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Protein glycosylation pathways are present in all kingdoms of life and are metabolic pathways found in all the life kingdoms.
Despite sharing commonalities in their synthesis, glycans attached to glycoproteins have species-specific structures generated
by the presence of different sets of enzymes and acceptor substrates in each organism. In this review, we present a comparative
analysis of the main glycosylation pathways shared by humans and the fungal pathogen Candida albicans:𝑁-linked glycosylation,
𝑂-linkedmannosylation and glycosylphosphatidylinositol-anchorage.The knowledge of similarities and divergences between these
metabolic pathways could help find new pharmacological targets for C. albicans infection.

1. Introduction

Although evolutionarily distant, humans and microorgan-
isms of the Candida genus are closely related from a
health perspective. C. albicans is a commensal organism
that colonizes mucosal surfaces of the digestive tract and
oral and vaginal cavities, and is able to cause superficial or
systemic infections (candidiasis), particularly in the light of
immunological host defects [1]. Nonetheless, other Candida
species including C. glabrata, C. krusei, C. parapsilosis and C.
tropicalis have also emerged as important causative agents of
candidiasis. Intact glycosylation pathways in both, the human
host and the fungal pathogen, are important, if not essential,
for their development; thus, the knowledge of commonalities
and divergences of these metabolic processes, as well as
their functions, could help define pharmacological targets
to suppress the pathogenicity of Candida and other fungal
pathogens.

2. The N-Linked Glycosylation Pathway

The N-glycosylation pathway involves attachment of glycans
to the amide nitrogen atom in the side chain of asparagine

(Asn) residues of eukaryotic, archaeal, and bacterial glyco-
proteins. The best described model where the eukaryotic N-
glycosylation pathway has been characterized in detail is the
baker yeast Saccharomyces cerevisiae [2]. Through the years
this model has helped to identify and characterize various
human and fungal orthologs involved in this pathway.

The synthesis of the dolichol-linked glycan and its trans-
fer to proteins are identical in both, human cells and C.
albicans [3, 4] (see Table 1 and Figure 1). In fact, these
processes are quite conserved among eukaryotic cells and
there are only a handful of organisms where these stages are
slightly different, such as trypanosomatids, some protists, and
the fungal pathogen Cryptococcus neoformans [5, 6].

The eukaryoticN-linked glycosylation pathway is divided
in two sequential stages: (a) synthesis in the rough endoplas-
mic reticulum (rER) of the dolichol-linked glycan precursor
Dol-PP-GlcNAc

2
Man
9
Glc
3
and its transfer to a nascent pro-

tein and (b) the N-linked glycan processing and maturation
in the rER and Golgi (Figure 1). Both stages require the
action of different glycosyltransferases (GTs) and an adequate
supply of donor substrates, which can be, depending on
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Figure 1:TheN-glycosylation pathway. Commonalities and divergence in theN-linked glycosylation pathway.The shared structures between
humans and Candida albicans have been colored, showing the rER synthesis of the Glc
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glycan and its transfer by the

OST complex to a nascent protein. Once transferred, the Glc
3
Man
9
GlcNAc

2
glycan is trimmed by the action of glucosidases and enters a

quality control checkpoint performed by the CNX/CRT cycle. Once it passes this checkpoint, it is trimmed by mannosidase MAN1B1 to
generate a Man

8
GlcNAc

2
structure. At this point divergence occurs with C. albicans that synthesizes high-mannose glycans. In humans, the

Man
8
GlcNAc

2
structure is further demannosylated to Man

5
GlcNAc

2
by Golgi mannosidases type I (MAN1A, MAN1B, and MAN1C). This

N-linked glycan suffers further demannosylation and glycosylation processing by type II mannosidases (MAN2A1, MAN2A2), N-acetyl-
galactosaminyl transferases (GlcNAcT), galactosyltransferases (GalT), fucosyltransferases (FUT) and sialyltransferases (STs). In humans, a
glucosidase-independent trimming of Glc

3
Man
9
GlcNAc

2
takes place, generating a Man

8
GlcNAc

2
structure. In addition, lysosomal targeting

of glycoproteins through modification with phosphate groups is only found in human cells.

the GT family, nucleotide-activated sugars or dolichol-
activated sugars.

