ISSN 1600-5368

Bis(2,5-dihydroxybenzoato- κ O)bis(1,10phenathroline- $\kappa^2 N, N'$)cadmium(II) 1.25hydrate

Bing-Yu Zhang, Jing-Jing Nie and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China Correspondence e-mail: xudj@mail.hz.zj.cn

Received 26 May 2008; accepted 15 June 2008

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.006 Å; disorder in solvent or counterion; R factor = 0.043; wR factor = 0.092; data-to-parameter ratio = 13.9.

In the crystal structure of the title compound, $[Cd(C_7H_5O_4)_2-(C_{12}H_8N_2)_2]\cdot 1.25H_2O$, the Cd^{2+} cation is coordinated by two phenanthroline (phen) molecules and two 2,5-dihydroxybenzoate (dhba) anions in a distorted octahedral geometry. The centroid–centroid distances of 3.809 (2) and 3.680 (2) Å between nearly parallel pyridine rings of the phen ligands and the benzene rings of dhba anions indicate that the dhba anions are involved in π - π stacking in the crystal structure. The faceto-face separation of 3.35 (3) Å between parallel phen ring systems also suggests π - π stacking between adjacent complex molecules. The crystal structure contains extensive $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonding.

Related literature

For general background, see: Su & Xu (2004); Li *et al.* (2005). For a related structure, see: Huang *et al.* (2006).

OH

OH

· 1.25 H₂O

Crystal data	
$Cd(C_7H_5O_4)_2(C_{12}H_8N_2)_2] \cdot 1.25H_2O$	a = 10.8992 (18) Å
$M_r = 801.55$	b = 27.300 (2) Å
Monoclinic, $P2_1/n$	c = 11.4218 (12) Å

HC

 $\beta = 93.700 \ (6)^{\circ}$ $V = 3391.5 \ (7) \ Å^3$ Z = 4Mo $K\alpha$ radiation

Data collection

Rigaku R-AXIS RAPID IP
diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\min} = 0.875, \ T_{\max} = 0.928$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.092$ S = 1.036639 reflections

478 parameters H-atom parameters constrained
$$\begin{split} &\Delta \rho_{max} = 0.53 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{min} = -0.51 \text{ e } \text{\AA}^{-3} \end{split}$$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W-H1A\cdots O1$	0.94	2.09	2.974 (6)	155
$O1W - H1B \cdots O6$	0.92	2.03	2.892 (6)	155
$O2W - H2A \cdots O2$	0.88	1.99	2.869 (18)	175
$O2W - H2B \cdots O8^{i}$	0.86	2.42	3.28 (2)	173
$O3-H3A\cdots O2$	0.82	1.81	2.540 (3)	147
$O4-H4A\cdots O7^{ii}$	0.82	2.09	2.877 (3)	160
$O7 - H7A \cdots O6$	0.82	1.82	2.546 (3)	147
$O8 - H8A \cdots O3^{iii}$	0.82	2.10	2.917 (4)	171
$C23 - H23 \cdots O1W^{iv}$	0.93	2.49	3.339 (6)	153
$C25 - H25 \cdots O6^{v}$	0.93	2.50	3.285 (5)	143
C30−H30···O1	0.93	2.56	3.155 (5)	122
C33-H33···O5	0.93	2.50	3.105 (5)	123
$C38 - H38 \cdot \cdot \cdot O2^{vi}$	0.93	2.36	3.182 (5)	147
$C42 - H42 \cdots O4^{vii}$	0.93	2.58	3.231 (5)	127

Symmetry codes: (i) x, y, z - 1; (ii) -x + 1, -y + 1, -z + 1; (iii) $x - \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (iv) x - 1, y, z; (v) -x, -y + 1, -z + 1; (vi) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (vii) -x + 1, -y + 1, -z.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2002); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The work was supported by the ZIJIN project of Zhejiang University, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2092).

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Huang, X., Xiao, L.-P. & Xu, D.-J. (2006). Acta Cryst. E62, m2246–m2248.
Li, H., Liu, J.-G. & Xu, D.-J. (2005). Acta Cryst. E61, m761–m763.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229.

