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Abstract

The gamma-secretase complex is involved in the intramembranous proteolysis of a variety of substrates, including the
amyloid precursor protein and the Notch receptor. Nicastrin (NCT) is an essential component of the gamma-secretase
complex and functions as a receptor for gamma-secretase substrates. In this study, we determined that serum- and
glucocorticoid-induced protein kinase 1 (SGK1) markedly reduced the protein stability of NCT. The SGK1 kinase activity was
decisive for NCT degradation and endogenous SGK1 inhibited gamma-secretase activity. SGK1 downregulates NCT protein
levels via proteasomal and lysosomal pathways. Furthermore, SGK1 directly bound to and phosphorylated NCT on Ser437,
thereby promoting protein degradation. Collectively, our findings indicate that SGK1 is a gamma-secretase regulator
presumably effective through phosphorylation and degradation of NCT.
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Introduction

The gamma-secretase complex is involved in the overproduc-

tion of amyloid-beta peptide (Abeta), a hallmark of Alzheimer’s

disease (AD) [1,2,3]. The principal component of amyloid plaques,

Abetais generated from amyloid precursor protein (APP) by beta-

and gamma-secretase. Gamma-secretase is a high-molecular-

weight multimeric protein complex with aspartyl protease activity

that is responsible for the cleavage of several type I transmem-

brane proteins, including amyloid precursor protein (APP) and the

Notch receptor [4,5]. Gamma-secretase is composed of four

transmembrane proteins: Presenilin 1 (PS1), Nicastrin (NCT),

Presenilin enhancer 2 (PEN-2), and anterior pharynx-defective-1

(APH-1) [1,5,6,7,8,9,10,11,12,13,14,15,16]. PS1 is generally rec-

ognized as the catalytic core protein of the complex [17]. NCT is

important for the stability and trafficking of other gamma-

secretase components, and is pivotal in the stabilization of PS1

expression and the creation of a substrate docking site in the

complex [1,18,19,20,21]. APH-1, a multi-transmembrane domain

protein, is thought to stabilize the gamma-secretase complex

(operating in conjunction with NCT); PEN-2 may cause a

conformational change in NCT and also be important in the

endoproteolysis of PS during the maturation of the complex

[1,22,23,24,25].

The NCT gene is located on chromosome 1q23, a region that is

linked to an AD susceptibility locus [26]. NCT performs a critical

function in gamma-secretase complex activation and in the Abeta

generation associated with AD pathogenesis [1,5,27,28]. NCT is a

709-amino acid single-pass membrane protein, and is the most

abundant subunit of the gamma-secretase complex; the protein

harbors a number of glycosylation sites within its large extracel-

lular domain (ECD) [11,29]. NCT is synthesized in fibroblasts and

neurons as an endoglycosidase-H-sensitive glycosylated precursor

protein (immature NCT). Immature NCT is modified by complex

glycosylation to generate the mature NCT in the Golgi [29,30].

NCT is a member of the amino-peptidases/transferrin receptor

superfamily implying that NCT a catalytic or a binding role in

APP processing [11]. NCT degradation is accomplished by both

lysosomal and proteasomal pathways [31]. According to recent

evidence Synoviolin (also referred to as Hrd1), an E3 ubiquitin

ligase implicated in endoplasmic reticulum-associated degradation,

is involved in the degradation of immature NCT [32]. The half-

life and activity of NCT are regulated primarily by its

phosphorylation by ERK, JNK, and possibly other kinases

[33,34]. However, little is currently known regarding any other

protein kinase(s) that might contribute to the turnover of NCT.

The serum- and glucocorticoid-induced kinase 1 (SGK1),

SGK1, is a serine/threonine kinase downstream of the PI3K

cascade [35]. SGK1 is a member of the AGC family of protein

kinases, including protein kinases A, G, and C, and is related to the

major cellular survival factor, protein kinase B (PKB, also called

Akt). SGK1 and PKB share 45% to 55% homology within their
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catalytic domain [36,37,38]. In mammalian cells, two more

isoforms of SGK1 have been described, referred to as SGK2 and

SGK3 [37]. They share 80% homology in their catalytic domains

and are evolutionally conserved. The expression of SGK1, but not

SGK2 or SGK3, is acutely regulated by glucocorticoids and serum

[39]. Similar to several other AGC kinases, SGK1 is activated via

stimulation by 3-phosphoinositide-dependent kinase 1/2-mediated

phosphorylation and is tightly linked to the phosphatidylinositol 3-

kinase pathway (PI3K) dependent cell survival pathway. SGK1 is

regulated at both the transcriptional and posttranslational levels by

external stimuli including hepatocyte growth factor as well as

steroid hormones, particularly aldosterone and growth factors like

insulin [36,37,38,40,41,42]. SGK and Akt are thought to

phosphorylate related substrates, because they share a similar

consensus phosphorylation site (RXRXXS/T) [39].

Recently, we disclosed that SGK1 downregulates the protein

stability of the Notch1 intracellular domain, which is cleaved

proteolytically by gamma-secretase via Fbw7 E3 ubiquitin ligase

phosphorylation, thereby suggesting that SGK1 modulates Notch1

activity in a gamma-secretase independent manner [43]. In the

present study, we elucidated the role of SGK1 in the regulation of

gamma-secretase and APP processing. We demonstrate herein

that SGK1, when activated, inhibits the cleavage of APP. SGK1

physically interacts with and phosphorylates NCT, thereby

facilitating protein degradation via proteasomal and lysosomal

pathways. We also report that dexamethasone, which induces

SGK1 expression in various cell types, inhibited gamma-secretase

activity and stimulated the phosphorylation and degradation of

NCT.