The lipid dolichol used as a carrier in the first stage
of N-glycosylation is a polymer of isoprene units (CH

3
–

C(CH
3
)=CH–CH

2
–) predominantly of 14–17 units in the

baker yeast [7], 19–22 in humans [8], and of undetermined
length in Candida. Dolichol is modified in the rER cytosolic
face by human andC. albicans orthologueGTs Alg7, Alg13/14,

Alg1, Alg2, and Alg11, using the nucleotide sugars UDP-
GlcNAc and GDP-Man as donor substrates to synthesize
the Dol-PP-GlcNAc

2
Man
5
intermediate. This intermediate

is then flipped from the cytosol to the rER lumen, where
synthesis proceeds by GTs Alg3, Alg9, Alg12, Alg6, Alg8, and
Alg10 that use the dolichol-linked sugars Dol-PP-Glc and
Dol-PP-Man as donors to synthesize the glycan precursor
Dol-PP-GlcNAc

2
Man
9
Glc
3
.
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Table 1: Human and C. albicans homolog proteins involved in the N-linked glycosylation pathway.

Protein function Protein Human/Candida Human ID∗ Candida ID∗ Id∗∗ COV∗∗∗

Glycosyltransferases
UDP-GlcNAc: Dol-P N-acetylglucosaminephosphotransferase GT1/Alg7 NP 001373.2 XP 716028.1 37% 87%
UDP-GlcNAc: Dol-PP-GlcNAc N-acetylglucosaminyl
transferase Alg13 NP 001093392.1 XP 718987.1 30% 60%

UDP-GlcNAc: Dol-PP-GlcNAc N-acetylglucosaminyl
transferase Alg14 NP 659425.1 XP 717086.1 37% 77%

GPD-Man: Dol-PP-GlcNAc2 𝛽1,4-mannosyltransferase Alg1 NP 061982.3 XP 711858.1 34% 88%
GPD-Man: Dol-PP-GlcNAc2Man
𝛼1,3-𝛼1,6-mannosyltransferase Alg2 NP 149078.1 XP 710581.1 41% 96%

GPD-Man: Dol-PP-GlcNAc2Man3 and
Man4 𝛼1,2-mannosyltransferase Alg11 NP 001004127.2 XP 712508.1 36% 67%

Dol-P-Man: Dol-PP-GlcNAc2Man5 𝛼1,3-mannosyltransferase Alg3 NP 001006942.1 XP 712080.1 30% 81%
Dol-P-Man: Dol-PP-GlcNAc2Man7 𝛼1,6-mannosyltransferase Alg12 NP 077010.1 XP 716986.1 33% 86%
Dol-PP-Man: Dol-PP-GlcNAc2Man6 and
Man8 𝛼1,3-mannosyltransferase Alg9 NP 001071158.1 XP 713886.1 36% 93%

Dol-PP-Glc: Dol-PP-GlcNAc2Man9 𝛼1,3-glucosyltransferase Alg6 NP 037471.2 XP 711029.1 37% 87%
Dol-PP-Glc: Dol-PP-GlcNAc2Man9Glc 𝛼1,3-glucosyltransferase Alg8 NP 001007028.1 XP 721736.1 41% 80%
Dol-PP-Glc:
Dol-PP-GlcNAc2Man9Glc2 𝛼1,2-glucosyltransferase

Alg10 NP 116223.3 XP 714677.1 32% 96%

Post flipping chaperone Rft1 NP 443091.1 XP 717469.1 27% 85%

OST components

RBPH1/Ost1 NP 002941.1 XP 714694.1 27% 85%
DAD1/Ost2 NP 001335.1 XP 714366.1 40% 81%
N33/Ost3 NP 006756.2 XP 721902.1 23% 77%
Ost4 NP 001128165.1 EEQ47486.1 39% 51%