 $\mu = 0.71 \text{ mm}^{-1}$ T = 295 (2) K

 $R_{\rm int} = 0.064$

 $0.20 \times 0.16 \times 0.12 \text{ mm}$

25199 measured reflections

6639 independent reflections 4509 reflections with $I > 2\sigma(I)$

Acta Cryst. (2008). E64, m937 [doi:10.1107/S1600536808018126]

Bis(2,5-dihydroxybenzoato-*KO*)bis(1,10-phenathroline-*K*²*N*,*N*')cadmium(II) 1.25-hydrate

B.-Y. Zhang, J.-J. Nie and D.-J. Xu

Comment

As part of investigation on the nature of π - π stacking between aromatic rings (Su & Xu, 2004; Li *et al.*, 2005), the title complex recently has been prepared and its crystal structure is reported here.

The molecular structure of the title compound is shown on Fig. 1. The Cd²⁺ cation is coordinated by two phenanthroline (phen) ligands and two 2,5-dihydroxybenzoate (dhba) anions with a distorted octahedral geometry. The centroid-to-centroid distance of 3.809 (2)Å between nearly parallel N1-pyridine and C2ⁱ-benzene rings (dihedral angle 4.89 (17)°; symmetry code: (i) *x*-1, *y*, *z*) and the centroid-to-centroid distance of 3.680 (2)Å between nearly parallel N4-pyridine and C12ⁱⁱ-benzene rings (dihedral angle 5.33 (11)°; symmetry code: (ii) *x*, *y*, *z*-1) indicate that dhba anions are involved in π - π stacking in the crystal structure (Fig. 2), which agrees with the situation found in the 3,5-dihydroxybenzoate complex of Cu²⁺ (Huang *et al.*, 2006). The face-to-face separation of 3.35 (3)Å suggests the existence of π - π stacking between parallel C31-phen and C31ⁱⁱⁱ-phen ring systems (Fig. 3) (symmetry code: (iii) *-x*, 1*-y*, 1*-z*). The crystal structure contains extensive O–H···O and C–H···O hydrogen bonding (Table 1).

Experimental

 $Cd(NO_3)_2$ $^{-4}H_2O$ (0.31 g, 1 mmol), dhba (0.31 g, 2 mmol), phen (0.36 g, 2 mmol) and Na_2CO_3 (0.10 g, 1 mmol) were dissolved in a water-ethanol mixture (20 ml, 2:1). The solution was refluxed for 2 h. After cooling to room temperature the solution was filtered. Single crystals of the title compound were obtained from the filtrate after 4 weeks.

Refinement

The site occupancy factor of the O2W water molecule was initially refined and converged to 0.28, and fixed as 0.25 at final cycles of refinemens. Water H atoms were placed in chemical sensible positions and refined in riding mode with $U_{iso}(H) = 1.5U_{eq}(O)$. Other H atoms were placed in calculated positions with C–H = 0.93Å and O–H = 0.82Å, and refined in riding mode with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}U(O)$.

Figures

Fig. 1. The molecular structure of the title compound with the numbering scheme. The displacement ellipsoids are drawn at 40% probability level. H atoms are presented as a small spheres of arbitrary radius. Dashed lines indicate hydrogen bonding.

Fig. 2. A diagram showing π - π stacking between phen and dhba (symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*, *y*, *z*-1).

Fig. 3. A diagram showing π - π stacking between phen ligands (symmetry code: (iii) -x, 1-y, 1-

Bis(2,5-dihydroxybenzoato- κO)bis(1,10-phenathroline- $\kappa^2 N$, N')cadmium(II) 1.25-hydrate

Crystal data	
$[Cd(C_7H_5O_4)_2(C_{12}H_8N_2)_2]$ ·1.25H ₂ O	$F_{000} = 1626$
$M_r = 801.55$	$D_{\rm x} = 1.570 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 6929 reflections
a = 10.8992 (18) Å	$\theta = 2.2 - 25.5^{\circ}$
b = 27.300 (2) Å	$\mu = 0.71 \text{ mm}^{-1}$
c = 11.4218 (12) Å	T = 295 (2) K
$\beta = 93.700 \ (6)^{\circ}$	Prism, colourless
V = 3391.5 (7) Å ³	$0.20 \times 0.16 \times 0.12 \text{ mm}$
Z = 4	

