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Abstract The objective of this work was to facilitate the

development of nonlinear mixed effects models by estab-

lishing a diagnostic method for evaluation of stochastic

model components. The random effects investigated were

between subject, between occasion and residual variability.

The method was based on a first-order conditional esti-

mates linear approximation and evaluated on three real

datasets with previously developed population pharmaco-

kinetic models. The results were assessed based on the

agreement in difference in objective function value

between a basic model and extended models for the stan-

dard nonlinear and linearized approach respectively. The

linearization was found to accurately identify significant

extensions of the model’s stochastic components with

notably decreased runtimes as compared to the standard

nonlinear analysis. The observed gain in runtimes varied

between four to more than 50-fold and the largest gains

were seen for models with originally long runtimes. This

method may be especially useful as a screening tool to

detect correlations between random effects since it sub-

stantially quickens the estimation of large variance–

covariance blocks. To expedite the application of this

diagnostic tool, the linearization procedure has been auto-

mated and implemented in the software package PsN.

Keywords Linearization � Random effects � Nonlinear

mixed effects models � Pharmacometrics � Diagnostics

Introduction

Population pharmacokinetics (PK) and pharmacodynamics

(PD) models, i.e. pharmacometrics, play an increasingly

important role in pharmaceutical sciences and drug

development [1]. Nonlinear mixed effects (NLME) models

are frequently used to describe population PK/PD and are

composed of a structural component (fixed effects) and a

stochastic component (random effects). Fixed effects

describe the typical parameter values in a population and

the effects of covariates. Random effects handle unex-

plained variability and can be further divided into vari-

ability assigned to parameters and residual variability (RV)

assigned to the observations. Parameters can vary on

multiple levels: between subjects (BSV), between occa-

sions (BOV), between studies, etc.

For NLME, especially when used in simulations, the sto-

chastic components of the model are crucial but the devel-

opment procedure can be laborious. Despite a vast increase in

available computational power during the past decade, the

time for parameter estimation can still be a limiting factor

since the complexity of the used models and the amount of

fitted data typically are increasing likewise. For highly non-

linear models numerical instability of parameter estimation

with common gradient based, local methods may cause fur-

ther problems. Individual parameter estimates, the empirical

Bayes estimates (EBEs), can be used as a diagnostic tool to aid

the development procedure. However, this practice has nota-

ble shortcomings when data are uninformative on the indi-

vidual level and shrinkage towards the population mean

occurs. Shrinkage can cause diagnostics based on EBEs to

mask, falsely induce or distort the shape of random effects

relationships [2, 3]. The objective of this work was to develop

and assess a fast and stable method which is not sensitive to

shrinkage for diagnostics of BSV, BOV and RV model
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components. The here proposed method, henceforth called

‘linearization’, is based on a first-order conditional estimation

(FOCE) linear approximation which has previously success-

fully been applied for testing of covariates [4]. The lineari-

zation was evaluated in the modeling software NONMEM

with a variety of different models and datasets. The results are

presented as comparisons between the linearization and the

corresponding nonlinear model, both in terms of estimation

performance and runtimes.

Methods

Population models and linearization

NLME models commonly used in population PK/PD can

be formally represented by

yij ¼ f ð p!i; x!ijÞ þ hij ð1Þ

where yij is the data point of the ith individual’s jth

observation, f is a model that relates the vector of indi-

vidual parameters p~i and the vector of independent vari-

ables x~ij (for example dose and time) to the observations

and hijis a model for the residual error. The individual

parameters can be described as

p!i ¼ p! h
!
; g!i; g! z!i; h

!
g!

� �� �
ð2Þ

where p~ is the vector of models relating the typical

parameter values in the population h~, the parameter-spe-

cific variability g~i and the vector of covariate functions g~,

including covariate observations z~i and typical population

values for respectively covariate-parameter relation h~g~. The

parameter-specific variability can have multiple levels

simultaneously and is usually assumed to be normally

distributed with mean 0 and variance–covariance matrix X.