IAP/Ost6 NP 115497.4 XP 716090.1 22% 84%
RIBIIR/SwpI NP 002942.2 XP 721287.1 26% 58%
OST48 /Wbp1 NP 005207.2 XP 713903.1 24% 91%
STT3A/Stt3 NP 001265432.1 XP 722527.1 56% 94%
STT3B NP 849193.1 57%

Folding Sensor UGGT1/Kre5 NP 064505.1 XP 719987.1 60% 57%
Glycosidases
Glucosidase I MOGS/Cwh41 NP 001139630.1 ABB97046.1 29% 91%

Glucosidase II GANAB/Rot2 NP 938148.1 XP 716812.1 38% 98%
GLU2B/Gtb1 NP 002734.2 XP 717976.1 39% 57%

ER 𝛼1,2-mannosidase I MAN1B1/MnsI NP 057303.2 XP 713641.1 45% 77%
∗Accession number at NCBI database.
∗∗Identity and ∗∗∗coverage from BLAST alignment between human and C. albicans homolog sequences, respectively.

The flippase that translocates Dol-PP-GlcNAc
2
Man
5
has

not been identified yet in any organism, although a critical
accessory protein in yeast, Rft1, and its human ortholog
have been proposed to participate in this process [9, 10].
Nonetheless, a recent work in Trypanosoma brucei, an early
diverging eukaryote, has pointed that Rft1 is not the much
sought after flippase, although it is critical for allowing mat-
uration of the Dol-PP-GlcNAc

2
Man
5
intermediate once it is

flipped to the rER lumen [11]. A putative ortholog of Rtf1 has
been also found in C. albicans (Table 1).

Once synthesized, the Dol-PP-GlcNAc
2
Man
9
Glc
3
pre-

cursor glycan is transferred en bloc by the oligosaccharyl
transferase complex (OST) to Asn residues by linkage to

carboxamide nitrogens. The Asn residues targeted for N-
linked glycosylation are located, with rare exceptions, within
the consensus sequence Asn-X-Ser/Thr (where X is any
amino acid except proline) [12]. However, not all consensus
sequences are N-linked glycosylated, because this protein
modification is a co-translational process, and thus other
factors are involved in selecting consensus sequences, such
as accessibility of OST to the consensus sequence during
the unfolded state of the protein. The OST complex has
not been characterised in detail in C. albicans; however, the
fungus encodes all the subunit orthologs found in S. cerevisiae
OST, which is comprised of nine different transmembrane
subunits: Wbp1, Swp1, Stt3, Ost1, Ost2, Ost3, Ost4, Ost5,
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and Ost6, where Stt3 is the catalytic subunit [13] (Table 1).
Mammalian equivalents to yeast/C. albicans OST subunits
are known and include: ribophorin I (Ost1) and II (Swp1),
OST48 (Wbp1), defender against apoptotic cell death or
DAD1 (Ost2), N33 (Ost3), magnesium transporter 1 (Ost6),
and OST4 (Ost4) [14–16], (Table 1). In addition, two Stt3
protein orthologs (STT3A and STT3B) have been identified
in plants, insects, and vertebrates [15, 17, 18]. The human
STT3A isoform is primarily responsible for cotranslational
modification of sequons when the nascent polypeptide enters
the rER lumen. The STT3B isoform is less competent for
cotranslational glycosylation, but mediates the posttransla-
tional modification of skipped glycosylation sites in unfolded
proteins [19]. The mammalian OST has been found in three
complexes that exhibit different ribosome affinities and sub-
unit compositions: OSTC(I), OSTC(II), and OSTC(III) [16].
Furthermore, two additional components found in the mam-
malian OST complex have been reported: KCP2 and DC2
[16, 20].

Once transference onto the protein is achieved, the
pathway continues with the processing andmaturation stage.
Processing is carried out, in both human and C. albicans,
by rER enzymes: the mannosyl oligosaccharide glucosi-
dase I (MOGS/Cwh41) that removes the outermost 𝛼1,2-
glucose unit, and the mannosyl oligosaccharide glucosidase
II which trims the following 𝛼1,3-glucose residue exposing
the Glc

1
Man
9
GlcNAc

2
epitope [21] (Figure 1). In humans/

Candida, glucosidase II is a heterodimer composed of two
subunits, the hydrolytic 𝛼-subunit (GANAB/Rot2) and the𝛽-
subunit (GLU2B/Gtb1), see Table 1.

