central Africa, eastern Australia and north-eastern South America

but, in addition, we predict high probabilities of virus discovery across East and Southeast

Asia, India and Central America. All eighteen new virus species since 2010 were discovered in

regions of high-risk as predicted by our model (75.0%–99.9% percentiles of predicted proba-

bility over the global range), and eleven of them were discovered in very high-risk areas (90.0–

99.9% percentiles of predicted probability over the global range). The predictions of discovery

for each category of virus are shown in S7 Fig. Broadly similar patterns as the full prediction

model were seen for all four categories: high probabilities of virus discoveries are predicted in

East and Southeast Asia, India, and Central America in comparison with the historical distri-

bution (S1 Fig). However, there is some variation between virus categories: strictly zoonotic

viruses are more likely to be discovered in northern South America, central Africa, and South-

east Asia, while transmissible viruses are more likely to be discovered in North America, East

Asia, and India (S7 Fig); and vector-borne viruses are predicted to be more likely to be

Fig 5. Cumulative relative contribution of explanatory factors to human RNA virus discovery by group in each model. The relative contributions of

all explanatory factors sum to 100% in each model, and each colour represents the cumulative relative contribution of all explanatory factors within each

group. The relative contribution of different groups to virus discovery varies across each model.

https://doi.org/10.1371/journal.ppat.1009079.g005
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discovered in northern South America, central Africa, India, and Southeast Asia than non-vec-

tor-borne viruses (S7 Fig).

Discussion

In this study we compiled a large body of information on global spatiotemporal patterns of

human RNA virus discovery and developed a spatiotemporal modelling framework to identify

explanatory factors for the discovery of new viruses. The maps of human RNA virus discovery

indicate five regions with historically high discovery counts: eastern North America, Europe,

central Africa, eastern Australia, and north-eastern South America. BRT modelling suggests

that virus discovery is well predicted by socio-economic variables (especially GDP and GDP

growth), land use variables (especially those related to urbanization), climate variables (includ-

ing minimum temperature, precipitation change, latitude, minimum precipitation, total pre-

cipitation), and biodiversity (especially mammal species richness). The predicted probability

map in 2010–2019 identified three new areas across East and Southeast Asia, India, and Cen-

tral America in addition to the historical high-risk areas.

We focused on the discovery of RNA viruses in human(s) in this study, rather than emergence.

This is determined by the attribute of the database itself, i.e. the first report of each human RNA

virus from the literature review. The discovery location may or may not represent the origin of

the virus. For example, HIV-1 is believed to originate from non-human primates in West-central

Africa, and is estimated to have transferred to humans in 1920s [35], but the first published case

from peer-reviewed literature was a Caucasian and was published by researchers in France [36].

In both the full and the stratified BRT models, GDP and GDP growth were among the top

predictors of virus discovery count. This is likely to reflect that richer, more developed areas

have more research funding, better access to technologies for virus detection and more effective

surveillance systems. In the United States, for example, the National Institute of Allergy and

Infectious Diseases (NIAID) budget on emerging infectious diseases has quadrupled over the

past decades from less than $50 million in 1994 to more than $1.7 billion in 2005 [37]. Compari-

son of Fig 1 with S6 Fig suggested that more viruses have been discovered in developed regions

Fig 6. Predicted probability of human RNA virus discovery in 2010–2019. The triangles represented the actual discovery sites from 2010 to 2018, and the background

colour represented the predicted discovery probability.

https://doi.org/10.1371/journal.ppat.1009079.g006
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with/without fast GDP growth including North America, Europe, and Australia. We note that

more developed countries are more likely to first capture viruses circulating in multiple regions.

Over the last 100 years, North America and Europe have witnessed a decreasing fraction of dis-

covered viruses in more recent decades (1985–2018: 32/86 = 37%) than previously (1901–1984:

78/137 = 57%), but Asia has accounted for a higher fraction (1901–1984: 16/137 = 12%; 1985–

2018: 22/86 = 26%) (S1 Video). This can be partly explained by the higher GDP and faster GDP

growth in Asia in recent decades. In addition, there have also been historical hotspots in indi-

vidual countries (e.g. Brazil, Nigeria and Uganda) associated with active virus discovery initia-

tives such as those supported by the Rockefeller Foundation [26]. More viruses are likely to be

discovered in the near future in areas with high GDP growth and GDP including most of Asia

(except North and Central Asia), Europe and North America.

In contrast to GDP, all other explanatory factors identified in this study appear more directly

associated with virus geographic distributions, our study having the important advantage that

their influence is estimated independently of GDP. We note that the relative importance of

GDP is less, though still substantial, for strictly zoonotic viruses and vector-borne viruses (two

large, overlapping subsets of human RNA viruses—73 out of 93 (78.5%) strictly zoonotic viruses

are vector-borne) (S1 Table). This likely reflects the fact that most such viruses have geographic

ranges restricted by the distributions of their vectors and/or reservoir hosts.