BSV and BOV are frequently modeled by assuming an

exponential relationship to obtain log-normal parameter

distributions. Under this assumption, parameter k in indi-

vidual i with L levels of parameter-specific variability can

be describe by the following model

pki ¼ hk � gk z!i; h
!

g!
� �

� e

PL

l¼1

glki

� �

ð3Þ

The residual error model is commonly modeled as a

function of e~ij which is assumed to be normally distributed

with mean 0 and variance–covariance matrix R. Common

forms of hij are additive error (hij = eij), proportional error

ðhij ¼ f p~i; x~ij

� �
� eijÞ or a combined error with both an

additive and a proportional element ðhij ¼ f p~i; x~ij

� �
�

e1ij þ e2ijÞ. Examples of extensions and more flexible forms

have been described in the following references [5–8].

Model parameters can be obtained by maximum likeli-

hood estimation where the estimated parameter values

maximizes the likelihood of the observed data [9]. Maxi-

mizing the likelihood is equivalent to minimizing the twice

negative log-likelihood (objective function value, OFV).

Evaluation of the function for the log-likelihood of NLME

models require integration steps that are computationally

demanding and a simpler linear approximation of the

model can be evaluated instead. We here assess the pos-

sibility of utilizing partial derivatives and EBEs from

evaluation of a nonlinear base model to assess the

improvement in model fit by additional random effects

through estimation of extensions implemented on the linear

approximation of the base model. The linear approximation

consists of first-order Taylor expansions initially around

e~ij ¼ 0~ (Eq. 4) and subsequently around g~i ¼ ĝ~ where ĝ~i

represents the EBE’s of g~i (Eq. 5, the linearized model).

yij � f p!i; x!ij
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þ
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� �
þ
Xs

v¼1

ohij

oeijv

�����
Q0

e�ijv

þ
Xs

v¼1

Xm

l¼1

o

ogli

ohij

oeijv

����
Q0

 !�����
Q0

e�ijv g�li � ĝli
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where Q0 ¼ ðe~ij ¼ 0~; g~i ¼ ĝ~iÞ, m is the number of element

in g~i and s is the number of elements in e~ij: The partial

derivatives and EBE’s are obtained by evaluating the

nonlinear base model with the first order conditional esti-

mation method with interaction (FOCE-I) in NONMEM

(see section Software). If the error model is simply additive

FOCE without interaction can be used. The FOCE and

FOCE-I methods also utilize Taylor expansions and are

described in NONMEM users guide-part VII [10]. The

parameters marked with asterisks in Eqs. 4 and 5 are the

unknown parameters of the linearized model that remain to

be estimated. A comprehensive example code is provided

as supplementary material. Since the iterative calculation

of fixed effects parameters and partial derivatives are time

consuming steps, especially for models including large

variance–covariance matrixes, the estimation of a before-

hand linearized extended model (where iterative calcula-

tions only are needed for the random effects) is magnitudes

faster than estimation of the nonlinear extended model.

Software

NONMEM versions 7.2 and 7.3 beta (ICON Development

Solutions, Hanover, MD, USA) [10] with the estimation

method FOCE-I were used for the analysis. To overcome
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sensitivity to local minima when estimating individual

parameters (g-values) the new NONMEM option MCETA

was utilized. The default initial value for all g is zero.

MCETA allows the user to define a number of vectors

containing random samples of initial g-values that should

be tested in addition to zero, whichever supplies the lowest

OFV will be used as initial value in the estimation. The

numbers in each vector of initial g-values are randomly

drawn from the normal distribution with mean zero and

variance–covariance matrix X. With a large enough num-

ber of initial g-values tested, the probability of the esti-

mation to end up in a local minimum can be decreased.

Models were executed through PsN, using Piranha for

documentation and creation of run records [11–13].

Evaluated model extensions

A comprehensive overview of the work flow for comparing

standard nonlinear and linearized models is given in Fig. 1.

