
Copyright © 2016  Korean Stroke Society
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which 
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

pISSN: 2287-6391 • eISSN: 2287-640538  http://j-stroke.org

Silent New Brain Lesions: Innocent Bystander or 
Guilty Party?
Eun-Jae Lee,a Dong-Wha Kang,a Steven Warachb

aDepartment of Neurology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea
bDepartment of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, USA

Correspondence: Dong-Wha Kang
Department of Neurology, Asan Medical 
Center, University of Ulsan, College of 
Medicine, 88 Olympic-ro 43-gil,  
Songpa-gu, Seoul 05505, Korea
Tel: +82-2-3010-3440 
Fax: +82-2-474-4691
E-mail: dwkang@amc.seoul.kr

Received: August 24, 2015
Revised: September 12, 2015
Accepted: September 14, 2015

This research was supported by the 
National Research Foundation of Korea 
Grant NRF-2014R1A2A1A11051280 funded 
by the Korea government, and the Korea 
Health Technology R&D Project, Ministry 
for Health & Welfare, Republic of Korea 
Grants HI12C1847 and HI14C1983. 

The authors have no financial conflicts of 
interest. 

With the advances in magnetic resonance imaging, previously unrecognized small brain le-
sions, which are mostly asymptomatic, have been increasingly detected. Diffusion-weighted 
imaging can identify small ischemic strokes, while gradient echo T2* imaging and suscepti-
bility-weighted imaging can reveal tiny hemorrhagic strokes (microbleeds). In this article, 
we review silent brain lesions appearing soon after acute stroke events, including silent new 
ischemic lesions and microbleeds appearing 1) after acute ischemic stroke and 2) after acute 
intracerebral hemorrhage. Moreover, we briefly discuss the clinical implications of these si-
lent new brain lesions.
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Review

Introduction 

Although most strokes are considered a single event, subse-
quent strokes may follow shortly after an acute stressful event 
such as ischemic or hemorrhagic stroke. Remarkably, in many 
cases, such subsequent strokes after acute index events are as-
ymptomatic. These silent new brain lesions can be demonstrat-
ed by diffusion-weighted imaging (DWI) and gradient echo 
T2* imaging (GRE) or susceptibility-weighted imaging. Al-
though the name suggests clinically silent behaviors, their clini-
cal importance remains controversial. While some researchers 
consider only clinically obvious stroke as clinically important,1 
others have associated silent new brain lesions with future 
strokes or possible harmful effects on the brain function. 

In this article, we aim to review silent new brain lesions in 

terms of their incidence, associated factors, mechanisms, and 
clinical implications. As both ischemic and hemorrhagic (mi-
crobleeds) strokes can appear as silent new brain lesions, this 
narrative review categorized silent new lesions into two groups: 
silent new ischemic lesions (SNILs) and silent new micro-
bleeds (SNMs). 

SNILs 
 
SNILs after acute ischemic stroke 

As mortality is increased in stroke patients with early recur-
rence,2,3 efforts have been made to identify patients at high risk 
of recurrence. To identify these patients in the early phase of the 
index stroke, DWI, which is the most sensitive imaging method 
for detecting hyperacute ischemic stroke,4,5 has been rigorously 
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used to detect early recurrent ischemic lesions.

Definition and incidence
SNILs can be arbitrarily divided into early and late SNILs 

based on the time of magnetic resonance imaging (MRI). Early 
SNILs are usually defined as a new lesion on 5-day to 7-day 
DWI outside the region of the acutely symptomatic lesion (Ta-
ble 1).6-14 Early SNILs are reportedly found in 24.2%-34.3% of 
patients with acute ischemic stroke,6-11 while higher rates have 
been reported in patients with large artery atherosclerosis13,14 or 
in those receiving thrombolysis.12 These rates of early SNILs 
largely exceed those of clinical evident recurrence, of which the 
cumulative rates have been reported to be 2% within 1 week15 
and 1.6%-8% in 90 days.16-18 Accordingly, the majority of early 
SNILs are asymptomatic.6-10,13 

Late SNILs occurring at a subacute stage have also been mea-
sured in several studies using DWI and fluid attenuated inver-
sion recovery imaging at 30 or 90 days after the index stroke.7,8 
In these studies, the incidence of late SNILs was reported as 
22.1%-26.3%, which is lower than that of early SNILs. Howev-
er, the majority of late SNILs are also asymptomatic.

