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The oceanic uptake of carbon dioxide (CO2) is increasing and changing the seawater
chemistry, a phenomenon known as ocean acidification (OA). Besides the expected
physiological impairments, there is an increasing evidence of detrimental OA effects
on the behavioral ecology of certain marine taxa, including cephalopods. Within
this context, the main goal of this study was to investigate, for the first time, the
OA effects (∼1000 µatm; 1pH = 0.4) in the development and behavioral ecology
(namely shelter-seeking, hunting and response to a visual alarm cue) of the common
cuttlefish (Sepia officinalis) early life stages, throughout the entire embryogenesis until
20 days after hatching. There was no evidence that OA conditions compromised the
cuttlefish embryogenesis – namely development time, hatching success, survival rate
and biometric data (length, weight and Fulton’s condition index) of newly hatched
cuttlefish were similar between the normocapnic and hypercapnic treatments. The
present findings also suggest a certain behavioral resilience of the cuttlefish hatchlings
toward near-future OA conditions. Shelter-seeking, hunting and response to a visual
alarm cue did not show significant differences between treatments. Thus, we argue
that cuttlefishes’ nekton-benthic (and active) lifestyle, their adaptability to highly
dynamic coastal and estuarine zones, and the already harsh conditions (hypoxia and
hypercapnia) inside their eggs provide a degree of phenotypic plasticity that may favor
the odds of the recruits in a future acidified ocean. Nonetheless, the interacting effects
of multiple stressors should be further addressed, to accurately predict the resilience of
this ecologically and economically important species in the oceans of tomorrow.
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INTRODUCTION

Over the past centuries, atmospheric carbon dioxide (CO2) concentration has been increasing,
with a current value of ∼ 415 ppm (NOAA, 2019), being the highest registered in the past
800,000 years. However, due to human dependence on fossil fuels combustion, it is expected
to continue rising until 950–1000 ppm (in the higher-emissions scenario – RCP8.5) by 2100
(Rhein et al., 2013).
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Oceans absorb about 30% of the CO2 present in the
atmosphere. This natural process of CO2 absorption is driven by
the physico-chemical balance between the differences in partial
pressure of CO2 between the air and the sea surface (Ciais et al.,
2013). However, when a higher amount of CO2 reacts with
seawater, it increases the formation of carbonic acid (H2CO3),
increases the amount of bicarbonate ions (HCO3

−) and reduces
the availability of carbonate ions (CO3

2−) (Rhein et al., 2013).
These changes cause an increase in the production of hydrogen
ions (H+) and a subsequent reduction of seawater pH. When
this process happens for an extended period it is known as
ocean acidification (OA). As CO2 levels continue to rise, forecasts
indicate that, by the end of this century, the average ocean
surface pH will be 0.2–0.4 pH units lower than present values
(Rhein et al., 2013). Therefore, this pH drop may represent a
serious threat to the health of the world’s ocean ecosystems
(Cubasch et al., 2013).

Calcifying organisms, as well as those with minimal
physiological buffering capacities (e.g., calcareous sponges, corals
and most echinoderms) (Knoll et al., 2007) are expected to be
particularly affected by OA. On the other hand, higher resilience
is expected from organisms equipped with a more powerful
capability to maintain their homeostasis and to compensate for
extra and intracellular pH perturbations, such as teleosts and
cephalopods (Hu et al., 2015). Nonetheless, an increasing number
of studies have been reporting a myriad of OA-related impacts
over these mollusks (Rosa et al., 2013; Pimentel et al., 2015, 2016;
Spady et al., 2018).

Several studies have already demonstrated, for certain marine
taxa, including cephalopods, the detrimental consequences of OA
at different behavioral levels, e.g., foraging (Dixson et al., 2015;
Pimentel et al., 2016), hunting (Dixson et al., 2015; Pistevos et al.,
2017; Spady et al., 2018), predation vulnerability (Dixson et al.,
2010; Munday et al., 2014, 2016) and response to olfactory cues
(Munday et al., 2009; Dixson et al., 2010). One of the mechanisms
pointed for some behavioral disruptions when individuals are
exposed to OA is the GABA-A receptor. The GABA-A receptor
is the primary inhibitory neurotransmitter in the vertebrate
and invertebrate’s brain and, when connected with GABA
(γ-aminobutyric acid) in OA conditions, suffers an outflow of
Cl− (chloride ions) and/or HCO3

− from neurons, resulting in
depolarization and excitation, i.e., abnormal behaviors (Nilsson
et al., 2012; Tresguerres and Hamilton, 2017). However, more
research is still needed to better understand how this is
underpinned by disruption in brain functions.