The evaluated RV models were extensions to an additive, a

proportional or a combined base error model. The evalu-

ated extensions were:

• BSV of the residual error [14]

• A power relation with the individual model predictions

(F), implemented as hij ¼ hijðbaseÞ � Fh

• Autocorrelation, i.e. serial correlation between the error

of observations consecutive in time [5]

• Time dependent residual error, implemented as a step

function [5]

The NONMEM code of the RV extensions is provided

in the supplementary material. For extensions of the BOV

and/or the correlation structure, a base model already

including some BSV terms was used while for extensions

of the BSV structure the base model only included RV. To

this model additional parameter-specific variability were

added and/or the structure of the variance–covariance

block changed. To enable estimation of the linearized

model with additional variability parameters, the partial

derivatives of the model with respect to the new parameters

must be known. The partial derivatives can be obtained in

NONMEM by including the code for the additional vari-

ability parameters already in the nonlinear base model but

fixed to an arbitrary small value (fixing it to zero would

result in that no derivatives are calculated).

All extended models were estimated with FOCE-I both

in the linearized form and as standard nonlinear models.

The results were evaluated by comparing the difference in

OFV (DOFV) between the extended model and the base

model for the two approaches respectively. The runtimes

for the estimation step were extracted from the result files.

The runtime comparisons should be interpreted in terms of

magnitude and not as exact figures, since all estimations

were carried out at a cluster with many nodes, which have

somewhat different capacities and are randomly assigned.

Fig. 1 Work flow to compare performance of nonlinear and linearized models in NONMEM
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Datasets

Three real data examples with previously developed

models with diverse residual error structures were used to

illustrate the methodology.

1. Moxonidine [14]: The data were obtained from a phase

II multicenter study of oral moxonidine in patients

with congestive heart failure and contained 1,022

observations from 74 patients. The structural model

describing the data was a one-compartment model with

first-order absorption and an additive residual error

model.

2. Pefloxacin [15, 16]: The data were obtained from

critically ill patients receiving 1 h intravenous infu-

sions of pefloxacin and contained 337 observations

from 74 patients. The structural model was a one-

compartment model and a proportional residual error

model.

3. Ethambutol [17]: The data were obtained from two

prospective studies in tuberculosis patients receiving a

standard treatment regimen including ethambutol. A

total of 1869 observations from 189 patients were

included in the dataset. The structural model was a

one-compartment model with first-order absorption

through one transit compartment and a combined

residual error model.

Results

The agreement between the DOFV of the nonlinear and the

linearized extended RV models were found to be good

(Fig. 2a). Also for extended correlations structures the

agreement was good (Fig. 2d). For extended BSV and

BOV models the agreement was acceptable (Fig. 2b, c).

The deviations between the nonlinear and linearized model

were the largest for instances where the value of one or

several fixed effect parameter(s) in the nonlinear model

were notably changed by the extension. The extended

linearized models do not allow a change of the fixed effects

since those values are incorporated in the predictions and

derivatives obtained from the base model. The linearized

analysis identified the same extended models to be signif-

icant improvements as the conventional nonlinear analysis

(b)

(c) (d)

(a)

Fig. 2 Difference in OFV between base and various extended RV (a), IIV (b), IOV (c) and covariance (d) models (described in methods), after

estimation with the nonlinear vs. the linearized approach for the moxonidine (black triangles), pefloxacin (grey squares) and ethambutol (open

circles) data examples
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in all cases except in four, resulting in an accuracy of 96 %

(88 of 92). In the four deviating cases the DOFVs were

very close to the significance level (following Chi square

distribution, a = 0.05).

The total runtimes for the linearized models using the

three example datasets were markedly shorter compared to

the corresponding nonlinear models (Table 1). When the

linearization of the base model is successful, the OFV

value of the linearized version and that of the corre-

sponding nonlinear model estimated with FOCE-I should

be very similar. This was the case for all evaluated models

with an additive residual error model. However, for models

with proportional or combined residual error models, a

number of cases were discovered where the OFV values

differed greatly and a lower OFV value was obtained for

the nonlinear base model. Closer evaluation of the results

revealed that this deviation between OFV values was

caused by certain subjects for whom the individual con-

tributions to the OFV (iOFV) were notably higher, whereas

for the majority of subjects the iOFV values of the two

methods matched well. For the deviating subjects the

estimation of individual g-values had failed in the linear-

ized model due to issues with local minima. Transforma-

tion to render the error additive in the transformed space or

utilization of the MCETA option resolved the problem for

all evaluated cases.