Characteristics 
SNILs after acute ischemic stroke can be further categorized 

into two groups based on their locations, namely “local” or “dis-
tant” lesion recurrence according to whether a new lesion oc-
curs within or outside the territory of initial perfusion deficit 
(Figures 1 and 2).6,7 In early SNILs, the proportion of local le-
sion recurrence is slightly higher than that of distant lesion re-
currence (44.4%-51.9% vs. 44.1%-47.1%). On the contrary, in 
late SNILs, local lesion recurrence is less frequent than distant 
lesion recurrence (23.8% vs. 76.2%).7

Table 1. New ischemic lesions after acute ischemic stroke and minor stroke or TIA					   

Author Time of follow-up MRI No. of patients Incidence of SNILs Asymptomatic Factors associated with new ischemic lesions*

Kang6 Within 1 week 99 34 (34.3%) 32 (94.1%) Initial multiple DWI lesions
Kang7 Early: 5 days

Late: 30/90 days
80 Early: 27 (33.8%)

Late: 21 (26.3%)
Early: 25 (92.6%)
Late: 18 (85.7%)

Early lesion recurrence (for late lesion recurrence)
 

Kang8 Early: 5 days
Late: 30/90 days

104 Early: 35 (33.7%)
Late: 15 (22.1% of 68)

Early: 35 (100%)
Late: 10 (66.7%)

Nolte9 2nd: < 48 hours 
3rd: 5/6 days

159 46 (28.9%) 42 (91.3%) Carotid stenosis > 50%
Recanalization
Multiple lesion pattern

Kang10 5 days 153 37 (24.2%) 35 (94.6%) Initial multiple DWI lesions
Large artery atherosclerosis
Log D-dimer

Jeon11 7 days 117 34 (29.1%) Not specified B�iochemical aspirin resistance (for distant early 
lesion recurrence)

 
Bang12 7 days 74 39 (52.7%) Not specified Large mild perfusion delay, endovascular therapy
Kang13 Within 1 week 133 63 (47.4%) 55 (87.3%)
Jeong14 5 days 76 36 (47.4%) Not specified A certain CYP2C19 genotype, poor metabolizer 

 
Minor stroke or TIA
Coutts29 30 days 143 (65 TIA) 14 (9.8%) 8 (57.1%)
Asdaghi30 7, 30 days 50 (22 TIA) 9 (18.0%) at 7 days 

11 (22.0%) at 30 days 
6 (66.7%) Baseline DWI lesion volume

 
Nah31 3 days (in 45)

90 days (in 45)
90 TIA 3 days: 21/45 (46.7%)

90 days: 3/45 (6.7%)
3 days: 14 (66.7%)
90 days: 2 (66.7%)

*Only variables determined as significant by multivariable analysis.					   
DWI, diffusion-weighted imaging; MRI, magnetic resonance imaging; SNILs, silent new ischemic lesions; TIA, transient ischemic attack.

Figure 1. Early local silent new ischemic lesions (SNILs). Acute diffusion-
weighted imaging (DWI) was performed within 24 hours after symptom onset 
and follow-up DWI was performed 2 days after the index ischemic stroke. Ear-
ly local SNILs (arrows) are shown on the follow-up DWI.
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Moreover, the lesion size of most SNILs is small,12,13 with the 
reported lesion volumes ranging between 0.3 and 0.7 mL,13 and 
the majority of SNILs (70.6%) being 10 mm or less in diame-
ter.12 These findings are consistent with the fact that most recur-
rent ischemic lesions do not cause any evident symptoms in the 
patients. 