The Glc
1
Man
9
GlcNAc

2
epitope is a key point of ER

quality control of glycoproteins, as it binds to the cal-
nexin/calreticulin (CNX/CRT) lectin that is a folding sensor
associated to ERp57. At this point, glucosidase II removes the
last glucose residue and, if correctly folded, the glycoprotein
exits the rER after the 𝛼1,2-mannosidase removes one Man
residue from the middle branch of the N-linked glycan
core, generating GlcNAc

2
Man
8
(Figure 1). If the protein is

misfolded, the glycan is reglucosylated by the action of the
UGGT1 glucosyltransferase in humans and its ortholog Kre5
in C. albicans [22]. UGGT is a conformational sensor, regen-
erating the acceptor substrate for the calnexin/calreticulin
lectin, starting a new deglucosylation step by glucosidase II.
This cycle continues until the protein is correctly folded or
targeted for ER-associated degradation [23].

In contrast to Candida, humans code for an endoman-
nosidase (MANEA) located in the Golgi/ERGIC compart-
ment that provides a glucosidase I and II independent
pathway for N-linked glycan maturation. MANEA is able
to remove the inner most Glc residue along with the Man
residue attached to it, generating the GlcNAc

2
Man
8
structure

(Figure 1).

2.1. The Fate of GlcNAc
2
Man
8
in Humans. The further

processing of the GlcNAc
2
Man
8
structure is the divergence

point between humans and C. albicans (Figure 1). In humans,
the N-linked glycans are processed by Golgi-resident man-
nosidase IA, IB, and IC, which have different hydrolytic
patterns but all generate Man

5
GlcNAc

2.
This glycan is then

acted upon by glycosyltransferase GlcNAcT-I to generate a
GlcNAcMan

5
GlcNAc

2
structure that is acted upon by type

II 𝛼-mannosidases. The type II 𝛼-mannosidases include the
Golgi mannosidase II (MAN2A1), and in some cell types,
additional mannosidases MAN2A2 and mannosidase III
have been described as bypassing enzymes when mannosi-
dase II fails to hydrolyse the N-linked glycan core [24–26].
The type II 𝛼-mannosidases remove the terminal 𝛼1-3Man
and 𝛼1-6Man residues allowing addition of a second GlcNAc
residue to give way to complex glycans. The GlcNAc residues
can be extended with additional monosaccharide linkages
involving galactose, fucose, or sialic acid residues. Fur-
thermore, the hybrid and complex N-linked glycans found
in humans may exist with two or more GlcNAc-bearing
branches or antennae. In forming multiantennary N-linked
glycan structures, GlcNAc residues may be added to the
trimannosyl core by six different GlcNAc transferases (I–VI)
[27]. If type II 𝛼-mannosidases do not act or GlcNAcT-III
bisects the GlcNAcMan

5
GlcNAc

2
structure, hybrid glycans

are then generated (Figure 1) [28].
In animals, N-linked glycans are terminated by sialic

acid [29] in 𝛼2,3-, 𝛼2,6-, or 𝛼2,8- linkages by specific sialyl-
transferases [30]. In humans, sialic acid is mostly of the N-
acetylneuraminic acid form, in contrast to most mammalian
species, where a mixture of N-glycolylneuraminic acid and
N-acetylneuraminic acid is generally found. Sialic acid can
be further modified by acetylation or sulphation [31]. This
monosaccharide in view of its terminal position, linkages,
and negative charge has been an important element in the
evolution of animal glycan function [32]. Although 𝛼2,3- and
𝛼2,6- sialic acid have been identified in the cell wall of C.
albicans [33, 34], no ortholog to vertebrate sialyltransferase
or ability to synthesize sialic acid has been characterized in
this fungus [35]. However, evidence of sialic acid synthesis
has been reported in Aspergillus fumigatus [36] and C. neo-
formans, where sialyltransferase activity has been identified
[37].

