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A B S T R A C T

The polymerase chain reaction (PCR) test is not only time-intensive but also a contact

method that puts healthcare personnel at risk. Thus, contactless and fast detection tests

are more valuable. Cough sound is an important indicator of COVID-19, and in this paper,

a novel explainable scheme is developed for cough sound-based COVID-19 detection. In the

presented work, the cough sound is initially segmented into overlapping parts, and each

segment is labeled as the input audio, which may contain other sounds. The deep Yet

Another Mobile Network (YAMNet) model is considered in this work. After labeling, the seg-

ments labeled as cough are cropped and concatenated to reconstruct the pure cough

sounds. Then, four fractal dimensions (FD) calculation methods are employed to acquire

the FD coefficients on the cough sound with an overlapped sliding window that forms a

matrix. The constructed matrixes are then used to form the fractal dimension images.

Finally, a pretrained vision transformer (ViT) model is used to classify the constructed

images into COVID-19, healthy and symptomatic classes. In this work, we demonstrate

the performance of the ViT on cough sound-based COVID-19, and a visual explainability

of the inner workings of the ViT model is shown. Three publically available cough sound

datasets, namely COUGHVID, VIRUFY, and COSWARA, are used in this study. We have

obtained 98.45%, 98.15%, and 97.59% accuracy for COUGHVID, VIRUFY, and COSWARA data-

sets, respectively. Our developed model obtained the highest performance compared to the

state-of-the-art methods and is ready to be tested in real-world applications.
� 2022 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy

of Sciences. Published by Elsevier B.V. All rights reserved.
by Elsevier
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1. Introduction

As the COVID-19 virus has become a pandemic, it is impor-

tant to determine a proper way to determine if people are

infected or not [1,2]. To this end, the polymerase chain reac-

tion (PCR) test has become a popular method to determine

the virus [3]. Although the PCR test is the most used COVID-

19 detection method, the performance of the test is not yet

at the desired level. In this context, it is critical to examine

the use of commonplace instruments such as smartphones

and machine learning as methods for detecting COVID-19

infection as a way of reducing the need for every-one to do

tests. Coughing is a typical symptom of several upper respira-

tory disorders, including asthma, bronchitis, pertussis, and

COVID-19 [4]. The coughing sound is usually distinct for each

respiratory ailment, allowing doctors to diagnose the sickness

based on the cough sound alone.

Although most of the artificial intelligence-based COVID-

19 detection studies were either based on the analysis of

chest X-ray or CT images, cough sound analysis-based

COVID-19 detection has also gained much attention in the

artificial intelligence and signal processing communities [4].

Pahar et al. [5] presented an artificial intelligence-based

approach for detecting COVID-19 based on the cough audios

recorded by smartphones. The authors used two datasets in

their study, and the minority oversampling technique was

considered to alleviate the dataset skew problem. Seven

machine learning approaches were used in the classification

stage of the study, and the cross-validation technique was

considered in the performance evaluation. The authors

reported that the best achievement was obtained by using

the ResNet50 classifier, where the calculated AUC was 0.98.

Laguarta et al. [6] proposed a machine learning-based speech

processing approach for cough recordings-based COVID-19

detection. The input cough audios were initially converted

to the cough images by using the Mel Frequency Cepstral

Coefficient (MFCC). The obtained images were then fed into

the Convolutional Neural Networks (CNN) based architecture.

Authors reported 98.5 % sensitivity and 94.2 % specificity

scores. Alsabek et al. [7] presented a study that employed

cough and breathing sounds and speech audios to diagnose

COVID-19. For feature extraction, the authors used the

MFCCs, and for classification, they used Pearson’s Correlation

coefficient values. Sharma et al. [8] compiled the Coswara

dataset, which comprises audio recordings of cough, breath,

and speech. The authors used the random forest method as

a classifier and extracted 28 spectral characteristics. The over-

all accuracy score was reported to be 67.7 %. Mouawad et al.

[9] suggested an approach involving cough and other vocal

audios. The authors retrieved the MFCC features in the classi-

fication phase and employed various machine learning

approaches: decision trees, k-nearest neighbor, random for-

est, and XGBoost. The authors reported a 97.0 percent accu-

racy rate and a 62.0 percent F1-score with the XGBoost

classifier. Erdogan et al. [10] proposed an approach where

cough sounds were used to detect COVID-19. In this context,

the authors used the multiresolution approaches for feature

extraction, namely empirical-mode and wavelet decomposi-

tions. Moreover, various pre-trained CNN models were also
used for feature extraction. All these features were then con-

catenated, and a feature selection mechanism was employed.