Associated factors and mechanism
Multiple ischemic lesions on baseline DWI are significantly 

associated with early SNILs.6,9,10 If multiple acute lesions are 
demonstrated on clinical presentation, especially with varying 
degree of apparent diffusion coefficient (e.g., reduced and nor-
malized), those lesions may have occurred at varying time 
points before or after the clinical stroke onset.6,19 Moreover, in-
creased microembolic events have been reported to be related 
with these multiple lesion patterns.20 

Among the different stroke subtypes, large-artery atheroscle-
rosis (LAA) has been most frequently associated with early 
SNILs,6,8-10,13 and has been shown as an independent predictor 
of SNILs after acute ischemic stroke.10 In particular, early SNILs 
in intracranial LAA have different characteristics compared to 
other stroke subtypes.13 Early SNILs in intracranial LAA occur 
mostly in the pial area of the same vascular territory as the index 
stroke and are more frequently observed in higher grades of ste-
nosis. On the other hand, in extracranial LAA, the degree of 
stenosis is not related to early SNILs, and these are not associat-
ed with subsequent recanalization, whereas in cases of cardio-
embolism, early SNILs are associated with significant recanali-

zation. In intracranial LAA, artery-to-artery embolism or he-
modynamic insufficiency may play an important role in the 
pathogenesis of recurrent ischemic stroke.21 Meanwhile, plaque 
heterogeneity and fragmentation of the initial embolus may be 
more crucial in the pathogenesis of SNILs in extracranial LAA 
and cardioembolism, respectively.22 Lastly, early SNILs in intra-
cranial LAA are more closely associated with clinical recurrence 
than in the other subtypes. In line with these findings, patients 
with stroke resulting from intracranial LAA have been demon-
strated to show a high risk of recurrent stroke ( > 20% over 2 
years).23 

Thrombolytic therapy and vessel recanalization have also 
been shown to be associated with early SNILs.9,12 Chronologi-
cally, recombinant tissue-type plasminogen activator treatment 
is associated with acute SNILs, which occur between 24 and 48 
hours, while spontaneous vessel recanalization is associated 
with subacute SNILs, occurring between 2 and 6 days.9 Recom-
binant tissue-type plasminogen activator treatment can contrib-
ute to the occurrence of SNILs by imperfect dissolution of ei-
ther the embolus at the site of the main vessel occlusion or the 
thrombus at the site of origin; however, its short half-life may 
limit its role to only the acute phase. 

Regarding the baseline hypoperfusion status, large mild per-
fusion delays have been shown to be independently associated 
with early SNILs. Meanwhile, more severe perfusion delays, to-
gether with large initial DWI lesion, have been demonstrated to 
be related with infarct lesion growth in the subsequent DWI 
within 7 days.12 

Among the various plasma or serum biomarkers measured 
within 24 hours after the onset of index stroke, an elevated level 
of D-dimer has been shown to be independently associated 
with early SNILs at 5-day.10 Increased D-dimer levels may re-
flect ongoing thrombus formation within cerebral vessels or 
systemic hypercoagulability. 24 Moreover, D-dimer itself may in-
duce the inflammatory process by stimulating monocyte syn-
thesis and release of proinflammatory cytokines such as inter-
leukin-6.25 

Insufficient inhibition of platelet aggregation by the adminis-
tered drugs may also contribute to the advent of SNILs.11,14 Bio-
chemical aspirin resistance, defined as an aspirin reaction unit 
≥ 550 (VerifyNow Aspirin Assay), was associated with distant 
early SNILs occurring outside the vascular territories of index 
stroke in one previous study.11 In addition, a certain genotype of 
cytochrome P450 2C19, which poorly metabolizes clopidogrel 
into its active form, has been reported to relate with a signifi-
cantly higher rate of SNILs in patients with stroke due to 
LAA.14