Cephalopods are the most neural-developed invertebrates and
are considered to have vertebrate-like cognition, underpinned
by a well-developed brain, a complex nervous system and
sophisticated sensory organs (Fiorito et al., 2015). All
cephalopods’ hatchlings have a close-to-optimal central nervous
system and most of them are strikingly similar to adults, both
in morphology and basic behaviors, such as signaling and
camouflage (Boyle, 1987). Additionally, cephalopods present a
high level of plasticity to environmental changes (Fiorito et al.,
2015; Doubleday et al., 2016), with very effective regulatory
and excretory systems to that allow them to tolerate high CO2
concentrations over long exposure times (Hu et al., 2015).

However, there are differences within the cephalopods’ species,
since active pelagic squids show higher sensitivity to elevated
pCO2 when compared with cuttlefish and octopods, which
have a nekton-benthic and benthic lifestyles, respectively (Hu
et al., 2014). Such differences suggest that different lifestyles
and energetic limitations can be a key feature in the ability
to mobilize energy resources to fuel acid-base compensatory
processes (Hu et al., 2014).

The common cuttlefish (Sepia officinalis) is a nekton-benthic
species (Reid et al., 2005; Guerra, 2006) with its major activity
during the night, spending the day camouflaged on the sand to
avoid predators (Boyle, 1987; Reid et al., 2005). Its well-developed
and wide visual field (Mäthger et al., 2013) is highly important
to its defensive (Chichery and Chanelet, 1976; Boyle, 1987; Reid
et al., 2005) and predatory behaviors (Wells, 1958; Messenger,
1968), taking into account that these animals are active predators
(Wells, 1958; Messenger, 1968). Besides this, this species has an
active lifestyle with high metabolic rates, it is naturally exposed to
hypercapnia during its embryonic development (Melzner et al.,
2009) and has an elevated tolerance for different environments
(Reid et al., 2005; Guerra, 2006).

Previous studies on the impact of OA on cuttlefish have
mainly focused on impacts on the cuttlebone (Gutowska et al.,
2008, 2010; Dorey et al., 2013; Sigwart et al., 2015), embryonic
development (Lacoue-Labarthe et al., 2009; Hu et al., 2011;
Dorey et al., 2013; Rosa et al., 2013; Sigwart et al., 2015) and
development of newly hatched/juvenile individuals (Gutowska
et al., 2008; Lacoue-Labarthe et al., 2009; Hu et al., 2011; Dorey
et al., 2013; Sigwart et al., 2015). Regarding the cuttlebone
mineralization process, all studies pointed out hypercalcification
under high CO2 levels (Gutowska et al., 2008; Dorey et al., 2013;
Sigwart et al., 2015), but with an irregular CaCO3 deposition
(Gutowska et al., 2010). The other studies also suggest: (i) an
increase in the frequency of premature hatching, (ii) an increase
of pre-hatching critical partial pressure (Pcrit – the point at
which the rate of oxygen consumption was no longer maintained
independently of ambient pO2), (iii) a decrease in pre-hatching
routine metabolic rate (Rosa et al., 2013), and (iv) decrease of
perivitelline fluid pH (Hu et al., 2011). Studies assessing OA
impacts on cephalopods’ behavior have so far focused solely
on squids (Spady et al., 2014, 2018), while the effects over
other cephalopod groups, including cuttlefishes, remain largely
unaddressed (Maneja et al., 2011).