Data collection

Rigaku R-AXIS RAPID IP diffractometer	6639 independent reflections
Radiation source: Fine-focus sealed tube	4509 reflections with $I > 2\sigma(I)$
Monochromator: Graphite	$R_{\rm int} = 0.064$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\text{max}} = 26.0^{\circ}$
T = 295(2) K	$\theta_{\min} = 1.5^{\circ}$
ω scans	$h = -13 \rightarrow 13$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -33 \rightarrow 31$
$T_{\min} = 0.875, \ T_{\max} = 0.928$	$l = -8 \rightarrow 14$
25199 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: Difmap
Least-squares matrix: Full	Hydrogen site location: Geom
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$m R(E^2) = 0.002$	$w = 1/[\sigma^2(F_0^2) + (0.0349P)^2]$
WR(F) = 0.092	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\text{max}} = 0.001$
6639 reflections	$\Delta \rho_{max} = 0.53 \text{ e} \text{ Å}^{-3}$
478 parameters	$\Delta \rho_{min} = -0.51 \text{ e } \text{\AA}^{-3}$
Primary atom site location: Direct	Extinction correction: none

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Cd	0.27239 (2)	0.627675 (9)	0.32033 (2)	0.03808 (10)	
N1	0.0736 (3)	0.61272 (10)	0.3827 (3)	0.0437 (8)	
N2	0.2176 (3)	0.54243 (10)	0.2903 (3)	0.0426 (7)	
N3	0.2325 (3)	0.71386 (10)	0.2909 (3)	0.0409 (7)	
N4	0.1908 (2)	0.64287 (10)	0.1245 (3)	0.0373 (7)	
01	0.4520 (2)	0.60327 (9)	0.2586 (2)	0.0554 (7)	

O2	0.5248 (2)	0.67858 (9)	0.2365 (2)	0.0590 (8)	
O3	0.7449 (2)	0.69059 (9)	0.1815 (2)	0.0618 (8)	
H3A	0.6784	0.6982	0.2059	0.093*	
O4	0.7610 (2)	0.49241 (8)	0.0835 (2)	0.0627 (8)	
H4A	0.7009	0.4782	0.1067	0.094*	
O5	0.3253 (2)	0.65203 (10)	0.5037 (2)	0.0559 (7)	
O6	0.3497 (3)	0.57527 (10)	0.5661 (2)	0.0674 (8)	
07	0.4132 (2)	0.55776 (9)	0.7805 (2)	0.0625 (8)	
H7A	0.3931	0.5512	0.7119	0.094*	
08	0.3815 (3)	0.75593 (9)	0.8687 (3)	0.0688 (8)	
H8A	0.3502	0.7709	0.8122	0.103*	
O1W	0.5601 (4)	0.53969 (17)	0.4499 (5)	0.164 (2)	
H1A	0.5263	0.5510	0.3770	0.246*	
H1B	0.5107	0.5518	0.5061	0.246*	
O2W	0.4794 (19)	0.7748 (7)	0.1426 (18)	0.175 (8)	0.25
H2A	0.4951	0.7462	0.1748	0.262*	0.25
H2B	0.4471	0.7692	0.0728	0.262*	0.25
C1	0.5335 (3)	0.63324 (14)	0.2289 (3)	0.0428 (9)	
C2	0.6459 (3)	0.61142 (12)	0.1815 (3)	0.0374 (8)	
C3	0.7463 (3)	0.64152 (13)	0.1592 (3)	0.0438 (9)	
C4	0.8490 (3)	0.62084 (14)	0.1130 (3)	0.0527 (10)	
H4	0.9160	0.6405	0.0985	0.063*	
C5	0.8524 (3)	0.57144 (14)	0.0885 (3)	0.0532 (11)	
Н5	0.9217	0.5581	0.0573	0.064*	
C6	0.7541 (3)	0.54164 (13)	0.1099 (3)	0.0451 (9)	
C7	0.6515 (3)	0.56179 (12)	0.1553 (3)	0.0410 (9)	
H7	0.5848	0.5418	0.1687	0.049*	
C11	0.3464 (3)	0.62091 (14)	0.5830 (4)	0.0452 (10)	
C12	0.3709 (3)	0.63929 (12)	0.7055 (3)	0.0379 (9)	
C13	0.4065 (3)	0.60753 (13)	0.7972 (4)	0.0440 (9)	
C14	0.4356 (3)	0.62616 (15)	0.9088 (4)	0.0543 (10)	
H14	0.4607	0.6050	0.9695	0.065*	
C15	0.4274 (3)	0.67550 (15)	0.9302 (4)	0.0535 (10)	
H15	0.4482	0.6876	1.0049	0.064*	
C16	0.3888 (3)	0.70707 (13)	0.8417 (4)	0.0441 (9)	
C17	0.3611 (3)	0.68917 (12)	0.7302 (3)	0.0417 (9)	
H17	0.3354	0.7107	0.6705	0.050*	
C21	0.0050 (3)	0.64614 (15)	0.4309 (4)	0.0552 (11)	
H21	0.0377	0.6773	0.4431	0.066*	
C22	-0.1138 (4)	0.63710 (16)	0.4643 (4)	0.0647 (12)	
H22	-0.1592	0.6619	0.4968	0.078*	
C23	-0.1624 (4)	0.59145 (16)	0.4486 (4)	0.0614 (12)	
H23	-0.2415	0.5848	0.4702	0.074*	
C24	-0.0925 (3)	0.55470 (14)	0.3999 (3)	0.0490 (10)	
C25	-0.1337 (4)	0.50485 (16)	0.3857 (4)	0.0598 (12)	
H25	-0.2114	0.4964	0.4080	0.072*	
C26	-0.0631 (4)	0.47059 (16)	0.3413 (4)	0.0586 (11)	
H26	-0.0931	0.4388	0.3329	0.070*	
C27	0.0583 (4)	0.48147 (14)	0.3058 (3)	0.0491 (10)	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			· · ·	