Another frequent modification of human N-linked gly-
cans not seen in C. albicans is 𝛼1,6- core fucosylation of
the first GlcNAc residue, as well as terminal fucosylation on
Gal or GlcNAc residues [38]. Nonetheless, fucose has been
identified as a component of the cell wall of C. albicans [33]
and binds the UEA-I lectin that is specific for L-fucose, more
particularly to 𝛼1,2-fucose. UEA-I binding was associated
with increased adherence to epithelial cells [39]. Recently
mass spectrometry identified 𝛼1,6-fucose residues in oligo-
mannosylated N-linked glycans of the fungi Cantharellus
cibarius [40]. This raises the question on how this type of
glycans are presented in the surface of mushrooms, as no
FUT8 family member of fucosyltransferases responsible for
this linkage has been identified in yeast nor mushrooms [38].
Although little is known about fucosylation and sialylation
mechanisms in C. albicans or fungi in general, more infor-
mation is hinting at their role in pathological human host
interactions through molecular mimicry.

Furthermore, human N-glycans can be phosphorylated
to target glycoproteins to the lysosomes, through interaction
with the Man-6-P receptor [41]. Phosphorylation occurs
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by modification of the GlcNAc
2
Man
8
structure by a UDP-

GlcNAc-dependent GlcNAc-1-phosphotransferase (Figure 1)
[42]. A GlcNAc phosphodiester is added toN-linked glycans
on one of three mannose residues on the arm with the 𝛼1,6-
linkage to the core mannose. A second phosphodiester can
then be added to the other side of theN-glycan or onto other
mannose residues (Figure 1). Afterwards, the phosphodiester
glycosidase in the trans-Golgi removes the GlcNAc to gener-
ate Man-6-P residues. The phosphate residues partially block
the action of processing mannosidases, maintaining the N-
glycans in an oligomannosyl form. Some hybrid N-linked
glycans with Man-6-P can also be found.This sorting system
of soluble proteins does not exist in C. albicans or other yeast
species, but interestingly they contain the geneMRL1, which
seems to be the ortholog of that encoding the humanMan-6-
P receptor [43].

2.2. The Fate of GlcNAc
2
Man
8
in C. albicans. In C. albi-

cans, the N-linked glycan GlcNAc
2
Man
8
is modified by

proteins that have no human orthologs (see Table 2).
The GlcNAc

2
Man
8
core is recognised by Och1, an 𝛼1,6-

mannosyltransferase that adds the first mannose residue
of the N-linked glycan outer chain [44] (Figure 1). This
mannose residue works as a molecular primer to build the
𝛼1,6-mannose backbone, which in S. cerevisiae is elongated
by the M-Pol I complex (a heterodimer composed of Mnn9
and Van1) that adds 3 to 7 mannose residues [45] and then by
M-Pol II, a multimeric complex composed of Mnn9, Anp1,
Mnn10,Mnn11, andHoc1 [46, 47] (Figure 1). Both, in vivo and
in vitro studies have shown thatMnn10 andMnn11 contribute
to most of the 𝛼1,6-mannosyltransferase activity of M-Pol
II [47]. Thus far, there is only experimental evidence about
Mnn9 role in C. albicans [48]; however, the encoding genes
for all members of both complexes are present within C.
albicans genome and it is likely they work as described in the
baker yeast.

Parallel to this process, the 𝛼1,6-mannose polymer works
as a molecular scaffold where branches of 𝛼1,2-mannose
residues are added by Mnn5 [49, 50]. These are further
elongated by the mannosyltransferases Mnt4 and Mnt5 [51],
and members of the MNN2-like gene family [52]. In S.
cerevisiae, the branches are terminated with 𝛼1,3-mannose
residues added by action of the mannosyltransferase Mnn1
[53]. In C. albicans, these mannose residues are also present
and are likely to be incorporated to glycans via the same
protein [54]; however, it is most frequent that the 𝛼1,2-
mannose branches are further decorated and capped with
𝛽1,2-mannose units [55]. The 𝛽1,2-mannosylation is charac-
teristic of this pathogenic yeast species and is carried out by
members of the BMT gene family [56].