Taken together, the mechanisms of early or late SNILs are di-

Figure 2. Early distant silent new ischemic lesions (SNILs). Acute diffusion-
weighted imaging (DWI) and perfusion-weighted imaging were performed 
within 24 hours after symptom onset. Follow-up DWI was performed 8 days 
after the index ischemic stroke. Early distant SNILs (arrows) are indicated on 
the follow-up DWI. 
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verse (Figure 3), and they can be categorized according to the 
locational distribution of SNILs. For local lesion recurrence, 
several mechanisms are plausible, including 1) fragmentation of 
the initial embolus during the process of recanalization and re-
perfusion;6 2) recurrent ischemic events (recurrent emboli) 
within the same perfusion deficit caused by intrinsic atheroscle-
rosis;6 and 3) recurrent ischemic events due to prolonged hypo-
perfusion.11 Meanwhile, for distant lesion recurrence, recurrent 
embolic events arising from a proximal source, such as the heart 
or activated atherosclerotic plaque located outside of the initial 
culprit vessels, may be important. Accordingly, atrial fibrillation 
and the presence of microembolic signals demonstrated by 
transcranial Doppler ultrasonography are reportedly associated 
with the advent of early SNILs.20 Of note, there are also other 
players acting as common pathogenic denominators. For exam-
ple, induced inflammatory response after stroke and/or hyper-
coagulability, which sustainably activate plaque, may contribute 
to the development of both local and distant SNILs.6 

Early and late SNILs and clinical vascular events
Early SNILs at 5 days have been shown to be independently 

associated with late SNILs at 30 or 90 days, suggesting a contin-
ued risk of recurrent ischemic lesions in the weeks following the 
index stroke.7 Atheroma, which is an acute-on-chronic disease 
causing recurrent episodes of thromboembolism before the sta-
bilization of an ulcerated plaque, has been suggested as the cul-
prit mechanism for this prolonged stroke-prone state.26 

As for clinical vascular events, late SNILs independently pre-
dict recurrent ischemic strokes. Early SNILs, together with late 
SNILs, can predict the combined clinical endpoints of recur-
rent ischemic stroke, transient ischemic attack (TIA), and vas-
cular death.8 The superiority of late SNILs to early SNILs in 
predicting subsequent clinical vascular events may be explained 
by the different pathogeneses of the two types of SNILs. Early 

SNILs, which include local lesion recurrence, may result from 
progression of the initial ischemic event. On the contrary, late 
SNILs, of which the major form is distant lesion recurrence, 
may accurately reflect the risk of future recurrent ischemic 
events.8

Minor stroke and TIA
It has been considered that a previous TIA or minor stroke 

confers a greater risk for recurrent stroke.27,28 Accordingly, 
SNILs can also appear after TIA and minor stroke (National 
Institutes of Health Stroke Scale score < 3-6).29-31 The incidenc-
es of SNILs in this population have been reported as 18% at 7 
days, and 7%-22% at 30 or 90 days, both of which are lower 
than those of SNILs after acute ischemic stroke (Table 1). This 
difference may be attributable to the fact that TIA and minor 
strokes are less likely to recur compared to acute ischemic 
strokes.29 

Further, LAA and cardioembolism are most likely to be asso-
ciated with SNILs in patients with TIA and minor strokes.19,29 
Among the MRI parameters, the baseline DWI lesion volume 
and perfusion deficits have been shown to significantly associ-
ate with the advent of SNILs.30,31 

SNILs after acute intracerebral hemorrhage (ICH)
Since ischemic and hemorrhagic strokes are distinctive dis-

eases, stroke patients usually present with one of the two. How-
ever, although rare, symptomatic acute ischemic and hemor-
rhagic stroke can occur simultaneously or shortly after one an-
other.32-34 Moreover, both types of stroke share common risk 
factors such as old age, hypertension, and high alcohol in-
take.35,36 In this regard, there have been efforts to investigate 
SNILs after acute ICH using DWI. 

Definition, incidence, and baseline characteristics
SNILs after acute ICH are defined as any hyperintense le-

sions on the subsequent DWI that are distinct from hemor-
rhage and the area of perihematomal edema (Figure 4).37-43 
SNILs may appear as early as within 5 days; follow-up MRI is 
usually performed within 14 days, but may be performed up to 
3 months after the index hemorrhage (Table 2). The reported 
prevalence rates of SNILs after acute ICH are 11.1%-41.1% 
within 14-days, 22.9%-26.5% at 1 month, and 13.2% at 3 
months. The lesion size of SNILs after ICH also tends to be 
small; more than 70% of lesions have a diameter less than 10 
mm.37,38,42 Further, patients with cerebral amyloid angiopathy 
are more likely to develop SNILs at 3 months after ICH, and 
have a more severe hemorrhagic burden (i.e., more frequent 
microbleeds, multiple ICHs, and intraventricular hemorrhage) 