Lastly, SVM was used for classification purposes. The authors

reported a 97.8 % accuracy and a 98.0 % F1-score. Despotovic

et al. [11] demonstrated early COVID-19 identification findings

utilizing typical acoustic feature sets, wavelet scattering fea-

tures, and deep audio embedding taken from low-level fea-

ture representations. The created models had an accuracy

of 88.52 %, a sensitivity of 88.75 %, and a specificity of

90.87 %, demonstrating that audio characteristics may be

used to detect COVID-19 symptoms. Tena et al. [12] employed

a supervised machine-learning algorithm to propose an auto-

mated feature extraction technique based on time–frequency

cough characteristics and selecting the more relevant ones to

diagnose COVID-19. The authors employed a random forest

classifier with nearly 90 % accuracy. Kobat et al. [13] used a

graph-based local feature generator, an iterative maximum

relevance minimal redundancy iterative feature selector,

and the k-nearest neighbor classifier for cough sound-based

COVID-19, heart failure, and healthy subject discrimination.

For the COVID-19 vs healthy, heart failure vs healthy, and

COVID-19 vs heart failure vs healthy classes, the authors

reported accuracies of 100.0 %, 99.38 %, and 99.49 %, respec-

tively. Chang et al. [14] developed a viable model that used

the large-scale multi-sound FluSense dataset to assist in

COVID-19 identification from cough noises. The transfer

learning methodology was created and utilized rather than

merely augmenting the training data with FluSense due to

the gap between FluSense and the COVID-19-related datasets

comprising cough exclusively. To this goal, four pretrained

CNN models were utilized, and the suggested technique

improved the area under the receiver operating characteristic

curve by 3.57 percent over the baseline of DiCOVATrack-1 val-

idation. Chowdhury et al. [15] suggested an ensemble-based

multi-criteria decision-making strategy for selecting the best

COVID-19 cough classification machine learning methodol-

ogy. To test their strategy, the authors employed four cough

datasets: Cambridge, Coswara, Virufy, and NoCoCoDa. After

extracting audio attributes from them, the authors used

machine learning approaches to categorize the cough sam-

ples as COVID-19 or non-COVID-19. The optimal model was

then chosen using ensemble technologies using a multi-

criteria decision-making process. They have reported an area

under curve (AUC) of 95 %, precision of 100 %, and 97 % recall

score of 97 % using the extra-trees classifier. Islam et al. [16]

used both time and frequency domain features to discrimi-

nate the healthy and COVID-19 cough signals. Authors used

zero crossing rate, energy, and entropy features. The deep

NN was considered as a classification tool. The experiments

on Virufy dataset yielded a 93.8 % accuracy score for mixed

features from both the time and frequency domain. Hamdi

et al. [17] used an attention mechanism-based CNN-LSTM

approach for cough-based COVID-19 detection. Authors used

a spectral-based data augmentation approach which was

based on pitch shifting. The COUGHVID dataset was used in

experiments, and the authors reported 91.13 % classification

accuracy. Manshouri [18] used spectral analysis and SVM clas-

sifier for diagnosis of COVID-19 from cough signals. The

author used power spectral density, STFT, and MFCC as fea-
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tures and radial basis function-based SVM classifier on the

VIRUFY dataset, and a 95.86 % accuracy score was reported.

Lee et al. [19] used mel-scaled spectrogram images and MFCC

images with a CNN approach for efficient COVID-19 detection

from the cough sound signals. Authors used various pre-

trained deep CNN models in their works and obtained a

97.2 % accuracy score. Dang et al. [20] developed deep

learning-based COVID-19 detection based on cough, breath-

ing, and voice. Gated recurrent units classifier was used in

the proposed method. Authors yielded an AUROC of 0.79

value in their experimental works.

Rahman et al. [21] developed a deep CNN approach for

cough sound-based COVID-19 detection. Authors used a

stacking procedure where eight pretrained CNN models were

used. The proposed stacking procedure was based on a logis-

tic regression (LR) classifier. The spectrogram images of the

input cough sounds were used as input to the CNN stacker

model. The combinations of the Cambridge and the Qatari

datasets were used, and a 96.5 % accuracy score was

obtained using 5 fold cross validation test. Ren et al. [22]

used a set of 6,373 acoustic features based on COMPARE

analysis to detect COVID-19 based on cough sound analysis.