Results

SGK1 downregulates gamma-secretase-dependent APP
cleavage

Processing of the amyloid precursor protein results in the

generation of the amyloidogenic peptide, Abeta, which plays a

central role in the pathogenesis of Alzheimer’s disease. Cleavage of

C99, the APP c-terminal fragment derived from beta-secretase

processing of APP, by gamma-secretase generates the Abeta

peptide. Furthermore, gamma-secretase cleavage of C99 and C83,

the alpha-secretase derived APP C-terminal fragment (APP CTF),

releases the APP C-terminal domain (AICD), a 6-kDA peptide also

called CTD or AID, which regulates transcription after translo-

cation to the nucleus. The alpha-secretase and beta-secretase

initially cleave APP. Cleavage of APP by alpha-secretase generates

the C83. C99 derives from its precursor APP through proteolytic

events that are mediated by beta-secretase. Thereafter C83 and

C99 is a direct substrate of gamma-secretase [33,44]. Because APP

is cleaved by gamma-secretase activity, we first attempted to

determine whether or not SGK1 plays a role in the regulation of

APP-mediated signaling. We used C99-Gal4/VP16 fusion pro-

teins to measure the gamma-secretase-induced cleavage of APP

[45,46,47]. HEK293 cells were transfected with C99-Gal4/VP16

and pG5E1BLuc, as well as either SGK1 or an empty vector. As

expected, APP-mediated reporter activity increased in these

samples (Fig. 1A). SGK1 exerted no influence on the basal levels

of Gal4-Luc activity but attenuated the ability of C99-Gal4/VP16

to stimulate reporter activity in a dose-dependent manner (Fig. 1A).

To determine whether gamma-secretase-mediated APP cleavage is

regulated by SGK1, thereby promoting AICD production, we

conducted western blot with HEK293 cells using APP and, the

C83 and the C99 form of APP as a direct substrate of gamma-

secretase and SGK1. To determine whether SGK1 is involved in

regulating gamma-secretase-mediated APP cleavage, Western

blotting was conducted with HEK293 cells using the C99 form

of APP as a substrate for gamma-secretase and SGK1. As a result,

SGK1 reduced the gamma-secretase dependent cleavage of C83

(Fig. 1B), C99 (Fig. 1C) and APP (Fig. 1D) in a dose-dependent

fashion. C83, C99 and APP proteins were elevated, whereas

AICD was evidently decreased (Fig. 1B–D). These results

indicated that SGK1 suppresses the gamma-secretase-dependent

cleavage of APP in intact cells.

Loss of function of SGK1 rescues gamma-secretase
dependent cleavage of APP

In an effort to determine whether the kinase activity of SGK1 is

required for the downregulation of gamma-secretase-dependent

APP cleavage, we used a constitutively active form of SGK1

(SGK1-CA) and a dominant-negative mutant of SGK1 (SGK1-

DN) to block the kinase activity of SGK1. In the luciferase

reporter gene assay with HEK293 cells, SGK1-CA and SGK1-

DN were transfected and gamma-secretase-dependent cleavage

evaluated using C99-Gal4/VP16. The gamma-secretase-depen-

dent luciferase reporter activity was inhibited by SGK1-CA, but

was not inhibited by the cotransfection of C99-Gal4/VP16 and

SGK1-DN (Fig. 1E). In order to assess the role of endogenous

SGK1 in gamma-secretase-dependent APP cleavage, we conduct-

ed a Gal4-transactivation assay using SGK1 wild-type (SGK1+/+)

and SGK1-deficient (SGK12/2) MEF cells. The transactivation of

C99-Gal4/VP16 in SGK1- deficient MEF cells was four-fold

higher than that observed in the SGK1 wild-type cells (Fig. 1F).

We also found that the gamma-secretase-dependent transactiva-

tion of C99-Gal4/VP16 was suppressed by SGK1 overexpression

in SGK1-deficient cells (Fig. 1G). These results demonstrated that

the kinase activity of SGK1 is, indeed, crucially important for the

regulation of gamma-secretase-dependent APP cleavage.

SGK1 prevents the physical interaction between NCT and
APP

To observe the effects of SGK1 on the molecular interactions

between NCT and APP, coimmunoprecipitation was conducted in

HEK293 cells via the cotransfection of V5-tagged NCT, Myc-

tagged APP, and Flag-tagged SGK1-CA. Without coexpression of

SGK1, NCT and APP were coimmunoprecipitated. In contrast,

when they were cotransfected with SGK1, the band of NCT that

interacted with APP disappeared (Fig. 2A). The cell lysates were

analyzed via immunoprecipitation with an anti-V5 antibody, and

immunoblotting was conducted using the anti-Myc antibody.

Conversely, under conditions identical to those described above,

immunoblot analysis of the V5 immunoprecipitates with an anti-

Myc antibody also showed the interaction between the two

proteins (Fig. 2B). Next, HEK293 cells were cotransfected with

V5-tagged NCT, a Myc-tagged C99 form of APP, and Flag-tagged

SGK, and coimmunoprecipitation was performed. Interestingly,

when the cells were cotransfected with SGK1, the band of NCT

that interacted with C99 disappeared (Fig. 2C, D). Surprisingly, on

the cell lysate immunoblot, the levels of mature and immature

forms of NCT protein were downregulated upon cotransfection

with SGK1 (Fig. 2A–D). This finding strongly suggests that SGK

regulates NCT protein levels.

SGK1 down-regulates the protein level of NCT through
proteasomal and lysosomal degradation

We subsequently subjected HEK293 cells in order to determine

whether or not SGK1 performs a role in the regulation of NCT

protein levels. The cells were cotransfected with V5-tagged NCT

and Flag-tagged SGK1-CA. We detected a dose-dependent
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Figure 1. SGK1 downregulates gamma-secretase dependent APP cleavage. (A) (A) HEK293 cells were transfected with expression vectors
encoding for 100 ng of GAL4-Luc, 100 ng of beta-galactosidase, along with 200 ng of C99-Gal4/VP16 and 200 ng(+), 400 ng(++) and 600 ng(+++) of
SGK1-CA, as indicated. (B) HEK293 cells were transfected for 48 hours with expression vectors encoding for 500 ng of C99-Myc, along with 500 ng (+),
1 mg (++) and 1.5 mg (+++) of Flag-SGK1 CA, as indicated. (C) HEK293 cells were transfected for 48 hours with expression vectors encoding for 500 ng
of C99-Myc, along with 500 ng (+), 1 mg (++) and 1.5 mg (+++) of Flag-SGK1 CA, as indicated. (D) HEK293 cells were transfected for 48 hours with
expression vectors encoding for 500 ng of APP695, along with 500 ng (+), 1 mg (++) and 1.5 mg (+++) of Flag-SGK-CA. (B, C, D) The cell lysates were
immunoblotted with anti-Myc (9E10), anti-APP c-terminal and anti-Flag antibodies (E) HEK293 cells were transfected with expression vectors
encoding for 200 ng of C99-Gal4/VP16, 100 ng of GAL4-Luc, 100 ng of beta-galactosidase, 600 ng of SGK1-CA and SGK1-DN. (F) MEF cells from
SGK1+/+ and SGK12/2 mice were transfected with expression vectors encoding for 200 ng of C99-Gal4/VP16 and 100 ng of beta-galactosidase with
GAL4-Luc (G) MEF cells from SGK12/2 mice were transfected with expression vectors encoding for 100 ng of GAL4-Luc, 100 ng of beta-galactosidase
and 200 ng of HA-SGK1 with 100 ng of C99-Gal4/VP16. (A, E–G) After 48 hours of transfection, the cells were lysed and the luciferase activity was
assayed. Data were normalized to beta-galactosidase activity. The results are expressed as the means 6 SEM from three independent experiments.
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reduction in NCT protein levels upon cotransfection of SGK1