Consistent with this interpretation, explanatory factors related to urbanization—a consis-

tently important category—have greatest influence for human-transmissible viruses and non-

vector-borne viruses. This, again, can be explained by the fact that more viruses have been dis-

covered in areas (especially in Asia) which have experienced rapid urbanization in recent

decades (especially after 1980 [38]). Population density and growth, in contrast, are much less

prominent explanatory factors, with particularly little influence on strictly zoonotic viruses

and vector-borne viruses. This implies that change in habitat—from natural or rural to urban

[39]—has a greater influence on virus discovery (by altering the virus geographic distributions

in nature) than human population size or density.

We also found associations between the discovery of RNA viruses and climate: five of the

most influential explanatory factors in the full model were minimum temperature, precipita-

tion change, latitude, minimum precipitation, and total precipitation. That warmer and wetter

climate (higher minimum temperature, more precipitation and lower latitude) is positively

associated with the virus discovery is consistent with previous studies [19]. Climatic variables

(especially minimum temperature) were relatively more important predictors of vector-borne

and strictly zoonotic virus discovery—both these categories are more often discovered in tropi-

cal and sub-tropical regions. Forty two percent (93 out of 223) of human RNA species are vec-

tor-borne [1] and the distribution and abundance of these viruses is strongly influenced by the

impact of climate on vector populations [18,40]. That climate is also relatively important for

the discovery of strictly zoonotic viruses may be at least partly explained by the fact that 78.5%

of strictly zoonotic viruses are vector-borne, although there may also be an association between

climate and the distribution of reservoir hosts.

For biodiversity, mammal species richness was shown to make an influential contribution

to human RNA virus discovery, again particularly for vector-borne viruses and strictly zoo-

notic viruses. Most but not all previous studies have indicated that risk of spill-over for a virus

from mammal hosts to humans is positively correlated with host species richness [18,19,41]

which is consistent with mammals being the main source of zoonotic viruses [34] and that as

the mammal species richness increases, so does the richness of the pool of viral zoonoses [42].

Where zoonotic viruses are first discovered will be influenced, inter alia, by a range of environ-

mental, ecological and socioeconomic factors that increase the interaction between humans

and mammal reservoirs [43].

PLOS PATHOGENS Virus discovery and explanatory factors

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009079 November 30, 2020 12 / 18

https://doi.org/10.1371/journal.ppat.1009079


Our predicted discovery map from the full model, along with two stratified models, identi-

fied three areas—East and Southeast Asia, India, and Central America—where more viruses

were more likely to be detected in 2010–2019 than have been in the past. Inspection of the his-

torical predicted probabilities of virus discovery in S8 Fig indicates there has always been and

is still fewer discoveries than expected in these regions. This suggests that our model is missing

explanatory factors (positive or negative) relevant to these regions. However, as mentioned

before, for two predicted high-risk areas—East and Southeast Asia, India—account for higher

fractions in more recent times. The underlying reason may be that the explanatory factors with

the greatest influence on virus discovery, such as GDP and land use variables related to urbani-

zation, have changed substantially over time in these areas (especially China).

This study had several limitations: firstly, as indicated above, our model is missing explana-

tory factors (positive or negative) relevant to the three newly identified high-risk regions. Sec-

ond, there is often a lag between virus discovery and publication date, though we used the

latter for consistency. Third, there are other potential biases concerning spatiotemporal varia-

tion in virus detection methodologies used, and diagnostic accuracy [1]. Fourth, we used

ICTV species classification following other studies [44,45], though we note that viral species

for each family are defined by independent groups using different criteria, which may lead to

over- or under-representation of species entries for certain families in our study compared to

their phylogenetic diversity. However, we regard ICTV taxonomy as the most authoritative for

comparative analysis. Last, we did not attempt to correct for reporting bias by devising a plau-

sible metric, though previous studies have done so [18,19]. However, we explicitly included

predictors that we expect to be correlated with discovery effort, e.g. GDP and university count

—these are indirect and likely partial measures of effort.

The strengths of the study include use of a comprehensive data set for human RNA virus

discovery, the large set of high-resolution global variables postulated to influence RNA virus

discovery, and a more robust model (BRT) combining the strengths of both regression trees

and boosting that is capable of solving spatial dependence. We also performed further strati-

fied analyses (distinguishing viruses transmissible in humans or strictly zoonotic, and vector-

borne or non-vector-borne) and identified differences between explanatory factors for the dis-

covery of these specific categories of viruses. These results further understanding of the spatial

distribution of virus discovery for different types, and also demonstrate that such a method

can be used to identify such differences between strictly zoonotic and human-transmissible

viruses or between vector-borne or non-vector-borne viruses.