Authors used various machine learning methods to classify

the acoustic features and explored that MFCC and bear-

essential-acoustic information were quite efficient in

COVID-19 detection. Authors used the COUGHVID dataset

in their works and obtained a 0.632 average recall score with

5 fold cross validation test. A comprehensive study was car-

ried out by Sharan et al. [23] to look at the different

approaches to cough-based COVID-19 detection. The author

investigated if artificial intelligence might be used to differ-

entiate between different cough types. Using the Google

Scholar, PubMed, and MIT library search engines, a thorough

search was conducted to locate literature relevant to cough

detection, discrimination, and epidemiology. Gabaldón-

Figueira et al. [24] used an autoregressive moving average
Fig. 1 – Illustration of th
analysis for cough-based COVID-19 detection. Authors used

the correlation between the changes in cough frequency

and COVID-19 incidence. The strength of the correlation

was determined by calculating its autocorrelation function.

A linear regression approach was used for prediction pur-

poses. Authors used their dataset in their experimental

works and obtained satisfactory results. Andreu-Perez et al.

[25] proposed a cough analysis system that was based on a

clinically validated dataset. A generic scheme that was

based on deep learning was developed where EMD was con-

sidered for cough sound detection, and deep CNN handled

the classification issue by using a tensor of audio sonogra-

phy. Authors used their datasets and obtained a sensitivity

of 96.43 % ± 1.85 % and a specificity of 96.20 % ± 1.74 %

scores, respectively. Zealouk et al. [26] used a Hidden Markov

Model-based approach for cough sound-based COVID-19

detection. The authors used 5 Hidden Markov Model

(HMM) states and eight Gaussian mixture distributions in

the proposed model. Besides, MFCC features were also con-

sidered to obtain the feature vector. The authors used their

datasets and obtained 93.33 % and 86.66 % accuracy scores

for healthy and patients, respectively.

According to the reviewed literature, cough sound has a

high potential for touchless COVID-19 detection, which might

save the person who gets the sample for PCR testing. Further-

more, the studied literature revealed that the deep CNN tech-

niques were the general tendency. The main objective of this

work is to develop an efficient approach for cough sound-

based COVID-19 detection. To this end, a compact system

depicted in Fig. 1 was proposed. The main contributions of

the proposed system were:

1. The FD approach was used for converting the cough

sounds to cough images.

2. Best of our knowledge, the ViTapproach was firstly consid-

ered in cough sound-based COVID-19 detection.
e proposed method.
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3. To the best of our knowledge, the results obtained were

higher than those obtained in the literature.

The input sound signals are initially preprocessed for

noise removal and amplitude normalization [12]. Windowed

median filtering is used in preprocessing stage of the pro-

posed study. As the input cough sound signals contain

silence, speech, cough, etc., parts, the YAMNet model is used

to detect the cough parts of the input sound signals [27]. And

the detected cough parts are used to form a new sound signal

where the other sound modalities are alleviated. The cough

images fed into the ViT model are obtained using a sliding

windowed fractal dimension extraction method. Four fractal

dimensions were used to achieve this. The fractal dimensions

are calculated using windowed Higuchi, Katz, Castigloni, and

Petrosian fractal dimension techniques [28]. The cough

images are formed by concatenating the calculated FD coeffi-

cients in a matrix. The obtained cough fractal images further

train a pretrained ViT model in a transfer learning fashion.

Three cough sound datasets, namely COUGHVID, COSWARA,

and VIRUFY, are used in experimental works, and various

evaluation metrics are employed for performance evaluation.

The obtained results show that the proposed method has a

huge impact on COVID-19 detection.

2. Related theories

2.1. Deep audio detector (YAMNet)

The cough samples detected in the raw audio recordings are

automatically identified using the YAMNet [27]. YAMNet is a

deep CNN model where the MobileNet [29] was used to clas-

sify audio segments into sound classes defined by the Audio-

Set ontology [30]. YAMNet is composed of 86 layers. These

layers are input, 14 convolutional, 13 depth-wise convolu-

tional, 27 ReLu, 27 batch normalization, 1 global pooling, 1

fully connected layer, 1 softmax, and 1 classification output

layer, respectively. Fig. 2 shows the implementation of the

YAMNet.

As seen in Fig. 2, the input audio signal is pre-processed

initially. The input audio signals were buffered into L overlap-

ping segments and resampled to 16 kHz in the pre-

processing. Each segment lasted 0.98 s, and the segments

were 0.8575 s apart. They were transformed into a magnitude

spectrogramwith 257 frequency bins using a one-sided short-

time Fourier transform using a 25-ms periodic Hann window

with a 10-ms hop and a 512-point Discrete Fourier Transform.