(Fig. 3A). The cells were cotransfected with V5-tagged NCT, Flag-

tagged SGK1-CA, and Flag-tagged SGK1-DN. Our results

showed, also, that NCT protein levels were reduced upon

cotransfection with SGK1-CA, but not upon cotransfection with

SGK1-DN (Fig. 3B). This suggests that the kinase activity of

SGK1 is, indeed, essential for the regulation of NCT protein

levels. SGK1 has previously been reported to phosphorylate

glycogen synthase kinase (GSK)-3beta on Ser9, resulting in an

inactivation of GSK-3beta kinase activity. SGK1 is activated in a

phosphoinositide 3-kinase dependent manner, activated SGK1

phosphorylates and thus inhibits, GSK-3beta [48,49]. GSK-

3betais required for gamma-secretase activity and has a role in

APP processing [50]. Therefore, using GSK-3beta(S9A), we

attempted to determine whether SGK1 downregulates NCT

protein levels via GSK-3beta. To evaluate the role played by

GSK-3beta in the SGK1-mediated downregulation of NCT

protein, HEK293 cells were transfected with GSK-3beta (S9A)

and SGK1-CA. Our results indicated that the downregulation of

NST protein by SGK1 occurred independently of GSK-3beta

(Fig. 3C). Thus, the downregulation of NCT protein levels by

SGK1 was shown to be dependent on the intact kinase activity of

SGK1, but independent of the downstream kinase, GSK-3beta.

We showed that SGK1 downregulates NCT protein levels. The

(B–D) These results represent one of three independent experiments. RLU means relative luciferase units. The data were evaluated for significant
difference using the Student’s t-test; ANOVA, *P,0.001. IB, Immunoblot.
doi:10.1371/journal.pone.0037111.g001

Figure 2. SGK1 prevents the physical interaction between NCT and APP. (A, B) HEK293 cells were transfected for 48 hours with expression
vectors encoding for the indicated combinations of 2 mg of V5-NCT, 2 mg of APP-Myc, and 6 mg of Flag-SGK1- CA. (A) Cell lysates were subjected to
immunoprecipitation with an anti-Myc antibody (9E10), and the immunoprecipitates were immunoblotted with an anti-V5 antibody. (B) Cell lysates
were subjected to immunoprecipitation with an anti-V5 antibody, and the immunoprecipitates were immunoblotted with an anti-Myc antibody
(9E10). (C, D) HEK293 cells were transfected for 48 hours with expression vectors encoding for the indicated combinations of 2 mg of V5-NCT, 2 mg of
C99-Myc, and 4 mg of Flag-SGK1-CA. (C) Cell lysates were subjected to immunoprecipitation with an anti-Myc antibody (9E10), and the
immunoprecipitates were immunoblotted with an anti-V5 antibody. (D) Cell lysates were subjected to immunoprecipitation with an anti-V5 antibody,
and the immunoprecipitates were immunoblotted with an anti-Myc antibody (9E10). (A–D) The cell lysates were also subjected to immunoblot
analysis with anti-Myc (9E10), anti-Flag, and anti-V5 antibodies, respectively. These results represent one of three independent experiments. IB,
Immunoblot. IP, Immunoprecipitation.
doi:10.1371/journal.pone.0037111.g002
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half-life of endogenous NCT was determined using cycloheximide,

an inhibitor of protein translation. SGK1 wild-type and SGK1-

deficient fibroblast cells were exposed to cycloheximide, and the

amount of NCT was analyzed using immunoblotting. The steady-

state level and the half-life of endogenous NCT were higher in

SGK1-deficient fibroblasts than in wild-type cells (Fig. 3D).

Glucocorticoid receptor induces SGK1 expression in a variety of

cell lines. We hypothesized that glucocorticoids can contribute to

the regulation of NCT protein level through the induction of

SGK1. Therefore, the half-life of endogenous NCT was deter-

mined using dexamethasone and cycloheximide. SGK1 wild-type

and SGK1-deficient fibroblast cells were exposed to dexametha-

sone and cycloheximide, and the amount of NCT was analyzed

using immunoblotting. The steady-state level and the half-life of

endogenous NCT were higher in SGK1-deficient fibroblasts than

in wild-type cells (Fig.3 E). In order, then, to determine whether

the degradation of NCT proteins by SGK1 is mediated by the

proteasomal or lysosomal pathway, we conducted test treatments

with a proteasomal inhibitor and a lysosomal inhibitor. HEK293

cells were transfected with expression vectors encoding for V5-

tagged NCT, or Flag-tagged SGK. HEK293 cells were treated

with proteasomal inhibitors MG132 or Lactacystin for 6 hours. As

shown in Fig. 3F and G, NCT protein levels were reduced in the

presence of SGK1, which were restored by MG132 or Lactacystin

treatment in a dose-dependent manner. HEK293 cells were

transfected with expression vectors encoding for V5-tagged NCT,

or Flag-tagged SGK. HEK293 cells were treated for 6 hours with

various concentrations (0, 50, 100, 200 mM) of chloroquine, a

lysosomal inhibitor. As shown in Fig. 3H, NCT protein levels were

rescued by chloroquine in a dose-dependent manner. These results

indicate that the stability of the NCT protein was downregulated

by SGK1 by a mechanism requiring both the proteasomal and

lysosomal pathways.