C28	0.1355 (4)	0.44647 (14)	0.2590 (4)	0.0626 (12)
H28	0.1086	0.4144	0.2484	0.075*
C29	0.2502 (4)	0.45961 (14)	0.2292 (4)	0.0617 (12)
H29	0.3022	0.4368	0.1978	0.074*
C30	0.2876 (4)	0.50804 (13)	0.2466 (4)	0.0552 (11)
H30	0.3660	0.5167	0.2266	0.066*
C31	0.1027 (3)	0.52963 (13)	0.3183 (3)	0.0421 (9)
C32	0.0266 (3)	0.56682 (13)	0.3680 (3)	0.0417 (9)
C33	0.2558 (3)	0.74832 (14)	0.3709 (4)	0.0526 (10)
H33	0.2890	0.7391	0.4446	0.063*
C34	0.2328 (4)	0.79784 (15)	0.3495 (5)	0.0650 (13)
H34	0.2506	0.8211	0.4076	0.078*
C35	0.1838 (4)	0.81149 (14)	0.2419 (5)	0.0616 (12)
H35	0.1677	0.8444	0.2261	0.074*
C36	0.1574 (3)	0.77631 (13)	0.1546 (4)	0.0465 (10)
C37	0.1035 (4)	0.78818 (15)	0.0403 (4)	0.0587 (12)
H37	0.0841	0.8206	0.0220	0.070*
C38	0.0809 (3)	0.75324 (16)	-0.0406 (4)	0.0614 (12)
H38	0.0451	0.7617	-0.1139	0.074*
C39	0.1107 (3)	0.70333 (14)	-0.0161 (4)	0.0455 (10)
C40	0.0917 (3)	0.66543 (17)	-0.0998 (4)	0.0591 (11)
H40	0.0586	0.6725	-0.1750	0.071*
C41	0.1219 (3)	0.61860 (15)	-0.0698 (4)	0.0549 (11)
H41	0.1090	0.5933	-0.1236	0.066*
C42	0.1721 (3)	0.60929 (15)	0.0422 (4)	0.0496 (10)
H42	0.1942	0.5772	0.0608	0.060*
C43	0.1612 (3)	0.69012 (13)	0.0952 (3)	0.0386 (9)
C44	0.1847 (3)	0.72736 (13)	0.1834 (3)	0.0386 (9)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd	0.04016 (15)	0.03730 (16)	0.03675 (18)	-0.00085 (12)	0.00215 (11)	-0.00014 (13)
N1	0.0454 (17)	0.0433 (18)	0.043 (2)	-0.0004 (14)	0.0040 (15)	0.0050 (15)
N2	0.0491 (18)	0.0400 (17)	0.038 (2)	-0.0047 (14)	0.0013 (15)	0.0008 (15)
N3	0.0441 (17)	0.0397 (18)	0.039 (2)	-0.0014 (13)	0.0033 (15)	-0.0020 (16)
N4	0.0418 (16)	0.0407 (17)	0.0295 (18)	0.0013 (13)	0.0030 (14)	-0.0008 (15)
01	0.0436 (15)	0.0530 (16)	0.071 (2)	0.0009 (12)	0.0142 (14)	0.0005 (14)
O2	0.0641 (17)	0.0426 (16)	0.071 (2)	0.0051 (13)	0.0099 (15)	-0.0185 (14)
O3	0.0644 (18)	0.0385 (15)	0.083 (2)	-0.0101 (12)	0.0099 (16)	-0.0104 (14)
O4	0.0762 (19)	0.0411 (16)	0.073 (2)	0.0051 (13)	0.0205 (16)	-0.0073 (14)
O5	0.0759 (19)	0.0534 (17)	0.0372 (17)	-0.0074 (14)	-0.0060 (14)	0.0017 (14)
O6	0.101 (2)	0.0471 (17)	0.055 (2)	-0.0132 (15)	0.0091 (17)	-0.0127 (15)
O7	0.083 (2)	0.0428 (16)	0.062 (2)	0.0002 (14)	0.0042 (16)	0.0066 (14)
08	0.092 (2)	0.0461 (17)	0.067 (2)	-0.0010 (15)	-0.0033 (17)	-0.0163 (15)
O1W	0.106 (3)	0.200 (5)	0.191 (5)	0.021 (3)	0.043 (3)	0.052 (4)
O2W	0.22 (2)	0.158 (17)	0.144 (19)	0.026 (15)	-0.026 (16)	0.012 (14)
C1	0.042 (2)	0.049 (2)	0.037 (2)	0.0022 (18)	-0.0025 (17)	-0.0046 (19)