Figure 3. Pathophysiology and clinical implications of silent new ischemic le-
sions (SNILs) after stroke. CPP, cerebral perfusion pressure; ICH, intracerebral 
hemorrhage; SVD, small vessel disease.
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compared to those with other primary ICHs.38 The main loca-
tions of SNILs have been reported to vary. Notably, however, 
patients with hypertensive ICH develop SNILs mainly in the 
subcortical white matter or brainstem.41 

The natural course of SNILs after acute ICH is dynamic. 
When comparing baseline (median, 2 days) and 1-month 
DWIs after acute primary ICH, more than 80% of SNILs on 
the follow-up DWI were not present at baseline, demonstrating 
that SNILs develop through an ongoing process during the 
acute phase.39 Meanwhile, half of all SNILs on the 2-week DWI 
reportedly do not remain on the subsequent 3-month MRI, 
suggesting that not all early SNILs after acute ICH indicate per-
manent tissue injury.42

Associated factors and mechanisms
Several risk and clinical factors have been reported to be asso-

ciated with SNILs after acute ICH, although the results are in-
consistent and even contradictory among studies. 

Microbleeds and leukoaraiosis have been independently and 
consistently associated with the occurrence of SNILs after acute 
ICH.38,39,41 Microbleeds are an imaging marker of bleeding-
prone microangiopathies,44 while leukoaraiosis represents 
chronic hypoperfusion in the distal deep and arteriolar territo-
ries.45 Remarkably, microbleeds and leukoaraiosis are strongly 
correlated,46 and, when combined, they represent small vessel 
pathology.47 Chronic changes by longstanding hypertension in 
the form of microaneurysm, lipohyalinosis, and fibrinoid de-
generation develop in the deep small vessels and are associated 
with both hypertensive ICH and ischemic lacunes. Thus, an ac-
tive small-vessel angiopathic process induced by hemorrhagic 
insults may underlie the advent of SNILs.41

History of ischemic stroke has been suggested as an indepen-
dent predictor of SNILs after acute ICH.37,39 Moreover, this has 
been regarded as a surrogate marker of perforator disease, where 
relative hypoperfusion can result in ischemia in a single or mul-
tiple perforators.37 However, the association between prior isch-
emic stroke and SNILs after acute ICH was denied in other 
studies.40,41 

Another suggested risk factor of SNILs after acute ICH is de-
creased blood pressure during the acute phase.37,39,40 In chronic 
hypertension, the curve of cerebral autoregulation is shifted to 
the right, and after acute brain injury, autoregulation may be 
abolished so that cerebral blood flow changes linearly according 
to cerebral perfusion pressure.48 As elevations in intracranial pres-
sure due to acute ICH would result in cerebral perfusion pressure 
decreases, aggressive blood pressure lowering therapy beyond the 

Figure 4. Early silent new ischemic lesions (arrows) coexisting with acute in-
tracerebral hemorrhage in the left basal ganglion. Magnetic resonance imag-
ing was performed 2 days after symptom onset.

Table 2. New ischemic lesions after acute intracerebral hemorrhage					   

Time of follow-up MRI No. of patients Incidence of SNILs Location Associated factors with new ischemic lesions*

Prabhakaran37 Within 28 days 118 27 (22.9%) Subcortical (70.4%) P�rior ischemic stroke, craniotomy, delta MAP 
lowering ≥ 40%, hypertensive etiology

Gregoire38 Within 3 months 114 15 (13.2%)
CAA: 9/39 (23.1%)

Others: 6/75 (8.0%)

Mainly cortical WM change score
Presence of lobar MBs

Menon39 Baseline 
   (median 2 days) 
   and 1 month

138 Base: 42/119 (35.2%)
1 month: 30/113 (26.5%)†

Base: 44% in lobar
1 month: 13% in lobar

B�aseline: Hematoma volume, baseline IVH, baseline 
MBs, and delta MAP 

1 month: Any prior stroke, baseline microbleeds
Garg40 Within 10 days 95 39 (41.1%) Not available
Kang41 Within 5 days 97‡ 26 (26.8%) Subcortical WM or 

  brainstem (75.5%)
B�aseline MBs > 2, moderate-to-severe WM leukoar-

aiosis
Tsai42 2 weeks (DWI)