Discussion

A novel diagnostic method for evaluation of random

effects was successfully developed and evaluated. The

linearization was found to accurately identify significant

extensions of models’ stochastic components with notably

decreased runtimes as compared to standard nonlinear

analysis. The three examples used had relatively short

runtimes also in their nonlinear form. When the lineariza-

tion was applied to more complex models, an even more

substantial decrease in runtimes ([509) was observed. For

a PD-model describing the effect of docetaxel on neutro-

phil counts (extension of [18] ) utilizing the full random

effects approach (FREM [19] ) the runtime was decreased

from 3 h and 50 to 5 min (2.2 %). For a PK model of

bedaquiline plus two metabolites including a large

covariance block (extension of [20] ) the runtime was

reduced from 15 h and 52 to 6 min (0.6 %). For a PK-

model of rifabutin plus metabolite using a dataset com-

bining 14 clinical studies (unpublished) for which the

runtime of the base nonlinear model was several day, the

estimation of 6 additional BSV parameters and extending

the variance–covariance matrix from a diagonal to a full

12 9 12 block structure took only 18 and 89 min,

respectively.

When applied to models with a proportional or a com-

bined residual error structure the linearization was found to

be sensitive to local minima when assigning the individual

g-values. This happens due to the potential shape distortion

of the individual EBE likelihood profiles that can be caused

by the interaction term (including the partial derivative

with respect to both e and g of the residual error model) in

the linearized model. The interaction term will always be

zero for additive residual error models which explains why

the problem was never observed in this case. Care must be

taken to ensure that the OFV of the linearized base model

agrees with the corresponding nonlinear model. If a devi-

ation is detected, simple work-arounds can preclude

potential deviations. Transformations can render the error

model additive in the transformed space, for example log-

transformation for model with proportional error structure.

Another solution is the MCETA option, available in

NONMEM from version 7.3.0 [21], which decreases the

risk of issues with local minima by supplying multiple

initial estimates for the individual g-values. With MCETA

values of between 10 and 1,000 all evaluated linearized

models were able to obtain the same OFV value as the

corresponding nonlinear model. However, run times were

somewhat increase by use of the MCETA option. Yet

another potential solution could be to input the EBE’s from

the nonlinear base model as initial estimates for individual

g-values in the linearized model. This is possible with the

ETAS option, also available in NONMEM from version

7.3.0. The ETAS option should be faster than the MCETA

option since it only tests one set of initial estimates instead

of several, but it may be less reliable. In cases when the

shape of the likelihood profiles contain multiple local

minima, as have been observed for linearized models with

proportional or combined error structures, the risk of ter-

minating in local minima is substantial even with initial

estimates close to the optimal values and therefore the use

of the MCETA option could be safer.

To simplify the use of this novel methodology, an option

called ‘linearize’ has been implemented in PsN (available

from version 3.7.0). The procedure requires the provision

of a nonlinear model, optimizes the parameters and outputs

predictions and derivatives in a new dataset. This dataset

Table 1 Comparison of total runtimes for nonlinear and linearized

models using the three example datasets

Data Total runtime

nonlinear (s)

Total runtime

linearized (s)

Fraction time

required

linearized (%)

Moxonidine 735.1 106.5 14.5

Pefloxacin 47.78 6.96 14.6

Ethambutol 103082 25983a 25.2

a Executed with MCETA = 1,000
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constitutes the input for an automatically created linearized

version of the same model. The linearized model can serve

as starting point for evaluation of manually coded exten-

sions of the random effects. Model building could poten-

tially be made even more efficient by automated testing of

a library of RV models, comparable to the stepwise

covariate search method (the SCM) already implemented

in PsN. Since the values of fixed effects are not estimated

in the linearized model the method should be viewed as a

diagnostic tool. It is recommended to re-estimate with

standard nonlinear methods once the best extended model

is identified.

In conclusion, the successful use of a linear approxi-

mation method for fast diagnosis of a broad range of

extended random effects models was demonstrated. The

method may be especially valuable as a screening tool to

detect correlations between random effects since estimat-

ing large variance–covariance blocks often is a computa-

tionally demanding and time-consuming process but can be

carried out magnitudes faster with the linearization.
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