C2	0.0400 (19)	0.037 (2)	0.035 (2)	0.0011 (15)	0.0003 (17)	0.0003 (17)
C3	0.050 (2)	0.041 (2)	0.040 (3)	-0.0044 (16)	0.0013 (19)	0.0014 (17)
C4	0.047 (2)	0.054 (3)	0.058 (3)	-0.0085 (18)	0.012 (2)	0.009 (2)
C5	0.049 (2)	0.060 (3)	0.052 (3)	0.0049 (19)	0.014 (2)	0.001 (2)
C6	0.058 (2)	0.040 (2)	0.037 (2)	0.0063 (18)	0.0031 (19)	-0.0011 (18)
C7	0.042 (2)	0.039 (2)	0.042 (2)	-0.0003 (16)	0.0018 (18)	0.0032 (17)
C11	0.043 (2)	0.049 (3)	0.044 (3)	-0.0119 (17)	0.0054 (18)	-0.008 (2)
C12	0.0353 (19)	0.043 (2)	0.036 (2)	-0.0043 (15)	0.0035 (16)	0.0005 (17)
C13	0.048 (2)	0.039 (2)	0.046 (3)	-0.0022 (17)	0.0075 (19)	0.005 (2)
C14	0.057 (2)	0.060 (3)	0.046 (3)	-0.005 (2)	-0.003 (2)	0.014 (2)
C15	0.057 (2)	0.067 (3)	0.036 (3)	-0.009 (2)	0.002 (2)	-0.005 (2)
C16	0.048 (2)	0.045 (2)	0.039 (3)	-0.0036 (17)	0.0025 (19)	-0.005 (2)
C17	0.044 (2)	0.037 (2)	0.043 (3)	0.0012 (16)	0.0008 (18)	0.0035 (18)
C21	0.053 (2)	0.052 (2)	0.061 (3)	0.0064 (19)	0.010 (2)	0.006 (2)
C22	0.058 (3)	0.065 (3)	0.073 (3)	0.017 (2)	0.017 (2)	0.014 (2)
C23	0.045 (2)	0.083 (3)	0.057 (3)	0.010 (2)	0.012 (2)	0.024 (3)
C24	0.043 (2)	0.066 (3)	0.038 (2)	-0.0071 (19)	-0.0060 (19)	0.017 (2)
C25	0.049 (2)	0.080 (3)	0.049 (3)	-0.023 (2)	-0.007 (2)	0.020 (2)
C26	0.066 (3)	0.059 (3)	0.050 (3)	-0.027 (2)	-0.008 (2)	0.010 (2)
C27	0.063 (3)	0.046 (2)	0.036 (2)	-0.0118 (19)	-0.008 (2)	0.0047 (19)
C28	0.087 (3)	0.043 (2)	0.057 (3)	-0.012 (2)	-0.006 (3)	-0.001 (2)
C29	0.073 (3)	0.042 (2)	0.070 (3)	0.001 (2)	0.006 (2)	-0.007 (2)
C30	0.058 (2)	0.046 (2)	0.062 (3)	-0.0027 (19)	0.010 (2)	0.000 (2)
C31	0.049 (2)	0.044 (2)	0.032 (2)	-0.0084 (17)	-0.0033 (18)	0.0103 (18)
C32	0.042 (2)	0.054 (2)	0.029 (2)	-0.0024 (17)	-0.0011 (17)	0.0100 (18)
C33	0.055 (2)	0.048 (2)	0.055 (3)	-0.0009 (19)	0.001 (2)	-0.010 (2)
C34	0.069 (3)	0.045 (3)	0.081 (4)	0.000 (2)	0.005 (3)	-0.019 (3)
C35	0.054 (3)	0.036 (2)	0.095 (4)	0.0041 (18)	0.009 (3)	0.001 (3)
C36	0.036 (2)	0.043 (2)	0.061 (3)	0.0022 (17)	0.011 (2)	0.004 (2)
C37	0.050 (2)	0.049 (3)	0.078 (4)	0.0118 (19)	0.011 (2)	0.021 (3)
C38	0.051 (2)	0.076 (3)	0.058 (3)	0.010 (2)	0.006 (2)	0.030 (3)
C39	0.038 (2)	0.058 (3)	0.041 (3)	0.0046 (17)	0.0042 (18)	0.012 (2)
C40	0.051 (2)	0.088 (3)	0.039 (3)	-0.001 (2)	0.000 (2)	0.002 (3)
C41	0.054 (2)	0.070 (3)	0.041 (3)	-0.002 (2)	0.003 (2)	-0.010 (2)
C42	0.047 (2)	0.059 (3)	0.044 (3)	0.0043 (19)	0.006 (2)	-0.002 (2)
C43	0.0302 (18)	0.045 (2)	0.041 (2)	0.0007 (15)	0.0055 (17)	0.0082 (19)
C44	0.0310 (18)	0.043 (2)	0.043 (3)	0.0016 (15)	0.0098 (17)	0.0058 (19)