3 months (T2W/FLAIR)
153 2 weeks: 17/153 (11.1%)§ Cortical (64.7%)

Gioia43 Within 14 days 117 17 (14.5%) Cortical (50.0%)
Subcortical (47.6%)

*Only variables determined as significant by multivariable analysis; †Of the 40 DWI lesions at 1 month, 33 (82.5%) were new compared to in the baseline DWI; ‡Only patients 
with hypertensive intracranial hemorrhage; §Of the 20 DWI lesions, 13 (52.0%) were not found on the follow-up T2-weighted or FLAIR images. 
CAA, cerebral amyloid angiopathy; DWI, diffusion-weighted imaging; FLAIR, fluid attenuated inversion recovery; IVH, intraventricular hemorrhage; MAP, mean arterial pres-
sure; MBs, microbleeds; MRI, magnetic resonance imaging; SNILs, silent new ischemic lesions; T2W, T2 weighted; WM, white matter.
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lower limits of cerebral autoregulation might induce cerebral 
ischemia in ICH patients with chronic hypertension.37 However, 
of note, the perihematoma region is known to be unaccompanied 
by hypoperfusion or ischemia, and rather shows benign olige-
mia.49-53 Moreover, the relationship between reduction of blood 
pressure and the advent of SNILs was not reproduced in some 
studies.41,43 Thus, it remains controversial whether decreased 
blood pressure is the culprit behind the occurrence of SNILs. 

Large ICH volume and subsequent craniotomy have been 
suggested to be associated with SNIL development.37,39 Elevat-
ed intracranial pressure in patients with large volume of ICH 
may have a negative impact on the cerebral perfusion pressure 
and secondarily on the cerebral blood flow. In addition, brain 
shifts from large hematomas may directly compress neighbor-
ing vascular structures, contributing to tissue infarction. How-
ever, both large ICH volume and craniotomy did not show any 
significant association with SNILs in other studies.40,41 

Clinical implication of SNILs 
Predictor of prognosis and future events

SNILs on DWI after acute ischemic or hemorrhagic stroke 
can be used to predict future clinical events and prognosis. DWI 
can be considered as a crystal ball, while SNILs are an omen. 

Regarding SNILs after acute ischemic stroke, both early 
SNILs at 5 days and late SNILs in the subacute phase up to 90 
days have been shown to be independent predictors of subse-
quent clinical vascular events such as recurrent ischemic stroke, 
TIA, and vascular death during a median follow-up of 1.6 
years.7,8 Thus, patients with SNILs over the early weeks after an 
index stroke should be considered optimal candidates for early 
aggressive stroke prevention therapy. In addition, SNILs may 
provide a useful surrogate endpoint in clinical trials evaluating 
stroke prevention therapies, with the reduction in the lesion re-
currence rate upon pharmacologic intervention over the initial 
weeks used as a surrogate for reduction in clinical stroke recur-
rence over the following years. Clinical trials to test the efficacy 
of therapeutic interventions usually take many years to recruit 
for and complete. An MRI surrogate endpoint of recurrent 
stroke, which would allow substantially fewer patients and 
shorter follow-up period, would result in enormous savings of 
cost and time in evaluating the preventive therapies. However, 
currently, only data from single-center and retrospective studies 
are available. Thus, future prospective randomized controlled 
trials testing the effect of a stroke prevention therapy on SNILs 
and clinical stroke recurrence in the long-term are required. 