In this context, the general objective of the present study
was to evaluate, for the first time, a set of developmental
and behavioral responses in early developmental stages, by
exposing embryos and soon-after hatchlings to OA (1pH = 0.4,
∼1000 µatm). To this end, some features as embryonic
development time, hatching success, survival rate and biometrics
(weight, length and Fulton’s condition index) throughout the
embryogenesis and 20 days after hatching (DAH) were analyzed.
Moreover, an array of behavioral trials were performed in
cuttlefish 15 DAH, to scrutinize the influence of acidification
on critical behaviors for early life stages, namely: (1) shelter-
seeking – to evaluate preference for a darker or lighter
areas; (2) hunting behavior – to assess the amount of prey
captured, reaction and successful catch time latency, and capture
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effectiveness; (3) response to visual alarm cues (ink) – to evaluate
the reaction to a visual conspecific-related stimulus (ink), usually
used as an alarm cue.

MATERIALS AND METHODS

Exposure of Embryos and Hatchlings to
Ocean Acidification
Sepia officinalis eggs, at stage I-VI [initial stage of embryogenesis,
Naef (1928)] were hand collected during low tide in Mitrena
area located in Sado estuary, on the west coast of Portugal
(38◦47′25.81′′ N; 8◦79′49.34′′ W). The eggs were transported
to Laboratório Marítimo da Guia (MARE-ULisboa) and
immediately transferred to an isolated tank for an acclimatization
period of 6 days. It is worth noting that the main feature of the
Portuguese western coast is the occurrence of coastal upwelling
in response to the intensification of northerly winds. Therefore,
cuttlefish inhabiting this region are exposed to seasonal variability
of seawater carbonate parameters due to the emergence of
deepwater masses (Álvarez-Salgado et al., 1997; Borges and
Frankignoulle, 2002), and such variability is observed in Table 1.

After the acclimatization period, the eggs were incubated
under two pCO2 treatments (3 replicates each treatment; N = 85
eggs per replicate) for∼65 days (∼45 days during the embryonic
development plus 20 days after hatching). The pCO2 scenarios
were chosen to reflect: (a) the annual present pH conditions
(pCO2 ∼ 400 ppm; pH = 8.1) and (b) the near-future expected
pCO2 (pCO2 ∼1000 ppm; 1pH = 0.4; based on RCP8.5
projections). The acclimation period took place in a total of
six independent experimental life support systems (each tank
with 22 L of volume) supplied by natural seawater filtered down
to 0.35 µm and through UV radiation, under a semi-closed
system. To further assure seawater quality, the experimental
tanks were also equipped with mechanical (glass wool) and
biological (bioballs matured with nitrifying bacteria) filtration.
Temperature was set to 18◦C, the average temperature of
the spawning season of S. officinalis in the western coast of
Portugal, and controlled by placing the experimental tanks in
water baths connected to chillers (Hailea, Guangdong, China).
Room illumination was provided through overhead fluorescent

TABLE 1 | Seawater carbonate chemistry during the exposure of Sepia officinalis
to different pH conditions (three replicates for each treatment).

Parameters Control Acidification

Temperature (◦C) 17.8 ± 0.9 17.9 ± 0.8

Salinity 36 ± 1 36 ± 1

pH 8.05 ± 0.06 7.73 ± 0.07

TA (µmol/kgSW) 2584.7 ± 267.2 2522.0 ± 248.5

pCO2 (µatm) 461.6 ± 85.1 1016.3 ± 180.7

TCO2 (mmol/kgSW) 2316.7 ± 214.2 2406.4 ± 230.7

HCO3
− (mmol/kgSW) 2101.1 ± 176.8 2266.9 ± 213.6

Values for pCO2 were calculated weekly from salinity, temperature, pH total scale
(pH) and total alkalinity (TA), using CO2SYS software (Lewis et al., 1998). Values
are represented as mean ± standard deviation.

lighting (MASTER TL-D Super 80, 4000 K, 3350 lumen), under a
photoperiod of 12 h light: 12 h dark.