The involvement of SGK1 in the dexamethasone-induced
downregulation of the NCT protein levels

Glucocorticoid induces SGK1 expression in a variety of cell

lines. In an effort to characterize the effect of dexamethasone on

the gamma-secretase-dependent cleavage of APP, we conducted a

luciferase reporter gene assay, using HEK293 cells. When the cells

were treated for 24 hours with 0.1, 1, or 5 mM dexamethasone,

the gamma-secretase dependent processing of APP was sup-

pressed, and this effect occurred in a dose-dependent manner

(Fig. 4A). In the gamma-secretase-dependent luciferase reporter

gene assay with HEK293 cells, APP and si-SGK1 were transfected

and the cells were treated for 24 hours with 1 mM dexamethasone.

The gamma-secretase-dependent processing was suppressed by

dexamethasone, but the gamma-secretase-dependent APP cleav-

age was rescued by co-transfection with si-SGK1 (Fig. 4B). The

effect of this transfection on the gamma-secretase dependent

procession of APP was then assessed using Gal4-Luc. We next

attempted to ascertain whether dexamethasone was able to

facilitate the degradation of NCT in intact cells. HEK293 cells

were transfected with V5-tagged NCT and exposed to dexameth-

asone. The immunoblot data demonstrated that dexamethasone

induces the degradation of NCT protein levels in a dose-

dependent manner (Fig. 4C). The dexamethasone-induced degra-

dation of NCT was rescued significantly by coexpression with

SGK1 siRNA (Fig. 4D). Also the NCT protein level was recovered

in the presence of the proteasome inhibitor (MG132) or lysosomal

inhibitor (Chloroquine) (Fig. 4E).These results imply that SGK1,

which is induced by dexamethasone, negatively regulated gamma-

secretase dependent APP cleavage via degradation of NCT protein

through the proteasome or lysosomal dependent pathway in intact

cells.

NCT interacts directly with SGK1 in intact cells
Considering that our results implicate NCT as a target of

SGK1, we then attempted to determine whether these two

proteins interact directly in intact cells. In the in vitro binding

studies, purified GST and GST–SGK1 proteins were immobilized

on GSH agarose. Cell lysates expressing V5-tagged NCT were

incubated either with immobilized GST or with GST–SGK1 on

GSH-agarose. The interaction between GST–SGK1 and NCT

was then detected on bead complexes (Fig. 5A). HEK293 cells

were cotransfected with vectors encoding for V5-tagged wild-type

NCT and Flag-tagged SGK1 and subsequently subjected to

coimmunoprecipitation analysis (Fig. 5B, C). Immunoblot analysis

of the Flag immunoprecipitates from the transfected cells with an

anti-V5 antibody revealed that V5-NCT was physically associated

with Flag-SGK1 in the cells (Fig. 5B). By contrast, immunoblot

analysis using anti-Flag antibody of the V5-immunoprecipitates

also showed interaction between the two proteins (Fig. 5C). We

also attempted to ascertain whether or not endogenous NCT and

SGK1 could interact in intact cells. Using MEF cells acquired

from SGK1+/+ and SGK12/2 mice, an immunoblot analysis of

the SGK1 immunoprecipitates with an anti-NCT antibody

showed direct association between endogenous NCT and SGK1

in SGK1+/+ cells (Fig. 5D). Using Rat fibroblast Rat2 cells

expressing control siRNA or rSGK1 siRNA, immunoblot analysis

of the SGK1 immunoprecipitates with an anti-NCT antibody

revealed that endogenous SGK1 and NCT associated physically in

dexamethasone treated Rat fibroblast Rat2 cells (Fig. 5E). SGK1 is

distributed throughout both the cytoplasm and nucleus [51]. NCT

has been reported to be localized in the lysosomal membrane,

plasma membrane and trans-Golgi network in the cytoplasm

[52,53,54,55]. We compared endogenous SGK1 and NCT

staining and found that they colocalized in the cytoplasm, but

not in the nucleus (Fig. 5F). We also examined that endogenous

SGK1 and NCT localization using MEF cells from SGK1+/+ and

SGK12/2 mice. Endogenous SGK1 and NCT colocalized in the

cytoplasm in SGK1+/+ cells, but not in SGK12/2 cells (Fig. 5G).

Next, to determine whether the NCT mutant where localize the

different subcellular compartment could be promoted degradation

by SGK1, we expressed NCT variants harboring either an

endoplasmic reticulum (ER) retention signal (NCT-ER) or a trans-

Golgi network (TGN) targeting motif (NCT-TGN) [56] (Fig. 5H).

Immunoblot analysis revealed that NCT or NCT-ER protein

levels were reduced in SGK1 transfected cells. However, SGK1

fail to undergo degradation of NCT-TGN, suggesting that the

NCT-TGN mutant does not colocalized with SGK1 in the TGN

compartment. Previous reports have shown that subcellular

localization of SGK1 is predominantly to the ER in resting cells

[57,58,59]. Furthermore, previous report has shown that the

assembly of gamma-secretase complex occurs in the early

compartments of the secretory pathway [56]. These results suggest

that physical interaction occur between the two endogenous

proteins, NCT and SGK1 in ER compartment in intact cells.

SGK1 phosphorylates NCT on Ser437, which facilitates
degradation of Notch1-IC

Next, we conducted Western blot analysis using phosphor Ser/

Thr antibody on HEK293 cells to determine whether or not

SGK1 plays a role in the phosphorylation of NCT. The cells were

cotransfected with V5-tagged NCT, Flag-tagged SGK-CA, and

Flag-tagged SGK-DN. The results demonstrated that NCT was

phosphorylated upon the cotransfection of Flag-tagged SGK-CA,

Phosphorylation of Nicastrin by SGK1
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but was not phosphorylated upon cotransfection of SGK1-DN

(Fig. 6A). HEK293 cells were transfected with V5-tagged NCT

and treated with 1 mM dexamethasone for 6, 12, and 24 hours.