Geometric parameters (Å, °)

Cd—O1	2.225 (2)	C14—H14	0.9300
Cd—O5	2.237 (3)	C15—C16	1.374 (5)
Cd—N1	2.360 (3)	С15—Н15	0.9300
Cd—N4	2.389 (3)	C16—C17	1.379 (5)
Cd—N3	2.412 (3)	С17—Н17	0.9300
Cd—N2	2.422 (3)	C21—C22	1.396 (5)
N1—C21	1.322 (4)	C21—H21	0.9300
N1—C32	1.360 (4)	C22—C23	1.361 (5)
N2—C30	1.327 (4)	C22—H22	0.9300

N2—C31	1.358 (4)	C23—C24	1.397 (5)
N3—C33	1.325 (4)	С23—Н23	0.9300
N3—C44	1.353 (4)	C24—C32	1.410 (5)
N4—C42	1.319 (4)	C24—C25	1.439 (5)
N4—C43	1.366 (4)	C25—C26	1.332 (5)
O1—C1	1.270 (4)	С25—Н25	0.9300
O2—C1	1.245 (4)	C26—C27	1.440 (5)
O3—C3	1.364 (4)	С26—Н26	0.9300
ОЗ—НЗА	0.8200	C27—C28	1.402 (5)
O4—C6	1.380 (4)	C27—C31	1.405 (5)
O4—H4A	0.8200	C28—C29	1.364 (5)
O5—C11	1.252 (4)	C28—H28	0.9300
O6—C11	1.262 (4)	C29—C30	1.394 (5)
O7—C13	1.375 (4)	С29—Н29	0.9300
O7—H7A	0.8200	С30—Н30	0.9300
O8—C16	1.373 (4)	C31—C32	1.450 (5)
O8—H8A	0.8200	C33—C34	1.394 (5)
O1W—H1A	0.9410	С33—Н33	0.9300
O1W—H1B	0.9244	C34—C35	1.360 (6)
O2W—H2A	0.8772	С34—Н34	0.9300
O2W—H2B	0.8639	C35—C36	1.400 (5)
C1—C2	1.495 (5)	С35—Н35	0.9300
C2—C7	1.390 (4)	C36—C44	1.404 (5)
C2—C3	1.405 (5)	C36—C37	1.434 (6)
C3—C4	1.387 (5)	C37—C38	1.339 (6)
C4—C5	1.378 (5)	С37—Н37	0.9300
C4—H4	0.9300	C38—C39	1.424 (5)
C5—C6	1.380 (5)	С38—Н38	0.9300
С5—Н5	0.9300	C39—C43	1.399 (5)
C6—C7	1.377 (5)	C39—C40	1.414 (5)
С7—Н7	0.9300	C40—C41	1.358 (5)
C11—C12	1.494 (5)	C40—H40	0.9300
C12—C17	1.396 (4)	C41—C42	1.383 (5)
C12—C13	1.395 (5)	C41—H41	0.9300
C13—C14	1.390 (5)	C42—H42	0.9300
C14—C15	1.373 (5)	C43—C44	1.443 (5)
O1—Cd—O5	101.93 (10)	С16—С17—Н17	119.4
O1—Cd—N1	152.57 (10)	C12—C17—H17	119.4
O5—Cd—N1	87.41 (10)	N1—C21—C22	123.5 (4)
01—Cd—N4	92.14 (10)	N1—C21—H21	118.3
O5—Cd—N4	151.96 (10)	C22—C21—H21	118.3
N1—Cd—N4	91.11 (10)	C23—C22—C21	119.0 (4)
O1—Cd—N3	113.72 (9)	С23—С22—Н22	120.5
O5—Cd—N3	82.76 (10)	C21—C22—H22	120.5
N1—Cd—N3	92.88 (9)	C22—C23—C24	119.5 (4)
N4—Cd—N3	69.34 (10)	С22—С23—Н23	120.2
O1—Cd—N2	83.18 (9)	С24—С23—Н23	120.2
O5—Cd—N2	117.68 (10)	C23—C24—C32	118.0 (4)