Another decoration attached to the 𝛼1,2-mannose
branches is the phosphomannan, which is a mannose
residue attached to the N-linked glycan by a phosphodiester
bond (Figure 1). This phosphorylation is not related to
that found in humans and is partially synthesized by
phosphomannosyltransferases Mnt3 and Mnt5 [51]. The
identity of the enzymes involved in the addition of the rest of
the phosphomannan remains unknown, although it is likely
that members of the MNN4-like family contribute to this

activity [57, 58]. As theN-linked glycan, the phosphomannan
can be further𝛽1,2-mannosylatedwith up to 14𝛽1,2-mannose
units [59], by action of Bmt2, Bmt3, and Bmt4 [56].

2.3. Functions of N-Linked Glycans in Humans. TheN-linked
glycans associated to glycoproteins participate in the cal-
nexin/calreticulin ER quality control system of glycoprotein
folding [60]. Furthermore, N-linked glycans are involved in
protein stabilization and trafficking and serve as moieties
recognized by receptors, thereby modulating binding by
increasing or decreasing affinity. The N-linked glycans play
from trivial to essential roles in glycoprotein function and are
involved in most, if not all, cellular processes. There is clear
evidence that this posttranslational modification is essential
for homeostasis in multicellular organisms as has been
demonstrated by clinical phenotypes, mostly multisystemic,
of patients affected by congenital disorders of glycosylation,
indicating that N-linked glycan integrity is required for
normal tissue function [61].

2.4. Functions in C. albicans. The N-linked mannans are
essential for C. albicans viability, as demonstrated by treat-
mentwith tunicamycin, a drug that inhibits the action of Alg7
during N-linked glycan core synthesis [62]. Furthermore,
they are quite important for cell fitness: defects in either
the processing step by rER 𝛼-glycosidases or elongation
by Golgi mannosyltransferases lead to longer duplication
times, swollen cells, inability to perform proper cell separa-
tion, abnormal colony morphology, and impaired ability to
undergo dimorphism [21, 44, 51, 63].These pleiotropic defects
are likely consequences of loss of the cell wall plasticity:
mutant cells with defects in theN-linked mannan biosynthe-
sis have rearrangements in the wall composition, including
low mannan levels and high chitin and glucan contents,
which led to increasing the sensitivity to cell wall perturbing
agents such as tunicamycin, Congo red, Calcofluor white,
hygromycin B, and caffeine [4, 21, 44, 50–52, 63]. Protein
modification by N-linked mannans also modulates protein
secretion, but surprisingly in a negative form, as shown in
mutants lacking rER 𝛼-glycosidases, which display increased
cell wall protein content [21]. In addition, biofilm formation
seems to depend on N-linked mannans, as shown by the
inability of tunicamycin-treated cells to form this kind of
microbial consortiums [64]. Finally, and most important, N-
linked mannosylation is required for normal cell adhesion
and virulence [4, 21, 44, 50, 51, 63, 65–69]. The extent to
which fucosylation and sialylation play a role in pathogenic-
ity through the adhesion to the host surface, particu-
larly extracellular matrix components, still requires further
characterization in C. albicans.

3. The O-Linked Mannosylation Pathway

In contrast to C. albicans that only synthesizes O-linked
mannosyl glycans (O-Man), six additional types of O-linked
glycans are found in humans, and are classified based on
the first sugar attached to the amino acid residue: GlcNAc,
GalNAc, galactose, xylose, glucose, or fucose.
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Table 2: C. albicans nonhomologous proteins involved in the N-linked, O-linked, and GPI-anchor pathways.