The results showed that the NCT phosphorylation resulting from

dexamethasone treatment induced endogenous SGK1 for

24 hours (Fig. 6B). We also conducted Western blot analysis with

phospho-Ser/Thr antibody on MEF cells from SGK1+/+ and

SGK12/2 mice. As a results, endogenous NCT phosphorylation

by dexamethasone induced endogenous SGK1 (Fig. 6C). In light

of these results, we surmised that the possible phosphorylation sites

on NCT were located within a region that harbored the conserved

serine residue, Ser437. Via site-directed mutagenesis, we detected

Figure 3. SGK1 downregulates the NCT protein levels via proteasomal and lysosomal degradation. (A) HEK293 cells were transfected for
48 hours with expression vectors encoding for 0.5 mg of V5-NCT and 0.5 mg (+), 1 mg (++) and 1.5 mg (+++) of Flag-SGK1 CA, as indicated. The cell
lysates were immunoblotted with anti-Flag and anti-V5 antibodies. (B) HEK293 cells were transfected for 48 hours with expression vectors encoding
for 1 mg of V5-NCT, 2 mg of Flag-SGK1-CA, and 2 mg of Flag-SGK1-DN. The cell lysates were immunoblotted with anti-Flag, and anti-V5 antibodies. (C)
HEK293 cells were transfected for 48 hours with expression vectors encoding for 1 mg of V5-NCT, 2 mg of Flag-SGK1-CA, and 2 mg of HA-GSK-
3beta(S9A). The cell lysates were immunoblotted with anti-HA, anti-Flag, and anti-V5 antibodies. NCT blots are represented as short (SE) or long (LE)
exposures. (D) SGK1+/+ and SGK12/2 MEF cells were treated with 100 mM DMSO or 100 mM cycloheximide (CHX) for the indicated periods of time, and
the cell lysates immunoblotted with anti-Notch1-IC antibody (left). We quantified the intensity of each band using a densitometer and plotted
relative intensities (right). (E) SGK1+/+ and SGK12/2 MEF cells were treated with Dexamethasone (1 mM) for 12 hours, and cell lysates immunoblotted
with anti-NCT antibody. (F) HEK293 cells were transfected for 48 hours with expression vectors encoding for 1 mg of V5-NCT and 3 mg of Flag-SGK1-
CA. HEK293 cells were treated with various concentrations (0, 10, 20, 50 mM) of MG132 for 6 h. (G) HEK293 cells were transfected for 48 hours with
expression vectors encoding for 1 mg of V5-NCT and 3 mg of Flag-SGK1-CA. HEK293 cells were treated with various concentrations (0, 2, 5, 10 mM) of
Lactacystin for 6 h. (H) HEK293 cells were transfected for 48 hours with expression vectors encoding for 1 mg of V5-NCT and 3 mg of Flag-SGK1-CA.
HEK293 cells were treated with various concentrations (0, 50, 100, 200 mM) of Chloroquine for 6 h. The cell lysates were immunoblotted with anti-Flag
and anti-V5 antibodies. (A–H) These results represent one of three independent experiments. IB, Immunoblot.
doi:10.1371/journal.pone.0037111.g003

Figure 4. Induced SGK1 by dexamethasone downregulates the NCT protein levels. (A) HEK293 cells were transfected with expression
vectors encoding for 200 ng of C99-Gal4/VP16, 100 ng of GAL4-Luc with 100 ng of beta-galactosidase and exposed to 0.1, 1, 5 mM dexamethasone
for 24 hours. (B) HEK293 cells were transfected with expression vectors encoding for 200 ng of C99-Gal4/VP16, 100 ng of GAL4-Luc, 100 ng of beta-
galactosidase with 400 ng of siSGK1 and exposed to 1 mM dexamethasone for 24 hours. After 48 hours of transfection, the cells were lysed and the
luciferase activity was assayed. Data were normalized to beta-galactosidase activity. The results are expressed as the means 6 SEM from three
independent experiments. RLU means relative luciferase units. The data were evaluated for significant difference using the Student’s t-test; ANOVA,
*P,0.05, ** P,0.001. (C) HEK293 cells were transfected for 48 hours with expression vectors encoding for 1 mg of V5-NCT and exposed to 0.1, 1 and
5 mM dexamethasone for 24 hours. (D) HEK293 cells were transfected for 48 hours with expression vectors encoding for 1 mg of V5-NCT and 2 mg of
si-SGK1and exposed to 5 mM dexamethasone for 24 hours. The cell lysates were immunoblotted with anti-V5 and anti-SGK1 antibodies. NCT blots are
represented as short (SE) or long (LE) exposures. (E) HEK293 cells were transfected for 48 hours with expression vectors encoding for 1 mg of V5-NCT
and pretreated with 1 mM dexamethasone for 24 hours. The cells were pretreated with Dexamethasone. After incubation with 10 mMof Lactacystin or
200 mM of chloroquine for 6 hr, the cells were harvested and the cell lysates were immunoblotted with anti-V5 and anti-SGK1 antibodies. NCT blots
are represented as short (SE) or long (LE) exposures. (C–E) These results represent one of three independent experiments. RLU means relative
luciferase units. IB, Immunoblot.
doi:10.1371/journal.pone.0037111.g004
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Figure 5. NCT interacts directly with SGK1 in intact cells. (A) Recombinant GST or GST–SGK1 proteins were immobilized onto GSH-agarose.
HEK293 cells were transfected with an expression vector encoding for 2 mg of V5-NCT or an empty vector. After 48 hours of transfection, the cell
lysates were subjected to GST pull-down experiments with immobilized GST or GST–SGK1. Proteins bound to GST or GST–SGK1 was analyzed via
immunoblotting with an anti-V5 antibody. The input represents 1% of the cell lysate prior to in vitro binding assay. (B, C) HEK293 cells were
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the replacement of Ser437 of NCT with alanine. HEK293 cells

were cotransfected with vectors encoding for V5-tagged wild-type

NCT, V5-tagged NCT S437A point mutant, and Flag-tagged

SGK1, and the cells were then subjected to immunoblot analysis

(Fig. 6D). Immunoblot analysis from the transfected cells with a

phospho-Ser/Thr antibody revealed that only the V5-tagged wild-

type NCT was phosphorylated by Flag-SGK1 in the cells.