During exposure, and on a daily basis, pH, salinity and
temperature were monitored manually, as well as hatching
and mortality rates. The total alkalinity (TA) was calculated
weekly, using the absorbance of water samples measured with an
UV spectrophotometer (UV-1800 spectrophotometer, Shimadzu,
North America) (Sarazin et al., 1999). Seawater carbonate system
speciation was also calculated weekly from salinity, temperature,
TA, and pH (total scale) measurements, using CO2SYS software
(Lewis et al., 1998) with dissociation constants from Mehrbach
et al. (1973) as refitted by Dickson and Millero (1987) (see
Table 1). pH was quantified manually with Metrohm pH meter
(826 pH mobile, Metrohm, Filderstadt, Germany) connected to
a glass electrode (±0.001; Schott IoLine, SI analytics, Mainz,
Germany) and calibrated against the seawater buffers Tris–HCl
(Tris) and 2-aminopyridine-HCl (AMP) (Mare, Liège, Belgium)
according to Dickson et al. (2007). The experimental pH levels
were adjusted automatically, via solenoid valves controlled by
an automated system (Profilux 3, Kaiserslautern, Germany)
connected to individual pH probes (Blueline 25 pH, SCHOTT
Instruments, Mainz, Germany). Profilux pH hysteresis was set at
±0.05 margins (lower limit of the system), to minimize the degree
of pCO2 variation inherent to simulated hypercapnic treatments
(as observed in Table 1) and the respective repercussions (see
Jarrold and Munday, 2019 and references therein). The pH of
natural seawater was reduced by the injection of a certified
CO2 gas mixture (Air Liquide, Miraflores, Algés, Portugal), via
air stones, and balanced positively through aeration with CO2-
filtered air (using soda lime, Sigma-Aldrich, St. Louis, MO,
United States). Salinity was measured using a refractometer
(V2Refractometer, TMC, Iberia, Portugal) and maintained (∼35)
by adding more seawater. Ammonia, nitrites and nitrates levels
were monitored using colorimetric tests (Tropical Marine Centre,
United Kingdom) and maintained below detectable levels, lower
than 0.5, 0.2, and 80 mg/L (Fiorito et al., 2015), respectively. The
cuttlefish hatchlings were fed ad libitum with frozen brine shrimp
enriched with spirulina and the uneaten food was removed at the
end of each day.

Hatchlings’ Biometrics
Dorsal mantle length (DML), total body length (TBL) and total
body weight (TBW) were measured in all individuals with
20 DAH. Both mantle and total length were measured through
image analysis and the TBW was registered with an analytical
scale. Fulton’s Condition Index (K) was calculated according to
Fiorito et al. (2015), as follows:

K =
TBW
DML3 × 100

These measurements were performed in two different groups,
due to the difference in development time upon collection.
Hatching and mortalities were monitored daily to further
calculate development time, hatching success and survival rate.
At the end of the experiment, individuals were anesthetized and
euthanized, according to the Guidelines for the Care and Welfare
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of Cephalopods in Research (Fiorito et al., 2015), and preserved
for future biochemical analysis.

Behavioral Analysis
The behavioral tests performed were: (1) shelter-seeking, (2)
hunting behavior and (3) visual detection of a conspecific-related
stimulus. All tests were performed with hatchlings 15–20 DAH.
Individuals participating in the first two behavioral tests were
trialed in different days. Individual cuttlefish were carefully
transferred from its holding tanks to the arena of each test and
all arenas were designed according with the specific needs of
each test. All performed tests, described below, were performed
following a 10 min acclimatization period (Darmaillacq et al.,
2004; O’Brien et al., 2016, 2017) and recorded with a Canon
LEGRIA HF R56 camera. At the end of each test, individuals
were returned to their holding tanks and testing arenas were
cleaned between trials.

Shelter-Seeking
Shelter-seeking tests ran in a rectangular arena (area = 145 cm2;
volume = 4000 mL) with dark walls and a transparent bottom.
Half of the arena was topped with a dark and opaque cover
(14.5 cm Black + 14.5 cm Opaque), as to provide a fully shaded
area, while a light and semi-translucid cover was placed over
the other half as to produce an area uniformly illuminated
by a diffuse light, placed circa 50 cm above the arena. In
this arena, a neutral area (4 cm) was assigned and adjusted
according to Jutfelt et al. (2017). Each cuttlefish was randomly
and gently introduced through a small entryway in the middle
of the upper zone. Following acclimatization period, activity
was recorded during 15 min. using a camera placed underneath
the arena. An individual was assumed to have a light or dark
preference only if it left the neutral area and spent ≥70% of
the total test time (≥630 s) in one of the chosen areas. If
both these criteria were not met, the individual was assumed
to have no preference for either light or dark conditions.
The sides corresponding to the lighter and darker areas were
switched randomly between trials to prevent lateralization-
associated bias.