After that, the magnitude spectrum was passed through a 64-

band Mel-spaced filter bank, with the magnitudes of each
Fig. 2 – Implementatio
band combined together. The audio was represented by a

96-by-64-by-1-by-L array, with 96 being the number of spec-

trums in the Mel spectrogram and 64 being the number of

mel bands. Finally, the mel spectrograms were given a log

scale. A 96-by-64-by-1-by-L array of mel spectrograms served

as the input layer for YAMNet. The output of YAMNet (an L-

by-512 matrix) corresponds to confidence scores for each of

the 521 sound classifications over time.

2.2. Vision transformer (ViT)

The illustration of the ViT structure is given in Fig. 3. The ViT

is an image classification model that uses a transformer-like

design to classify image patches [31]. An image is divided into

fixed-size patches, which are then linearly embedded, posi-

tion embeddings added, and the resultant vector sequence

is given to a conventional transformer encoder. Finally, the

traditional strategy of adding an extra learnable ‘‘classifica-

tion token” to the sequence is employed to do classification.

2.3. Fractal dimension (FD)

The nonlinear approach of FD based feature extraction is

employed to describe the non-regular and self-similarities

in a given signal. For many years, FD has been utilized to ana-

lyze biological signals like the electroencephalogram and

magnetoencephalogram. FD is now being actively used in

fields such as speaker identification, sound activity recogni-

tion, and especially speech-based emotion classification [28].

2.3.1. Katz FD
The Katz FD for a given signal that has the number of n sam-

ples is calculated as follows [32]:

L ¼
Xn�1

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yiþ1 � yi

� �2 þ xiþ1 � xið Þ2
q

ð1Þ

d ¼ maxð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yi � y1

� �2 þ xi � x1ð Þ2
q

ð2Þ

where d indicates the max distance between the point (x1, y1)

and the other points, and L shows the sum of the distances

between neighbor points. Lastly, the Katz FD can be written

as:

KatzFD ¼ log10 n� 1ð Þ= log10 n� 1ð Þ þ log10 d=Lð Þð Þ ð3Þ
2.3.2. Higuchi FD
Higuchi FD is an iterative approach for analyzing a digital sig-

nal for various time scales. This implies that the signal is

sampled at various frequencies for a given continuous signal.
n of the YAMNet.



Fig. 3 – Illustration of the ViT [31].
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Using several time scales can reveal the signal’s frequency

features [33]. The new time series is stated as follows if we

reconstruct the time series:

xl
n ¼ x nð Þ; x nþ lð Þ; x nþ 2lð Þ; . . . ; x nþm� n

l
l

� �n o
;

n ¼ 1; 2 . . . ; l; l ¼ 1; 2 . . . ; lmax ð4Þ

where lmax is set to 5 for this investigation, n indicates the

time index of the signal, l is the resampling range, and s is

the integer component of the ratio s. Lm(l), the normalized

cumulative change of the signal, was then computed, and L

(l), the mean value of Lm(l), is shown as follows:

L lð Þ ¼ 1
l

Xl

n¼1

Ln lð Þ ð6Þ

Thus, the Higuchi FD can be determined as the slope of L(l)

versus 1/l as follows:

HFD ¼ ln L lð Þð Þ
ln 1

l

� � ð7Þ
2.3.3. Petrosian FD
Petrosian FD is one of the simple FD approaches where its

computational complexity is less than the others [34]. In Pet-

rosian FD calculation, let’s consider a time series x1; x2; . . . ; xN

and its corresponding waveform points y1; y2; . . . ; yN

� �
.

Thus, the binary matrix zi is calculated as follows:

zi ¼
1 xi > mean yð Þ

�1 xi 6 mean yð Þ
	

; i ¼ 1; 2; 3 . . . ;n ð8Þ

After calculation of the binary matrix zi, the changed num-

ber of adjacent values in the time series is obtained via Equa-

tion (9):

nD ¼
Xn�2

i¼1

ziþ1 � zi
2




 


 ð9Þ
Finally, the Petrosian FD is calculated as:

PFD ¼ log10 nð Þ
log10 n

nþ0:4nD

� � ð10Þ
2.3.4. Castigloni FD
Castigloni FD is a modified version of Katz FD [35]. The L and d

values are calculated as follows:

L ¼
Xn�1

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yiþ1 � yi

� �2 þ xiþ1 � xið Þ2
q

ð11Þ

d ¼ max yi

� ��min yi

� � ð12Þ

where L shows the total distances between the neighbor

points, and d shows the non-stable range of the input time

series. As seen in Equations (11) and (12), the calculation of

the L value is identical in Katz FD, but the calculation of the

d value is different. Thus, the Castigloni FD is calculated as

follows:

CFD ¼ log10 n� 1ð Þ
log 10 n� 1ð Þ þ log10 d

L

� � :ð13Þ
3. Data used

3.1. COUGHVID dataset

COUGHVID [36] used a web application to gather cough

sounds from 1 April 2020 to 10 September 2020. The user’s

age, gender, and present condition were input after recording

the cough sound. COVID-19, symptomatic, or healthy was the

state of the cough sound data. COUGHVID data is in the.

webm or.ogg format, with a sampling rate of 48 kHz. The

recording lasted at least 2 to 9 s.
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3.2. VIRUFY dataset

Stanford University developed the VIRUFY dataset by using a

smartphone application [37]. A total of 1187 volunteers were

represented in the data. The findings of the RT-PCR test were

used to identify which data was positive and which was neg-

ative. In this dataset, 595 COVID-19 and 592 healthy volun-

teers were used.

3.3. COSWARA dataset

Cough recordings were obtained from the general population

in the COSWARA dataset using a web-based data collection

system and smartphones [38]. The auditory data collected

included fast and slow breathing, deep and shallow coughing,

phonation of extended vowels, and spoken numbers. Age,

gender, location, current health status, and pre-existing med-

ical conditions are all considered. Health status can be

described as ’healthy,’ ’exposed,’ ’cured,’ or ’infected.’ Audio

recordings were recorded at 44.1 kHz.

4. Experimental works

In experiments, both Python and Matlab software were used.

The signal processing parts of the proposed method were

implemented in Matlab and FD image construction, and ViT

model training was implemented in Python. As the input sig-

nals contained not only cough segments, the YAMNET model

was employed to detect the cough segments. A segmented

and classified sound signal is shown in Fig. 4, which contains

silence, cough, and speech segments.

As we were interested in cough segments, the detected

cough segments were cropped and concatenated to construct

the final cough signals. Fig. 5 shows the mentioned process

for an input sound signal.

As seen in Fig. 5 (a), the YAMNETwas employed to detect

the sound events in the given sound signal, and the segments

labeled as cough were cropped and concatenated for obtain-

ing the final cough sound signal given in Fig. 5 (b). To be com-
Fig. 4 – A classified sound signal by YAMNET model.
patible with the YAMNET model, all input audio signals were

resampled to 16 kHz. The related other parameters with YAM-

NETwere already given in Section 2.1.

A window of 512 samples with 400 overlapping samples

was utilized to calculate FD. The Hanning window is consid-

ered in the sliding overlapping window. Fig. 6 shows the con-

structed FD images. After fractal coefficients are calculated, a

normalization process is employed on the fractal coefficients.

After concatenation of normalized (0–1 interval) fractal coeffi-

cients from all fractal methods, the input image is obtained. It

can be noted from Fig. 6 that the Katz, Castigloni, Higuchi,

and Petrosian FD were calculated and concatenated to obtain

the FD image. The obtained images are then resized to

224 � 224.

As it was shown in Fig. 6, in the FD images, while the x-

axis shows the number of segmented signal parts, the y-

axis indicates the fractal methods. Fig. 7 shows the con-

structed FD images for the COUGVID dataset. While the first

row of Fig. 7 shows constructed FD images for the COVID-19

class, the second and the third rows show the healthy and

symptomatic classes, respectively. For the ViT architecture,

we used the ViT-base-patch16-384 model implemented in

Python [39]. The patch and the batch sizes were set to 16,

and the learning rate was set to 0.0002. The max epoch size

was set to 10. During the training of the ViT model, we used

the transfer learning strategy where a pretrained ViT model

was considered and further trained for detecting the COVID-

19 cough sounds [40,41]. In all experimental works, a 10-fold

and 5-fold cross-validation evaluation technique were used,

and average accuracy, sensitivity, specificity, and F1-score

metrics were used for quantitative performance measure-

ments. For COSWARA and VIRUFY datasets, there were two

classes (COVID-19 and healthy), and for the COUGHVID data-

set, there were three (COVID-19, healthy, and symptomatic)

classes.

Table 1 shows the obtained results for the COUGHVID

dataset.

As seen in Table 1, we have obtained 98.45 % accuracy,

97.40 % sensitivity, 98.66 % specificity, and 97.70 % F1-score

values using the COUGHVID dataset. The cumulative confu-

sion matrix for the COUGHVID dataset is shown in Fig. 8.

As seen in Fig. 8, 614, 6500, and 6142 samples from COVID-

19, healthy and symptomatic classes, respectively were cor-

rectly classified. Besides, 20 samples from the healthy class

were predicted as COVID-19. For the healthy class, 25 samples

from COVID-19 and 49 samples from the symptomatic classes

were identified as healthy samples. Lastly, only 44 samples

from the healthy class were classified as a symptomatic class.