Considering our results implicating NCT Ser437 as the possible

phosphorylation site for SGK1, we subsequently attempted to

ascertain whether NCT (S437A) is resistant to SGK1-induced

degradation, which would imply that the SGK1-induced phos-

phorylation of NCT is crucial for the degradation of the NCT

protein. Immunoblot analysis revealed that NCT Ser437 is

resistant to SGK1-induced degradation (Fig. 6D). We then

characterized, via coimmunoprecipitation, the involvement of

phosphorylation in the physical association between APP and

NCT. HEK293 cells were cotransfected with vectors coding for

Myc-tagged APP, Flag-tagged SGK1, V5-tagged NCT, and V5-

tagged NCT (S437A) and were then subjected to coimmunopre-

cipitation analysis. Immunoblot analysis of the Myc immunopre-

cipitates from the cells transfected showed that SGK1 does not

prevent the physical association between APP and NCT (S437A)

in the cells (Fig. 6E). Next, we examined whether SGK1 kinase

activity could influence gamma-secretase complex formation

(Fig. 6F), we transfected PS1, Pen-2, NCT and APH1 with

SGK1 mutant. Coimmunoprecipitation analysis indicated that

gamma-secretase complex formation was effectively suppressed by

SGK1-CA, but no SGK1-DN. These results indicate that the

phosphorylation of NCT by SGK1 is critically important for its

ability to bind to APP due to the degradation of NCT protein.

Discussion

In this study, we provide the first evidence for a role of SGK1 as

endogenous negative regulator of gamma-secretase activity. We

further reveal that the kinase activity of SGK1 is essential for

SGK1 dependent regulation of gamma-secretase. We demonstrate

that SGK1 physically interacts with and phosphorylates NCT and

promotes NCT protein degradation via proteasomal and lyso-

somal pathways. These results provide unequivocal evidence for

the involvement of SGK1 in the signaling downregulation of

gamma-secretase activity.

NCT is a protein that is part of the gamma-secretase protein

complex, along with Presenilin, APH-1, and PEN2 [1]. NCT itself

is not catalytically active, but functions as a docking site for

gamma-secretase substrates [1,18]. This study attempted to

investigate in greater detail the mechanisms underlying the

SGK1-induced modulation of gamma-secretase-dependent APP

cleavage. Several recent studies have reported that post-transla-

tional NCT modifications, such as glycosylation, palmitoylation,

and phosphorylation, are critically important for the regulation of

NCT protein stability [29,33,34,60]. NCT is a highly unstable

protein, and is degraded via both the proteasomal and lysosomal

pathways [31].

Our results revealed that the inhibitory mechanism functioned

via the suppression of the interaction of NCT and APP by the

downregulation of NCT protein stability; it also appears to be

dependent on the kinase activity of SGK1, and independent of

GSK-3beta. We determined that SGK1 stimulated the proteaso-

mal degradation of ectopically-expressed NCT, and the reduction

of endogenous NCT by SGK1 was also identified as a proteasome-

dependent and lysosome-dependent regulatory activity; this

indicates that SGK1 modulates gamma-secretase activity by

regulating the protein stability of its components. Moreover, when

SGK1 activity was inhibited, gamma-secretase activity increased

dramatically in cultured cells, including the wild-type or SGK2/2

MEF cells. SGK1 activity was disrupted by either blockage of

SGK1 expression by small RNA interference or by expression of

the dominant-negative mutant SGK1. Under both conditions, the

gamma-secretase activity was markedly enhanced. On the other

hand, when SGK1 was activated by dexamethasone treatment,

the gamma-secretase activity in those cells was reduced substan-

tially.

The phosphorylation of NCT by ERK1/2, JNK, and possibly

by certain other kinases regulates its gamma-secretase activity in

either a positive or negative direction [33,34]. However, little is

currently known regarding any other protein kinase(s) that may

participate in NCT turnover. SGK1 preferentially phosphorylates

serine and threonine residues that lie within an Arg-Xaa-Arg-Xaa-

Xaa-(Ser/Thr) motif [39]. NCT harbors a single phosphorylation

consensus sequence for SGK1. SGK1 not only physically interacts

with NCT, but also phosphorylates NCT both in vitro and in intact

cells. Indeed, the results of site-specific mutagenesis demonstrated

that SGK1 mediates the phosphorylation of NCT on Ser437, and

that this phosphorylation is required for the SGK1-mediated

inhibition of NCT. The negative regulation of NCT by SGK1 is

further corroborated by our observation that endogenous SGK1,

when activated, interacts directly with endogenous NCT in intact

cells. Furthermore, we demonstrated that SGK1-mediated NCT

phosphorylation on Ser437 results in an increase in the

degradation of the NCT protein. Moreover, we determined that

SGK1 negatively regulates gamma-secretase activity. Therefore,

the interaction between NCT and SGK1 may be one mechanism

underlying SGK1-mediated NCT phosphorylation and the

proteasomal and lysosomal degradation of NCT (Fig. 7).