Hunting
An opaque arena (area = 80 cm2; volume = 500 mL) with a
small sand shelter, to minimize stress, was used to observe the
hatchlings hunting behavior. A single random cuttlefish was
gently placed in the arena and the test was performed for 10 min,
after the acclimatization period and after the introduction of
the prey. To each cuttlefish 5 prey items (Gammarus sp.) were
introduced through a tube present at a corner of the tank and
available to hunt during the test, since a preliminary test revealed
that 5 was the maximum number of prey that one individual
could consume within the test period. The attack latency time
was accounted between the reaction to the prey and its catch
(successful attack). A lamp was placed 30 cm above the arena to
ensure enough and equally distributed lighting and the cuttlefish
activity was recorded with a camera at the same high. A total of
28 cuttlefish and 140 prey were used for this test.

Visual Detection of Conspecific Visual Stimulus – Ink
The purpose of this test was to evaluate the response to the visual
component of an ink stimulus, used as a defense mechanism
and perceived as an alarm cue in cephalopod species (Gilly and
Lucero, 1992; Boal and Golden, 1999; Bush and Robison, 2007;
Wood et al., 2008; Mezrai et al., 2018). This was tested using a
round glass arena (area = 100 cm2, volume = 500 mL), with a
central glass compartment that allowed the visual display of the
cue (commercial cuttlefish ink) whilst blocking the chemically
mediated cue component. The test started with the introduction
of the cue, that took place from above through an opaque tube
fixed above the cue-compartment. To avoid disturbance to the
test, both the perimeter and the top of the arena were fully
covered in an opaque overlay from which the cue-introducing
tube was placed. Additionally, a sham-test, in which clear
seawater was introduced instead of the ink, was performed after
the acclimatization and 5 min. prior to the stimulus introduction,
in order to control for the presence of other factors. A lamp was
placed above the arena and a camera was placed below to record
the cuttlefish’s activity, after the acclimatization period, including
the sham-test and the reaction to the ink. Here, a total of 28
individuals was used and their reactions were divided into four
classes (0 = no perceived reaction; 1 = increase of ventilation
and/or branchial movements; 2 = color changes and/or cessation
of swimming; 3 = escape, attack and/or dorsal arms raised)
adapted from Wood et al. (2008).

Data Analysis
All image and video footage were analyzed with specific
programs, i.e., ImageJ was used to obtain biometric data (length
measures) from photography and BORIS software (Behavioral
Observation Research Interactive Software v.6.0.5 – 2018-01-29)
was used to analyze all video data. While using BORIS software,
specific commands were defined considering the specificities
of each test. For the shelter-seeking test, four commands were
defined to register the time spent in each area: (a) start of test,
(b) entrance into the lighted area, (c) entrance into the shaded
area, and (d) entrance into the neutral area. For the hunting
behavior test, four commands were defined to acquire the timings
and attack effectiveness of the individuals: (a) prey introduction,
(b) reaction to the prey, (c) attack, and (d) catch. For the visual
detection test, five commands were defined: (a) reaction, (b) no
perceived reaction, (c) reaction 1 (increase of ventilation and/or
branchial movements), (d) reaction 2 (color changes and/or
cessation of swimming) and (e) reaction 3 (escape, attack and/or
dorsal arms raised).

After data visualization, statistical analyses of the defined
variables were performed with RStudio Software (Version
1.1.456 – © 2009–2018 RStudio, Inc.). All Generalized Linear
Models (GLM) were performed with pH as factor. For all
the variables analyzed, replicates and hatching date (considers
the difference in development time upon collection) were first
included in generalized linear mixed models (GLMM) as random
effect, to account for potential variability in the experimental
design and for the dependency within these factors. Random
effects were removed from the models whenever the amount
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of variation explained was lower than 5%. The best model for
each output was chosen according to the calculation of Akaike
Information Criterion (AIC), i.e., the best model was the one
that featured the smallest AIC. The GLMM with Gaussian family
was used to analyze weight (with hatching date as a random
factor) and DML (with replicates as a random factor). The
same model with Gamma family and log link function was
used to analyze the Fulton’s index (with replicates and hatching
date as random factors). The GLM with Gaussian family was
performed to analyze TBL.