Graph of accuracy (%) obtained scores for each fold using the

COUGHVID dataset is shown in Fig. 9. As given in Fig. 9, the

accuracy values are varied in the range of 97.5 % and 99.5 %.

We have also performed our study using the VIRUFY data-

set, and obtained evaluation metrics are given in Table 2. It

can be noted from Table 2 that 98.15 % accuracy, 97.48 % sen-

sitivity, 98.82 % specificity, and 98.14 % F1-score values are

obtained for the VIRUFY dataset. In addition, the cumulative

confusion matrix obtained for the VIRUFY dataset is given

in Fig. 10.

As seen in Fig. 10, 580 and 585 samples from COVID-19 and

healthy classes, respectively are correctly classified by the



Fig. 6 – Constructed FD sample images.

Fig. 5 – Cough sound segmentation process: (a) Segmentation and detection of the sound events; (b) Concatenation of the

detected cough segments.
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Fig. 7 – Constructed FD sample images for the COUGHVID dataset.

Table 1 – Performance evaluation scores for the COUGHVID dataset.

Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%)

COUGHVID 98.45 97.40 98.66 97.70
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proposed method. And the proposed scheme missed 15 and 7

samples from COVID-19 and healthy classes, respectively. The

graph of accuracy (%) obtained scores for each fold using the

VIRUFY dataset is shown in Fig. 11. As seen in Fig. 11, the

accuracy scores varied between 97 % and 99 %.

We have also performed our study using the COSWARA

dataset, and the outputs obtained are given in Table 3,

Fig. 12, and Fig. 13.

As seen in Table 3, the obtained accuracy, sensitivity,

specificity, and F1-score values were 97.59 %, 88.44 %,

98.73 %, and 89.04 %, respectively. When these metrics were

compared with the previous evaluation metrics (COUGHVID

and VIRUFY dataset), it obtained lower sensitivity and F1-

score values.

The cumulative confusion matrix for the COSWARA data-

set is also shown in Fig. 12. Again, 130 and 1167 samples are

correctly classified in COVID-19 and healthy classes, respec-

tively. And only 17 and 15 samples from COVID-19 and

healthy classes were wrongly classified, respectively.

Finally, the accuracy scores obtained for each fold is

shown in Fig. 13 for the COSWARA dataset. From this figure,
it was obvious that the accuracy scores range between

94.5 % and 99.5 %.

4.1. Explainable ViT using Grad-CAM technique

As the obtained results show that the achievements of the

proposed method on all datasets were quite good, it is worth

visualizing which region of the input images were efficient in

detecting the COVID-19, healthy, and symptomatic classes by

using the ViT model. To this end, the well-known Grad-CAM

approach was considered [42]. Grad-CAM enables the viewing

of every model layer and the examination of each feature

map layer, both of which are required for understanding

how input values influence model categorization. For exam-

ple, Jahmunah et al. [43] used the Grad-Cam method to

develop an explainable deep learningmodel to detect myocar-

dial infarction from ECG signals. In this work, we also used

Grad-CAM on the output of the ViT model. Fig. 14 depicts

the activation maps generated by Grad-CAM overlaid on the

FD images for the COVID-19, healthy and symptomatic

classes, respectively. It is worth mention that in Grad-Cam



Fig. 8 – Cumulative confusion matrix obtained for the

COUGHVID dataset.

Fig. 10 – Cumulative confusion matrix obtained for the

VIRUFY dataset.
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images, while the red color indicates the most relevant region

during the classification process, the blue color indicates the

less relevant region during the classification process. As seen

in Fig. 14, for the COVID-19 class, the ViT model generally

concentrated on the Castigloni and Higuchi FD regions. Simi-

larly, for the healthy class, the ViT model gave its decision

mostly based on the Castigloni FD, where the red color den-

sity is high. Finally, the proposed model generally used the

Katz and Castigloni FD to decide the symptomatic class. As
Fig. 9 – Graph of accuracy (%) obtained scores

Table 2 – Performance evaluation scores for the VIRUFY dataset

Accuracy (%) Sensitivity (

VIRUFY 98.15 97.48
the FD images for COVID-19, Healthy, and Symptomatic

classes are explored, it is seen that each class has its texture

structure. For example, when the FD image obtained for the

COVID-19 class is examined, it can produce very different

and sensitive features due to the large variation between seg-

ments and, therefore, the variable time scale found in the

Castigloni and Higuchi fractal calculation methods. In other

words, the mathematical structures of these fractal calcula-

tion methods come to the fore more decisively in class

distinctions.
for each fold using the COUGHVID dataset.