N1—Cd—N2	69.74 (10)	C23—C24—C25	123.4 (4)

N4—Cd—N2	87.76 (10)	C32—C24—C25	118.6 (4)
N3—Cd—N2	151.29 (10)	C26—C25—C24	121.6 (4)
C21—N1—C32	118.0 (3)	С26—С25—Н25	119.2
C21—N1—Cd	124.1 (3)	С24—С25—Н25	119.2
C32—N1—Cd	117.9 (2)	C25—C26—C27	121.7 (4)
C30—N2—C31	117.9 (3)	С25—С26—Н26	119.1
C30—N2—Cd	126.2 (2)	С27—С26—Н26	119.1
C31—N2—Cd	115.9 (2)	C28—C27—C31	117.7 (4)
C33—N3—C44	118.5 (3)	C28—C27—C26	123.5 (4)
C33—N3—Cd	124.9 (3)	C31—C27—C26	118.8 (4)
C44—N3—Cd	116.6 (2)	C29—C28—C27	119.9 (4)
C42—N4—C43	117.3 (3)	С29—С28—Н28	120.1
C42—N4—Cd	125.3 (3)	С27—С28—Н28	120.1
C43—N4—Cd	117.5 (2)	C28—C29—C30	118.5 (4)
C1—O1—Cd	122.5 (2)	С28—С29—Н29	120.7
С3—О3—НЗА	109.5	С30—С29—Н29	120.7
C6—O4—H4A	109.5	N2—C30—C29	123.7 (4)
C11—O5—Cd	120.0 (2)	N2-C30-H30	118.2
С13—О7—Н7А	109.5	С29—С30—Н30	118.2
C16—O8—H8A	109.5	N2-C31-C27	122.3 (3)
H1A—O1W—H1B	106.5	N2—C31—C32	118.1 (3)
H2A—O2W—H2B	106.5	C27—C31—C32	119.5 (3)
O2—C1—O1	124.3 (3)	N1-C32-C24	122.0 (3)
O2—C1—C2	119.3 (3)	N1-C32-C31	118.3 (3)
O1—C1—C2	116.3 (3)	C24—C32—C31	119.8 (3)
C7—C2—C3	119.0 (3)	N3—C33—C34	122.9 (4)
C7—C2—C1	121.0 (3)	N3—C33—H33	118.5
C3—C2—C1	119.9 (3)	С34—С33—Н33	118.5
O3—C3—C4	119.3 (3)	C35—C34—C33	118.7 (4)
O3—C3—C2	121.5 (3)	С35—С34—Н34	120.7
C4—C3—C2	119.2 (3)	С33—С34—Н34	120.7
C5—C4—C3	120.6 (3)	C34—C35—C36	120.4 (4)
C5—C4—H4	119.7	С34—С35—Н35	119.8
С3—С4—Н4	119.7	С36—С35—Н35	119.8
C4—C5—C6	120.6 (3)	C35—C36—C44	117.1 (4)
С4—С5—Н5	119.7	C35—C36—C37	123.1 (4)
С6—С5—Н5	119.7	C44—C36—C37	119.8 (4)
C7—C6—C5	119.3 (3)	C38—C37—C36	120.9 (4)
C7—C6—O4	121.9 (3)	С38—С37—Н37	119.6
C5—C6—O4	118.8 (3)	С36—С37—Н37	119.6
C6—C7—C2	121.2 (3)	C37—C38—C39	121.1 (4)
С6—С7—Н7	119.4	С37—С38—Н38	119.4
С2—С7—Н7	119.4	С39—С38—Н38	119.4
O5-C11-O6	124.4 (4)	C43—C39—C40	117.2 (4)
O5-C11-C12	117.6 (3)	C43—C39—C38	119.7 (4)
O6—C11—C12	118.0 (4)	C40—C39—C38	123.1 (4)
C17—C12—C13	118.4 (3)	C41—C40—C39	119.7 (4)
C17—C12—C11	120.4 (3)	C41—C40—H40	120.2
C13—C12—C11	121.2 (3)	С39—С40—Н40	120.2