The reaction and catch time in the hunting behavior test were
analyzed with the Gamma family and inverse link function. The
Binomial family of distribution was used to analyze the shelter-
seeking test (choice/no choice and black/white) and the visual
detection test for reaction variable. Count data were analyzed
with the Poisson family, i.e., development time, hatching success,
hatchlings survival (within identity as a link function) and
the successful attacks observed in the hunting behavior test.
To analyze the type of reaction in the visual detection test, a
multinomial logistic regression model was performed with the
four classes in test, mentioned above. All statistical differences
were considered when p-value < α with α = 0.05.

RESULTS

Development Time, Survival and
Hatchlings’ Biometrics
Development time was similar in both treatments
(∼ 59 ± 9 days), i.e., there was no significant effect under
OA (Figure 1; p > 0.05; GLM, Poisson family, more details in
Supplementary Table 1). Likewise, neither hatching success
(73.33 ± 1.80% under normocapnia and 70.20 ± 1.36% under
hypercapnia) nor survival rate after 20 DAH (66.86 ± 1.10%
and 69.30 ± 1.99%, under normocapnia and hypercapnia,
respectively) were significantly affected by high CO2 treatment
(Figure 1; p > 0.05; GLM, Poisson family, see more statistical
details in Supplementary Table 1).

Ocean acidification effects on the DML (Figure 2; p > 0.05;
GLMM, Gaussian family, analysis in Supplementary Table 2.),
TBL (Figure 2; p > 0.05; GLM, Gaussian family, analysis in
Supplementary Table 3), TBW (Figure 2; p > 0.05; GLMM,
Gaussian family, analysis in Supplementary Table 2) and Fulton’s
index (K) (Figure 2; p > 0.05; GLMM, Gamma family, analysis in
Supplementary Table 4) were also not statistically significant.

Behavioral Responses
No significant differences were found between treatments in the
choice rate of shelter, nor in the light/shade preference in the
shelter-seeking test (Figure 3; p > 0.05; GLM, Binomial family,
analysis in Supplementary Table 1).

Likewise, no significant differences were observed regarding to
their hunting behavior (namely in the reaction to prey and in the
attack duration) between control and OA treatments (Figure 4;
p > 0.05; GLM, Gamma family, analysis in Supplementary
Table 3), as well as for predatory success rate (Figure 4; p > 0.05;
GLM, Poisson family, more details in Supplementary Table 1).

FIGURE 1 | Effect of ocean acidification (1pH = 0.4) on: (A) development
time, (B) hatching success and (C) survival rate [20 days after hatching] of the
common cuttlefish Sepia officinalis. Boxplots illustrate median, upper and
lower quartile, and inter-quartile range.

Similarly, the visual detection of conspecific visual stimulus
(ink) was also not significantly affected by the experimental
CO2 treatments (Figure 5; p > 0.05; GLM, Binomial family
for the reaction/no perceived reaction and multinomial logistic
regression for the type of reaction, both analyses can be
found in Supplementary Table 1). A large proportion of
individuals had no perceived reaction to the stimulus, 68.75%
under normocapnia and 58.33% under hypercapnia. Noteworthy,
8.33% of the individuals exposed to hypercapnia presented the
more severe type of reaction – type 3 (escape, attack and/or
dorsal arms raised), whereas no individuals under normocapnia
showed this type.