.

%) Specificity (%) F1-score (%)

98.82 98.14



Fig. 11 – Graph of accuracy (%) obtained scores for each fold using the VIRUFY dataset.

Table 3 – Performance evaluation scores obtained for the COSWARA dataset.

Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%)

COSWARA 97.59 88.44 98.73 89.04

130 17

15 1167

Predicted class

Tr
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V
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Fig. 12 – Cumulative confusion matrix obtained for the

COSWARA dataset.
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5. Discussions

This paper proposed a novel, explainable approach for cough

sound-based COVID-19 recognition. In the proposed method,

the cough sound is divided into overlapping segments, and

each segment is labeled since the input audio may contain

other noises. The deep YAMNet model is used to perform this.

Following labeling, the cough segments are cropped and con-

catenated to recreate the pure cough sounds. The fractal coef-
ficients on the cough sound are then calculated using four

different fractal dimension approaches with an overlapping

sliding window that generates a matrix. The fractal dimen-

sion images are then produced using the built matrixes.

Finally, the produced images are classified into COVID-19,

healthy, and symptomatic classes using a ViT model that

has been pre-trained. As shown in Tables 1, 2, and 3, the

fine-tuned ViT model with fractal images yielded 98.45 %,

98.15 %, and 97.59 % accuracy scores for COUGHVID, VIRUFY,

and COSWARA datasets, respectively. As the COUGHVID data-

set contains a higher number of samples, the accuracy score

for this dataset was higher than the other datasets. In the

recent literature, various approaches have been used for

cough-based COVID-19 diagnosis. Table 4 shows a compara-

tive summary of the approaches that were conducted on

cough-based COVID-19 diagnosis. As seen in Table 4, Islam

et al. [16] and Manshouri [18] used the VIRUFY dataset and

obtained 93.8 % and 95.86 % accuracy scores with their pro-

posed methods. Hamdi et al. [17] used the COUGHVID dataset

and obtained a 91.13 % accuracy score. Rahman et al [21] used

CAMBRIDGE and QATARI datasets and obtained a 96.5 % accu-

racy score. Ren et al. [22] used the COUGHVID dataset and

obtained a 0.632 Unweighted Average Recall (UAR) score.

Andreu-Perez et al. [25] used their own dataset with CNN

and obtained 97.18 % and 96.64 % average accuracy scores

for COVID-19 and healthy classes. Zealouk et al. [26] also used

their dataset with HMM classifier and obtained 93.33 % and

86.66 % average accuracy scores for COVID-19 and healthy

classes. Son et al. [44] used both MFCC and spectrogram

images and deep feature extraction and deep neural networks

(DNN) for COVID-19 detection. They obtained 88 %, 62 %, and

94 % classification accuracy scores using CNN, LSTM, and

DNN, respectively. For COVID-19 cough identification, Xue



Fig. 13 – Graph of accuracy (%) obtained for each fold using the COSWARA dataset.
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et al. [45] developed a self-supervised learning-enabled sys-

tem. A contrastive pre-training phase was used to train a

transformer-based feature encoder with unlabeled data. In

deep neural networks, Soltanian et al. [46] employed a mix

of quadratic kernels and the notion of separable kernels to

improve recognition accuracy concurrently.

Xue et al. [45] used MFCC, log-compressed mel-filterbank

features, and VGGish and Transformer-CP classifiers on the

COSWARA dataset for COVID-19 identification. Authors

obtained 83.15 % and 83.74 % accuracy scores for VGGish

and Transformer-CP classifiers, respectively. Soltanian et al.

[46] used MFCC images with ordinary CNN and a novel CNN

model to detect COVID-19 on the VIRUFY dataset.

As we would like to show the robustness of the pro-

posed approach, we also used the 5-fold cross-validation

test in our work, and the related accuracy scores were given

in Table 4. As seen in Table 4, 98.37 %, 97.38 %, and 98.24 %

accuracy scores were obtained for COUGHVID, COSWARA,

and VIRUFY datasets, respectively. The obtained results

with the 5-fold cross-validation were quite similar to the

results that were obtained with the 10-fold cross validation

which indicated the robustness of the proposed works. In

addition, authors obtained 95 % and 97.5 % accuracy scores

for ordinary CNN and Separable quadratic CNN models,

respectively.

As the literature about the related works were examined, it

was seen that there has been various cough datasets for

COVID-19 detection. We actually used the dataset that were

publically available and could be used for performance com-

parison purposes. Authors have also opted to produce their

own datasets and use them in their works. And we preferred

to put them in Table 4 for comparison purposes.