SGK1 is known to mediate the intracellular signaling pathway

for ion channel conductance, cell volume, and cell survival

[36,37,38]. Our previous study showed that SGK1 might regulate

the stability of the Notch1-IC protein through Fbw7 E3 ligase

[43]. In this study, we found that SGK1 directly form a complex

with NCT in the ER and accelerating the degradation of NCT by

transfected with expression vectors encoding for 2 mg of V5-NCT and 2 mg of Flag-SGK1 as indicated. (B) After 48 hours, the cell lysates were
subjected to immunoprecipitation (IP) with anti-Flag. The immunoprecipitates were then immunoblotted (IB) with anti-V5. (C) Cell lysates were
subjected to immunoprecipitation with an anti-V5 antibody, and the immunoprecipitates were immunoblotted with an anti-Flag antibody. (D) MEF
cells from SGK1+/+ and SGK12/2 mice were lysed and subjected to immunoprecipitation with immunoglobulin G (IgG) and anti-SGK1 antibodies as
indicated. Immunoprecipitates were immunoblotted with an anti-NCT antibody. (E) Rat fibroblast Rat2 cells expressing either control siRNA or rSGK1
siRNA were left untreated or treated with 1 mM dexamethasone for 24 hours. Rat fibroblast Rat2 cells expressing either control siRNA or rSGK1 siRNA
were lysed and subjected to immunoprecipitation with anti-SGK antibody. Immunoprecipitates were immunoblotted with an anti-NCT antibody. (F,
G) MEF from SGK1+/+, SGK12/2 mice or HEK293 cells or were stained with Alexa 488 (green) and Alexa 546 (red) and examined by confocal
microscopy. The DNA dye ToPro3 was used to visualize nuclei of all cells. For each experiment, at least 200 cells were examined, and the figures
shown here represent the typical staining pattern for a majority of cells and quantify the fold enrichment at the indicated region (white box). (H)
HEK293 cells were transfected for 48 hours with expression vectors encoding for 1 mg of NCT, NCT-ER, NCT-TGN and 2 mg of Flag-SGK1. The cell
lysates were immunoblotted with anti-Flag, and anti-NCT antibodies. (A–E, H) The cell lysates were also subjected to immunoblotting analysis with
the indicated antibodies. These results represent one of three independent experiments. IB, Immunoblot. IP, Immunoprecipitation.
doi:10.1371/journal.pone.0037111.g005
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Figure 6. SGK1 phosphorylates NCT on Ser437, which facilitates degradation of NCT. (A) HEK293 cells were transfected with expression
vectors encoding for 2 mg of V5-NCT, 4 mg of Flag-SGK1-CA, or Flag-SGK1-DN. After 48 hours of transfection, the cell lysates were subjected to
immunoprecipitation with anti-V5 antibody. The immunoprecipitates were immunoblotted with anti-phospho Ser/Thr antibody. (B) HEK293 cells
were transfected with expression vectors encoding for 2 mg of V5- NCT, then treated with 1 mM dexamethasone for 24 hours. After 48 hours of
transfection the cell lysates were subjected to immunoprecipitation with anti-V5 antibody. The immunoprecipitates were immunoblotted with anti-
phospho Ser/Thr antibody. (C) MEF cells from SGK1+/+ and SGK12/2 mice were treated with 1 mM dexamethasone for 24 hours. The cell lysates were
subjected to immunoprecipitation with an anti-NCT antibody, and the immunoprecipitates were immunoblotted with anti-phospho Ser/Thr
antibody. (D) HEK293 cells were transfected with expression vectors encoding for 2 mg of V5-NCT (WT, S437A), 6 mg of Flag-SGK1-CA. After 48 hours
of transfection, the cell lysates were subjected to immunoprecipitation with anti-V5 antibody. The immunoprecipitates were immunoblotted with
anti-phospho Ser/Thr antibody. (E) HEK293 cells were transfected for 48 hours with expression vectors encoding for the indicated combinations of
2 mg of V5-NCT, 2 mg of V5-NCT (S437A), 2 mg of APP-Myc, and 4 mg of Flag-SGK1-CA. Cell lysates were subjected to immunoprecipitation with an
anti-Myc antibody (9E10), and the immunoprecipitates were immunoblotted with an anti-V5 antibody. (F) HEK293 cells were transfected for 48 hours
with expression vectors encoding for the indicated combinations of 2 mg of V5-NCT, 2 mg of Flag-SGK1 CA, 2 mg of Flag-SGK1 DN, 2 mg of HA-PS1,
2 mg of HA-Pen2, and 2 mg of HA-APH-1. Cell lysates were subjected to immunoprecipitation with an anti-V5 antibody, and the immunoprecipitates
were immunoblotted with an anti-HA antibody. (A–F) The cell lysates were also subjected to immunoblotting analysis with the indicated antibodies.
These results represent one of three independent experiments. IB, Immunoblot. IP, Immunoprecipitation.
doi:10.1371/journal.pone.0037111.g006
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means of phosphorylation, thereby act as an ectodomain kinase of

NCT. Previous reports have shown that SGK1 isoforms localize to

the luminal side of ER and degraded by the ERAD system in ER,

and have the highest level of expression, and their abundance in

the ER is regulated by conditions that activate the unfolded

protein response (UPR) [57,58,59], suggesting that SGK1 can

meet their substrates in the ER. NCT translocation occurs through

from ER to Golgi and ectodomain of NCT located in the luminal

side of ER [52,53,54,55]. Therefore, SGK1 could bind and

phosphorylate immature form of NCT ectodomain in the ER.

These events fail to catalyze proteolytic conversion of APP and

Notch1 into AICD and Notch1-IC, respectively. Therefore, we

could suggest the dual regulation of the proteasomal degradation

of Notch1-IC by SGK1 via suppression of gamma-secretase and

activation of Fbw7 E3 ligase. However, some part of APP and

Notch1 could convert into AICD and Notch1-IC via escape from

SGK1. We also found that AICD performs the function of a

negative regulator in Notch1 signaling by the promotion of

Notch1-IC and RBP-Jk protein degradation [61]. The results of

this study suggest that SGK1 plays a unique and pivotal role in

reducing gamma-secretase activity. Because the activation of

SGK1 attenuates gamma-secretase activity, it is expected to

reduce Notch1-IC, APP intracellular domain (AICD) and Abeta

generation. Therefore, SGK1 may perform dual roles–activating

cell survival signals and suppressing Notch1-IC, AICD and Abeta

generation.

Hence, the activation of SGK1 might lead to the attenuation of

AICD and Abeta-induced neuronal cell death along with other

types of brain damage caused by amyloid plaques, such as glial

inflammation. Further studies to determine in more detail the

relationship between SGK1 and the generation of AICD and

Abeta are clearly warranted, and could greatly improve our

current understanding of the pathogenesis of AD.