In conclusion, the discovery of human RNA viruses shows both spatial and temporal varia-

tion, and is a process associated with socio-economic variables, land use, climate, and biodi-

versity, although the relative importance of these variables differs across different category of

RNA viruses. Our study helps distinguish the relative contributions of explanatory factors

reflecting the natural virus distribution and those reflecting the effort invested in virus discov-

ery to the spatial distribution of first reports of human viruses. New human viruses are more

likely to be found in areas with more rapid socio-economic growth. But the underlying geo-

graphic distribution of viruses with the potential to infect humans may be somewhat different,

reflecting climate, biodiversity and changes in land use. This implies that extra investment in

virus discovery in settings that are resource-poor but have other risk factors may be warranted.

Supporting information

S1 Fig. Spatiotemporal distribution of human RNA virus discovery count split by category

from 1901 to 2018. The map was plotted with respect to transmissibility (top left: strictly zoo-

notic, top right: transmissible in humans), and transmission mode (bottom left: vector-borne

PLOS PATHOGENS Virus discovery and explanatory factors

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009079 November 30, 2020 13 / 18

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1009079.s001
https://doi.org/10.1371/journal.ppat.1009079


viruses, bottom right: non-vector-borne viruses). In each subplot, the red spots indicate discov-

ery points or centroids of polygons (administrative regions)–depending on the preciseness of

the location provided by the original paper, with the size representing the cumulative virus spe-

cies count. Centroid is the coordinate of the centre of mass in a spatial object. The red curve at

the bottom left corner indicates the cumulative virus species discovery count over time.

(PDF)

S2 Fig. Partial dependence plots for all explanatory factors that influence human RNA

virus discovery in the full model. Partial dependence plots show the effect of an individual

explanatory factor over its range on the response after factoring out other explanatory factors.

Fitted lines represent the median (black) and 95% quantiles (coloured) based on 1000 repli-

cated models. Y axes are centred around the mean without scaling. X axes show the range of

sampled values of explanatory factors.

(PDF)

S3 Fig. Moran’s I across different spherical distances. The solid line and dots represented

the median Moran’s I value, and the grey area represented its 95% quantiles generated from

1000 samples (A: Raw virus data) or replicate BRT models (B: Model residuals).

(PDF)

S4 Fig. Partial dependence plots for all explanatory factors that influence human RNA

virus discovery in the stratified model by transmissibility. (A) Strictly zoonotic, (B) Trans-

missible in humans. Partial dependence plots show the effect of an individual explanatory fac-

tor over its range on the response after factoring out other explanatory factors. Fitted lines

represent the median (black) and 95% quantiles (coloured) based on 1000 replicated models. Y

axes are centred around the mean without scaling. X axes show the range of sampled values of

explanatory factors.

(PDF)

S5 Fig. Partial dependence plots for all explanatory factors that influence human RNA

virus discovery in the stratified model by transmission model. (A) Vector-borne, (B) Non-

vector-borne. Partial dependence plots show the effect of an individual explanatory factor over

its range on the response after factoring out other explanatory factors. Fitted lines represent

the median (black) and 95% quantiles (coloured) based on 1000 replicated models. Y axes are

centred around the mean without scaling. X axes show the range of sampled values of explana-

tory factors.

(PDF)

S6 Fig. Distribution maps for 32 explanatory factors in 2015. The values of these explana-

tory variables and latitude in each grid cell were used to predict the virus discovery in the cor-

responding grid cell across the globe in 2010–2019. Explanatory variables were log

transformed where necessary to get better visualization, not meaning they entered the model

by logged values.

(PDF)

S7 Fig. Predicted probability of human RNA virus discovery in 2010–2019 split by cate-

gory. The triangles represented the actual discovery sites from 2010 to 2018, and the back-

ground colour represented the predicted discovery probability.

(PDF)

S8 Fig. Historical predicted probability of human RNA virus discovery by decade (except

the first period with four years). The triangles represented the actual discovery sites in each
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decade, and the background colour represented the predicted discovery probability.

(PDF)

S1 Table. Summary of the human RNA virus database.
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S2 Table. Resolution and covered grid cells for virus discovery data.
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S3 Table. List of explanatory factors included in the model.
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S4 Table. Model validation statistics for stratified analyses.
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S5 Table. Model parameters for sensitivity analyses and stratified analyses.
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S1 Text. Georeferencing human RNA virus discovery locations.
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S2 Text. Transformation of resolution for explanatory factors and data extrapolation.
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S3 Text. Result of model validation.

(DOCX)

S4 Text. Source and permission for the world shapefile used in the study.

(DOCX)

S1 Video. The spatiotemporal pattern of human RNA virus discovery. The red spot repre-

sents the discovery location of each virus species over time. The red curve at the bottom-left

corner represents the cumulative virus species count over time.

(MP4)

S1 R script. A zipped file with the raw data and R code that was used for generating figures

for the full model.

(ZIP)
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