O7—C13—C14	118.5 (4)	C40—C41—C42	118.8 (4)
O7—C13—C12	121.7 (4)	C40—C41—H41	120.6
C14—C13—C12	119.8 (3)	C42—C41—H41	120.6
C15-C14-C13	120.6 (4)	N4—C42—C41	124.4 (4)
C15-C14-H14	119.7	N4—C42—H42	117.8
C13-C14-H14	119.7	C41—C42—H42	117.8
C14—C15—C16	120.3 (4)	N4—C43—C39	122.6 (3)
C14—C15—H15	119.8	N4—C43—C44	117.7 (3)
С16—С15—Н15	119.8	C39—C43—C44	119.7 (3)
C15—C16—O8	117.6 (4)	N3—C44—C36	122.4 (3)
C15—C16—C17	119.7 (4)	N3—C44—C43	118.8 (3)
O8—C16—C17	122.7 (4)	C36—C44—C43	118.8 (4)
C16—C17—C12	121.2 (3)		

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1W—H1A···O1	0.94	2.09	2.974 (6)	155
O1W—H1B…O6	0.92	2.03	2.892 (6)	155
O2W—H2A···O2	0.88	1.99	2.869 (18)	175
O2W—H2B···O8 ⁱ	0.86	2.42	3.28 (2)	173
O3—H3A…O2	0.82	1.81	2.540 (3)	147
O4—H4A···O7 ⁱⁱ	0.82	2.09	2.877 (3)	160
O7—H7A…O6	0.82	1.82	2.546 (3)	147
O8—H8A···O3 ⁱⁱⁱ	0.82	2.10	2.917 (4)	171
C23—H23…O1W ^{iv}	0.93	2.49	3.339 (6)	153
C25—H25····O6 ^v	0.93	2.50	3.285 (5)	143
С30—Н30…О1	0.93	2.56	3.155 (5)	122
С33—Н33…О5	0.93	2.50	3.105 (5)	123
C38—H38····O2 ^{vi}	0.93	2.36	3.182 (5)	147
C42—H42····O4 ^{vii}	0.93	2.58	3.231 (5)	127

Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y+1, -z+1; (iii) x-1/2, -y+3/2, z+1/2; (iv) x-1, y, z; (v) -x, -y+1, -z+1; (vi) x-1/2, -y+3/2, z-1/2; (vii) -x+1, -y+1, -z-1; (vii) x-1/2, -y+3/2, z-1/2; (vii) x-1/2, -y+3/2, -y+3/2; (

Fig. 1

Fig. 2

Fig. 3