DISCUSSION

The effects of OA in cephalopod early stages are still fairly
unknown. However, some studies suggest that OA does not
impair normal embryonic development (Dorey et al., 2013; Rosa
et al., 2013), survival rates (Dorey et al., 2013) or body size
(Lacoue-Labarthe et al., 2009; Hu et al., 2011; Dorey et al.,
2013; Rosa et al., 2013; Sigwart et al., 2015). Accordingly, the
results here presented suggest that near-future CO2 did not
elicit major impacts on the development time, survival rates
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FIGURE 2 | Effect of ocean acidification (1pH = 0.4) on: (A) dorsal mantle
length (DML), (B) total body length (TBL), (C) total body weight (TBW) and
(D) Fulton’s condition index (K) of the common cuttlefish Sepia officinalis.
Boxplots illustrate median, upper and lower quartile, and inter-quartile range.
Circles indicate individual outliers outside the inter-quartile range.

and size of S. officinalis early stages. The abiotic conditions
inside cuttlefish eggs have already been characterized as stressful
conditions - with high levels of pCO2 and HCO3

−, and low
pH (Melzner et al., 2009; Rosa et al., 2013), a consequence
of increasing energy expenditure during egg development and
swelling (Lacoue-Labarthe et al., 2009; Dorey et al., 2013). Ocean
acidification will amplify these already hypercapnic conditions
inside the cuttlefish eggs (Hu et al., 2011; Dorey et al., 2013;
Rosa et al., 2013), as the water from the outside environment
enters (in this case water with high levels of pCO2) into the
hypertonic perivitelline fluid eggs (Hu et al., 2011; Dorey et al.,
2013). Giving these embryonic conditions, cuttlefish hatchlings
may be consequently more adapted to develop in the future
ocean pH conditions.

FIGURE 3 | Effect of ocean acidification (1pH = 0.4) on the shelter-seeking
behavior of the common cuttlefish Sepia officinalis with 15–20 DAH: (A)
capacity to make a choice and (B) preference for a darker shelter. Values
represent the number of individuals in each treatment who made the
respective choice.

The common cuttlefish is a species that usually stays hidden
in the sand during daytime, to avoid predation (Boyle, 1987; Reid
et al., 2005), registering higher activity during the night (Guerra,
2006). Thus, it would be expected that a higher percentage of
individuals would choose the shadow side of the shelter arena
under control conditions, because of their preference of dark over
light environment (Guerra, 2006). However, a high percentage of
animals did not make a choice related with shelter dark/bright
under control conditions (46.67%). This may be explained by the
fact that these organisms use camouflage as their primary line
of defense (Boyle, 1987) and, thus, potentially do not prioritize
choosing between different light intensity. Another potential
explanation can be the lack of enough lightening contrast, which
may have made these animals “comfortable” on the neutral area
and in the bright side, removing the necessity to move to a
safer option. Further studies focusing on camouflage success
should be addressed to better understand these results. These
mollusks are active predators (Wells, 1958; Messenger, 1968),
which was demonstrated by the short time between the first
reaction to prey and the time to effectively catch it (control
∼17 s and acidification ∼12 s). The present findings support
those obtained by Maneja et al. (2011), who also showed that
cuttlefish early stages do not seem to be affected by near-future
OA. However, Spady et al. (2018) found the opposite results in
squids, with a decrease of hunting behavior (increase of attack
latency in both species – bigfin reef squid and pygmy squid –
and reduction in the proportion of individuals who attacked their
prey in pygmy squid), in the animals exposed to an acidified
environment. These findings support the claim of differences
insensitivity to elevated pCO2 between pelagic (squids) and
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FIGURE 4 | Effect of ocean acidification (1pH = 0.4) on: (A) time of reaction
to the prey, (B) time to catch the prey, and (C) predatory success of the
common cuttlefish Sepia officinalis with 15–20 DAH. Boxplots illustrate
median, upper and lower quartile, and inter-quartile range. Circles indicate
individual outliers outside the inter-quartile range.

FIGURE 5 | Effect of ocean acidification (1pH = 0.4) on the reaction to a
conspecific visual stimulus of the common cuttlefish Sepia officinalis with
15–20 DAH. Values represent the number of individuals in each treatment who
made the respective choice.

nekton-benthic/benthic species (cuttlefish and octopods). When
compared with cuttlefishes, squids have more difficulty in
reallocating energy toward compensatory processes since they
have a lifestyle at the edge of energetic limits due to their high
locomotory costs (O’dor and Webber, 1986). Therefore, squids
showed more sensitivity when exposed to changing environments