SNILs after acute ICH also have prognostic value; in one 
study, they were independently associated with dependence or 
death of patients at 3 months,40 and in another, with the com-

posite of clinical cerebrovascular endpoints (i.e., ischemic stroke, 
ICH, and vascular death) during a median follow-up of 3.5 
years.41 These findings warrant special care in ICH patients with 
SNILs to reduce the risk of cerebrovascular events in the future. 
As SNILs after acute ICH predict not only hemorrhagic but also 
ischemic strokes during the follow-up, antiplatelets associated 
with lower risks of bleeding complications may be considered in 
this group of patients to prevent subsequent cerebrovascular 
events. The efficacy of antiplatelets in these patients should be 
proven, and the safe interval from ICH onset to initiation of anti-
platelet administration is also to be determined. In addition, the 
optimal level of blood pressure should be delicately set to pre-
vent SNILs as well as ICH progression. 

Cognitive impairment 
Silent ischemic lesions on MRI have been associated with 

cognitive dysfunction or dementia in asymptomatic popula-
tions.54-67 The size and location of ischemic lesions may be im-
portant for such associations. In order to remain silent, the isch-
emic lesions should be small and located in appropriate areas 
such as the frontal lobe, not causing focal neurologic deficits. 
However, as silent lesions accumulate in the affected area, the 
increased ischemic burden may contribute to impairment of 
cognitive function and to difficulties in mental flexibility, lan-
guage, and memories.68-74 Besides the location, the extent of si-
lent ischemic lesions is also important for the development of 
cognitive dysfunction. The degree of the lesions on MRI has 
shown a positive correlation with the severity of cognitive im-
pairment.65,75-77 

SNILs after acute ischemic or hemorrhagic strokes are small 
and asymptomatic initially; further, they can occur virtually 
anywhere according to the location of the index stroke. Thus, 
their accumulation may also contribute to cognitive decline 
during the follow-up. Moreover, considering that many patients 
with a history of ischemic or hemorrhagic strokes are also ac-
companied by many vascular risk factors, which are known to 
increase the risk of dementia,78 special attention should be paid 
to the risk of cognitive impairment in these patients. 

SNMs

Microbleeds refer to small, round, dark-signal lesions detect-
ed by T2*-weighted GRE or susceptibility-weighted imag-
ing.79-81 They are known to be manifestations of focal extravas-
cular leakage of blood components, representing old microhe-
morrhages, but rarely cause overt symptoms.82 Although not 
studied as much as SNILs, SNMs are also known to appear af-
ter acute ischemic or hemorrhagic stroke. 



Lee, et al.  Silent New Brain Lesions

http://dx.doi.org/10.5853/jos.2015.0141044  http://j-stroke.org

SNMs after acute ischemic stroke
Microbleeds are frequently found in ischemic stroke patients, 

at varying rates (35%-71%).82-84 In addition, they are more com-
mon in patients with recurrent strokes than in those experienc-
ing a first-ever stroke,85 whereas they are rarely found in TIA pa-
tients.86 These findings suggest that ischemic stroke may trigger 
the occurrence of microbleeds.

Definition and incidence
Microbleeds are defined as unambiguous homogeneous, 

round, signal-loss lesions with diameters up to 5-10 mm and 
with blooming artifacts, as determined by GRE.87-89 In one pre-
vious study, within 24 hours, approximately 30% of patients 
with acute ischemic stroke showed a number of concurrent mi-
crobleeds (median 2, range 1-33) in their brains.87 During the 
acute phase, another 13% of patients developed SNMs (median 
1, range 1-5) on the 7-day GRE, while 3% of patients lost their 
baseline microbleeds.87 As for the locations, about half of all mi-
crobleeds were detected in the deep hemisphere; at baseline, 
32% were located in the lobar location while 30% were in the 
deep location, whereas on follow-up GRE, 52% of SNMs were 
found in the lobar location.87 

The long-term fate of SNMs is also dynamic, as the appear-
ance and disappearance of SNMs can occur years after the in-
dex acute ischemic stroke.88,89 In one study, during a mean fol-
low-up of 27 months, 38% of acute ischemic stroke patients had 
SNMs on their subsequent GRE, with the total number of mi-
crobleeds increasing by about 1.5-fold.88 Among the patients 
with baseline microbleeds, 54% developed SNMs during their 
follow-up, showing a generally increasing trend in the number 
of microbleeds, although some of these lesions disappeared in 
15% of those patients. In fact, de novo SNMs were detected even 
on the 5-year follow-up GRE in 30% of patients with index isch-
emic strokes.89