Materials and Methods

Cell Culture and Transfection
Human embryonic kidney (HEK) 293 cells (ATCC No. CRL-

1573) were grown in Dulbecco’s Modified Eagle’s Medium

(DMEM) supplemented with 10% bovine calf serum (BCS),

penicillin (100 U/ml), and streptomycin (100 mg/ml) [43]. Along

with the HEK293 cells, Rat fibroblast Rat2 cells expressing either

Figure 7. Proposed model for the role of SGK1 in the regulation of NCT protein level. Proteolytic processing of amyloid precursor protein
(APP) by the two proteases beta and gamma-secretase controls the generation of the amyloid peptide (Abeta) and the APP intracellular domain. The
gamma-secretase complex consists of four essential proteins: presenilin (PS1 or PS2), PEN-2, APH-1 and the nicastrin (NCT). The NCT glycosylation has
central role in gamma-secretase assembly and substrate binding. In the glucocorticoid stimulation of SGK expression and activation via
glucocorticoid receptor (GR), the immature form of NCT is directly bind and phosphorylated by SGK1, which initiated proteasomal and lysosomal
mediated degradation of NCT. Therefore, SGK1 plays a unique and pivotal role in reducing gamma-secretase activity through phosphorylation
dependent regulation of NCT protein degradation.
doi:10.1371/journal.pone.0037111.g007
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control siRNA or rSGK1 siRNA and Mouse embryonic fibroblasts

(MEFs) cells from wild-type or SGK12/2 mice [62] were cultured

in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented

with 10% fetal bovine serum, penicillin (100 U/ml), and

streptomycin (100 mg/ml). For transfection with plasmid DNA,

the cells were plated at a density of 26106 cells/100-mm dish,

grown overnight, then transfected with the appropriate expression

vectors in the presence of the indicated combinations of plasmid

DNAs, via the calcium phosphate and liposome method [63].

Luciferase reporter assay to determine the gamma-
secretase activity

The luciferase reporter plasmids were under the control of the

Gal4-luciferase reporter plasmid, in either the absence or presence

of combinations of expression vectors along with b-galactosidase,

in 12-well plates. After 48 hours of transfection, the cells were

lysed with chemiluminescent lysis buffer, and were analyzed using

a Luminometer (Berthold) for the luciferase assays. The luciferase

reporter activity in each sample was normalized in accordance

with the beta-galactosidase activity, which had been pre-measured

in the samples. For each well of the 12-well pates, C99-GVP, pFR-

Luc, beta-galactosidase and absence or presence of combinations

of expression vectors were mixed with LipifectAMINE according

to the recommendation of the manufacturer (Invitirogen)

[45,46,47]. After 48 hours of transfection, the cells were lysed

with chemiluminescent lysis buffer (18.3% of 1 M K2HPO4, 1.7%

of 1 M KH2PO4, 1 mM phenylmethyl sulfonyl fluoride (PMSF),

and 1 mM dithiothreitol (DTT)). Cell lysates assayed for luciferase

activity using a luciferase assay kit (Promega) and were analyzed

using a Luminometer (Berthold) for the luciferase assays. The

luciferase reporter activity in each sample was normalized in

accordance with the beta-galactosidase activity, which had been

pre-measured in the samples.

Western blot analysis
After 48 h of transfection, the cultured HEK293 cells were

harvested and lysed for 30 min in RIPA buffer (50 mM Tris–HCl

(pH 7.5), 150 mM NaCl, 1% Nonidet P-40, 0.5% Sodium

deoxycholate, 0.1% SDS, 1 mM PMSF, 1 mM DTT, and 2 mg/

ml leupeptin and aprotinin). The cell lysates were subjected to

20 min of centrifugation at 12,0006 g at 4uC. The resultant

soluble fraction was then boiled in Laemmli buffer and subjected

to SDS–PAGE. After gel electrophoresis, the separated proteins

were transferred via electroblotting onto polyvinylidene difluoride

(PVDF) membranes (Millipore). The membranes were then

blocked with Tris-buffered saline solution (pH 7.4) containing

0.1% Tween 20 and 5% nonfat milk. The blotted proteins were

probed with anti-Myc antibody (9E10), anti-HA (12CA5)

antibody, or anti-Flag M2 antibody (Sigma Chemical Co.),

followed by incubation with anti-mouse horseradish peroxidase-

conjugated secondary antibodies (Amersham Biosciences, Inc.).

The blots were then developed with an enhanced chemilumines-

cence (ECL) system (Pierce).

Coimmunoprecipitation Assays
The cells were lysed in 1 ml of RIPA buffer for 30 minutes at

4uC. After 20 minutes of centrifugation at 12,0006 g, the

supernatants were subjected to immunoprecipitation with the

appropriate antibodies coupled to protein A-agarose beads. The

resultant immunoprecipitates were then washed three times in

phosphate-buffered saline (PBS, pH 7.4). Laemmli sample buffer

was added to the immunoprecipitated pellets and the pellets were

heated for 5 minutes at 95uC, and then subjected to SDS-PAGE

analysis. Western blotting was conducted with the indicated

antibodies.

In vitro binding assay
The recombinant GST-SGK1 protein was expressed in

Escherichia coli strain BL21, using the pGEX system as indicated.

The GST- SGK1 protein was then purified with glutathione-

agarose beads (Sigma), in accordance with the manufacturer’s

instructions. Equal quantities of GST or GST- SGK1 fusion

proteins were incubated with the lysates of HEK293 cells, which

had been transfected for 3 hours with combinations of expression

vectors at 4uC, with rotation. After incubation, the beads were

washed three times in ice-cold PBS, and boiled in 20 ml of

Laemmli sample buffer. The precipitates were then separated via

SDS-PAGE, and the pull-down proteins were detected via

immunoblotting with specific antibodies.

Immunofluorescence staining
Assays were conducted as with HEK293 cells plated at 16105

cells per well onto cover slips (Fisher). The cultured cells were fixed

with 4% paraformaldehyde in phosphate-buffered saline (PBS),

and then permeabilized with 0.1% Triton-X 100 in PBS. Cells

were blocked in 1% BSA in PBS. Anti-SGK1 antibody (Cell

signaling) and anti-NCT antibody (Calbiochem) were employed as

the primary antibodies at a dilution of 1:100, washed twice in PBS.

Alexa-488 (Invitrogen) conjugated anti-mouse or Alexa-546

conjugated anti-rabbit secondary antibody (1:100) was added,

and then the DNA dye ToPro3 was used for nuclear localization.

The stained cells were evaluated for localization via confocal

microscopy (LeicaTCS SPE). Each image is a single Z section at

the same cellular level. The final images were obtained and

analyzed using confocal microscopy with LAS AF software (Leica).

Scale bars represent 25 mm as indicated.

Site-directed mutagenesis
Site-directed mutagenesis of NCT cDNA was conducted using a

Quick Change kit (Stratagene), and the mutagenic primers were

S437A (59-CTTCGAGCTCGAAACATCgGCTGGCGTTGT-

TCTG-39) (mismatches with the NCT cDNA template was

indicated by lowercase letters). The mutations were verified via

automatic DNA sequencing.
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