(Rosa and Seibel, 2008; Hu et al., 2014) than the nekton-
benthic/benthic species that have a slower lifestyle and a better
pH buffering/regulatory mechanisms and thus, more resilient
(Gutowska et al., 2008; Dorey et al., 2013; Hu et al., 2014). In
the visual stimulus test, responses with a higher severity level,
e.g., reaction type 3, in the animals from control scenario were
expected, as it was observed by Wood et al. (2008) with Caribbean
reef squid. However, a high percentage of individuals had no
perceivable reactions to the ink stimulus, either in control and
acidification treatments. Usually, more severe behaviors are also
more visible reactions, which may have a higher effective role in
warning their conspecifics about the danger nearby. The different
results obtained in this study and those obtained by Wood et al.
(2008) may be related with the different lifestyles (pelagic and
nekton-benthic/benthic species) and with the life-stage of the
animals used in these studies, thus early stage animals may prefer
to direct their energetic reserves to grow, instead of defensive
behaviors without effective acting, i.e., the ink eject effect is
smaller in youngers (smaller size) than in adults (bigger size,
more ink). Thus, younglings may opt for defensive behaviors
that save more energy. Behavioral freeze is known as cuttlefish
response toward certain threats (Bedore et al., 2015), which could
account for at least some of non-perceived reacting animals.
In this context, a more specialized approach focusing on this
response would be necessary. Yet, further research must be
conducted, especially at the neurological level, to corroborate the
lack of behavioral responses reported here, and to understand
how changes in other behaviors are underpinned by OA-related
disruption in brain functions.

In general, OA affects survival, fitness and behavioral patterns
in many marine organisms (Kaplan et al., 2013; Pimentel et al.,
2014, 2016; Dixson et al., 2015). Nevertheless, the present
study showed that future CO2 levels might not elicit significant
changes on the developmental and behavioral responses during
the early ontogeny (embryos and hatchlings) of the common
cuttlefish S. officinalis. Such findings are likely related with
their nekton-benthic (and active) lifestyle, their adaptability to
highly dynamic coastal and estuarine zones, and the already
harsh conditions (hypoxia and hypercapnia) inside their eggs,
which may favor the odds of the common cuttlefish recruits
to endure the future acidified ocean through a possible pre-
adaptation to these adverse conditions (Melzner et al., 2009; Hu,
2016). Gutowska et al. (2008) also supported this prediction,
showing that S. officinalis did not exhibit sensitivity to elevated
CO2 levels within the range of concentrations that elicits
a negative response in most other invertebrates (e.g., corals
and bivalves). One of the greatest issues caused by OA
is the dissolution of calcium carbonate minerals, affecting
some taxa with CaCO3 structures [e.g., (Fabry et al., 2008;
Stocker et al., 2013)], such as corals [e.g., (Erez et al., 2011;
Camp et al., 2017)] and mollusks [e.g., (Kurihara et al.,
2007; Talmage and Gobler, 2010; Maneja et al., 2011; Kaplan
et al., 2013)]. On the other hand, there are some species
that under OA are able to maintain or even increase their
calcifying structures, like the cephalopod S. officinalis (Gutowska
et al., 2008, 2010; Dorey et al., 2013). In some calcifying
organisms, this hypercalcification phenomenon appears to be an
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energy demanding process and the associated energetic trade-
offs under acidification affect the organism’s normal growth rates
(Stumpp et al., 2011). Yet, it is still not fully understood what
the consequences (e.g., metabolic and behavioral level) of this
phenomenon on these organisms are.

However, this species showed to be quite resilient to
near-future OA. Additionally to the characteristics already
mentioned, its short life cycle (1–2 years) may enhance the
chance for evolutionary adaptation (Hu, 2016) and detrimental
consequences may only turn visible in a very high CO2
environment or in combination with other climate change
factors such as temperature (Lacoue-Labarthe et al., 2009;
Rosa et al., 2013), hypoxia (Rosa et al., 2013), and/or
with exposition to contaminants. Nevertheless, the shallow-
water environments that S. officinalis occupies are particularly
susceptible to anthropogenic pressures and climate-change
stressors, which makes the study of cumulative effects (i.e.,
of multiple stressors) of paramount importance to accurately
predict how this ecologically and economically important species
will fare in the future.
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