The advantages of this study are given below:

1) Cough sound segments detection and concatenation

removed the unwanted segments in the input audio

signal. This makes the approach more robust against

the noise, speech, and silence sound segments.
2) The proposed approach obtained 98.45 %, 98.15 %, and

97.59 % accuracy scores for COUGHVID, COSWARA,

and VIRUFY datasets, respectively. To the best of our

knowledge, this is the first study to use three public

datasets and obtain the highest classification accuracy.

3) Construction of FD images with a sliding window

enables investigation of all cough sounds’ details,

which produced more accurate and robust results.

4) In this work, we also demonstrated which region of the

input image was important when the ViT model was

given a decision about the class labels. Thus, an

explainable model was represented instead of a black

box representation.

The limitation of our method is as follows:

1) Fine-tuning the ViT model is time-consuming when 5

and 10-fold cross cross-validations are employed.

6. Conclusions

This paper proposed a novel and explainable approach for

accurate and contactless COVID-19 detection using cough

sounds. We save the proposed method not to be a black box

model by introducing explainability. The proposed approach

uses a preprocessing stage for cough sound segmentation

from the input audio signal using YAMNet architecture. The

segmented cough sound segments were then concatenated

to form the final input cough sounds. Four FD approaches

were employed to convert the cough sound into FD coeffi-

cients, and these coefficients were located in the rows of a

matrix. The constructed matrix was then saved as image.

These images were then fed to the pretrained ViT model to

train the pretrained ViT model further. In this work, we

obtained an accuracy score of 98.45 %, 98.15 %, and 97.59 %

for the COUGHVID, VIRUFY, and COSWARA datasets, respec-

tively. The main limitation of this work was that the complex-
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Fig. 14 – Heat maps of each cough sound class obtained from the Grad-CAM technique.
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Table 4 – Comparison of the proposed approach with existing approaches.

Study Year Dataset Extracted features Classifier Validation
Method

Accuracy

Islam et al. [16] 2022 VIRUFY Mixture of time and frequency
domain features

DNN Cross-validation (5-fold) 93.8 %

Hamdi et al. [17] 2022 COUGVID Spectral features CNN + LSTM Cross-validation (10-fold) 91.13 %
Manshouri [18] 2022 VIRUFY Spectral features SVM Cross-validation (LOO) 95.86 %
Rahman et al. [21] 2022 CAMBRIDGE and QATARI Stacking of

deep features
Logistic regression
(LR)

Cross-validation (5-fold) 96.5 %

Ren et al. [22] 2022 COUGVID Acoustic features SVM Cross-validation (5-fold) 0.632 (UAR)
Andreu-Perez et al. [25] 2022 Author’s own dataset Audio sonography CNN Cross-validation (10-fold) 97.18 %

COVID-19,
96.64 %
Healthy

Zealouk et al. [26] 2022 Author’s own dataset MFCC HMM Cross-validation (LOO) 93.33 %
COVID-19, 86.66 %
Healthy

Son et al. [44] 2022 COUGHVID MFCC LSTM Hold out (70:15:15) 62 %
Son et al. [44] 2022 COUGHVID Spectrogram and deep features DNN Hold out (70:15:15) 94 %
Xue et al. [45] 2021 COSWARA MFCC + log compressed mel-filterbank VGGish Hold out (70:10:20) 83.15 %
Xue et al. [45] 2021 COSWARA MFCC + log compressed mel-filterbank Transformer-CP Hold out (70:10:20) 83.74 %
Soltanian et al. [46] 2022 VIRUFY MFCC CNN Cross-validation (5-fold) 95 %
Soltanian et al. [46] 2022 VIRUFY MFCC Separable quadratic

CNN
Cross-validation (5-fold) 97.5 %

Proposed 2022 COUGVID FD images ViT Cross-validation (10- fold, 5-fold) 98.45 %
98.37 %

Proposed 2022 COSWARA FD images ViT Cross-validation (10- fold, 5- fold) 97.59 %
97.38 %

Proposed 2022 VIRUFY FD images ViT Cross-validation (10- fold, 5- fold) 98.15 %
98.24 %
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ity of fine-tuning the ViT model was too high, with a 10-fold

and 5-fold cross-validation strategy. In addition, the perfor-

mance of the YAMNet model was quite important for the sub-

sequent processes of the proposed work. If YAMNet missed a

cough sound segment, that segment may not be further pro-

cessed. In the future, we plan to use this proposed model to

detect other respiratory disorders like asthma, COPD (chronic

obstructive pulmonary disorder), and bronchitis.
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