Associated factors and mechanism
The presence and number of baseline microbleeds are con-

sistently associated with the advent of SNMs on follow-up 
GREs, regardless of the time from baseline (5 days to 5 
years).87-89 Moreover, they have been shown to be positively re-
lated with the annual rate at which SNMs develop.88 The multi-
plicity of microbleeds at the initial clinical presentation may im-
ply that they occurred through various time points around the 
onset of stroke, suggesting a prolonged risk of SNMs in particu-
lar stroke patients.87 The number of baseline hemorrhages may 
be a marker of the severity and aggressiveness of the underlying 
vascular disease.87 In addition, the above findings are in line 
with findings of other studies indicating that the total number 

of baseline microbleeds can predict the risk of future hemor-
rhages.90-92 The burden of small vessel disease such as leukoarai-
osis or lacunar infarctions is an independent predictor of the 
development of SNMs in ischemic stroke patients.87,88 The 
small vessel disease severity is well known to correlate with the 
number of microbleeds.46 As microbleeds arise from microangi-
opathic changes after chronic hypertension, the number of mi-
crobleeds may hence reflect bleeding-prone and small vessel 
disease-prone microangiopathy.93 

The level of low-density lipoprotein cholesterol is inversely 
associated with SNMs.88 Low concentrations of serum choles-
terol are related with the risk of microbleeds, suggesting an an-
tagonizing role of cholesterol in the pathogenesis of micro-
bleeds.94,95 Given that microbleeds is characterized by hemosid-
erin pigment accumulations in macrophages adjacent to the 
ruptured atherosclerotic microvessels, the low-density lipopro-
tein cholesterol level may be related to either changes of micro-
aneurysms94,96 or the clearance of hemosiderin-containing mi-
croglia.88 

Increased body temperature has also been reported to be as-
sociated with the presence of SNMs within 7 days.87 High tem-
perature is known to induce blood-brain barrier disruption after 
ischemic stroke.97 As endothelial activation and damage, with 
subsequent breakdown of the blood-brain barrier, are key fea-
tures in cerebral small vessel diseases, high temperature may 
also contribute to the disease process.98 

However, a caution in interpretation is needed for the above-
mentioned studies, since spatial registration of baseline and fol-
low-up GRE images have not been performed in any published 
studies.82 

SNMs after acute ICH
The coexistence of SNMs in patients with ICH has consis-

tently been reported as more frequent than that in ischemic 
stroke patients, reaching 50%-80%.91,93,99-101 However, only lim-
ited studies have evaluated whether SNMs occur following 
acute ICH by performing serial GRE studies. 

In one study, SNMs occurred in 9 of 24 patients (38%) with 
cerebral amyloid angiopathy and previous lobar hemorrhage 
during the 1.5-year follow-up period.102 In another study, in hy-
pertensive ICH patients, SNMs were found in 19 of 63 patients 
(30%) after a median follow-up of 23 months.90 

Clinical implication of SNMs 
Since its discovery, the clinical significance of microbleeds has 

been actively investigated. The presence of microbleeds is asso-
ciated with the future advent of hemorrhagic stroke after index 
ischemic or hemorrhagic stroke, especially in patients with se-
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vere white matter ischemic lesions.90,103,104 In addition, micro-
bleeds have been associated with larger volume of ICH105,106 and 
hemorrhagic transformation after ischemic stroke,107-109 al-
though the latter has been denied by other studies.110-114 Recur-
rent ischemic stroke also has been linked to the presence of mi-
crobleeds,115 while the association turned out to be only modest 
when compared to that of hemorrhagic stroke in a systematic 
review.103 Lastly, microbleeds are associated with cognitive dys-
function, especially frontal-executive impairment.116,117 

Based on the above-mentioned data, SNMs appearing after 
acute cerebrovascular events may be suggestive of future risk of 
hemorrhagic stroke and cognitive dysfunction, similar to SNILs. 
However, there is currently no direct evidence that SNMs can 
predict these events in the early phase after acute events. Thus, 
SNMs should be examined in more detail in terms of their clini-
cal implications, and future studies are warranted.
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