Protein function Protein ID∗

N-glycosylation
Golgi 𝛼1,6-mannosyltransferase Och1 XP 716632

Golgi 𝛼1,6-mannosyltransferase complex M-Pol I Mnn9 XP 716624.1
Van1 XP 719719.1

Golgi 𝛼1,6-mannosyltransferase complex M-Pol II

Mnn9 XP 716624.1
Anp1 XP 714464.1
Mnn10 XP 713339.1
Mnn11 XP 721427.1
Hoc1 XP 716693.1

Golgi 𝛼1,2-mannosyltransferases
Mnn5 XP 713952.1
Mnt4 XP 711944.1
Mnt5 XP 712920.1

Golgi 𝛼1,3-mannosyltransferases Mnn1 XP 720587.1

Golgi 𝛽1,2-mannosyltransferases

Bmt1 XP 719878.1
Bmt2 XP 710865.1
Bmt3 XP 717972.1
Bmt4 XP 719173.1

Golgi phosphomannosyltransferase Mnt3 XP 710267.1
Mnt5 XP 713952.1

O-glycosylation
Protein O-mannosyltransferase Pmt1 XP 716926.1
Protein O-mannosyltransferase Pmt5 XP 719311.1
Protein O-mannosyltransferase Pmt6 XP 717283.1
Golgi 𝛼1,2-mannosyltransferases Mnt1 XP 721742.1
Golgi 𝛼1,2-mannosyltransferases Mnt2 XP 721740.1
GPI anchor
𝛼1,2-mannosyltransferase (brain and colon) Smp3 XP 715268.1
O-acyltransferase Gup1 XP 722305.1
∗Accession number at NCBI database.

The O-Man glycans were identified on brain proteogly-
cans more than 30 years ago [70], and the O-mannosylation
of 𝛼-dystroglycan (𝛼DG) has been the most studied. In
contrast to C. albicans, human O-Man glycans contain only
onemannose residue (linked to the protein) and are extended
with other monosaccharides (Figure 2). In C. albicans, theO-
Man glycans are composed of up to five mannose residues
[71]. Most of the mammalian O-mannosyl glycans are varia-
tions of the common tetrasaccharide core NeuAc𝛼2-3Gal𝛽1-
4GlcNAc𝛽1-2Man𝛼1-Ser/Thr, although branched structures
with 2,6-di-substituted mannose (GlcNAc-linked 𝛽1,2 and
𝛽1,6) have been described in brain glycoproteins [72].

In humans, the first mannose residue is added in the rER
by protein-O-mannosyl-transferase 1 (POMT1) [73] and 2
(POMT2) [74], homologous to C. albicans Pmt4 and Pmt2,
respectively (Table 3). Both enzymes perform their function
in an essential complex that uses Dol-P-Man as sugar donor
[75]. In humans, elongation of O-Man glycans is initiated in
the Golgi complex by transfer of GlcNAc to the Man residue
in the 2-OH position, mediated by the protein-O-mannosyl
N-acetylglucosaminyltransferase 1 (POMGnT1) that uses

UDP-GlcNAc as donor substrate (Figure 2) [76]. Alter-
natively, N-acetylglucosaminyltransferase IX (GnT-IX) can
make branched structures transferring GlcNAc in 𝛽1,6-
linkage to the O-Man glycan [22]. Further enzymes directly
involved in the elongation of O-Man glycans remain to be
identified among families of 𝛽1,4-galactosyltransferases and
𝛼2,3-sialyltransferases.

Another O-linked glycan structure (GalNac𝛽1-
3GlcNAc𝛽1-4Man𝛼1-Ser/Thr) has been reported in 𝛼DG
[77] (Figure 2). This structure is further phosphorylated
in the 6-position of O-mannose by the action of the
Protein-O-mannose kinase (POMK) [78]. The LARGE
and LARGE2 bifunctional glycosyltransferases act on
the phosphomannose structure producing repeating
units of [-3-xylose-𝛼1,3-glucuronic acid-𝛽1-] (Figure 2)
[79, 80]. Two other proteins, FUKUTIN and FKRLP, with
glycosyltransferase characteristics, are also involved in the
formation of human O-Man glycans, but their function
remains unknown.

As in humans, in C. albicans, this pathway starts in
the rER and finalises in the Golgi complex. The synthesis



International Journal of Microbiology 7

Table 3: Human and C. albicans homolog proteins involved in the O-mannosylation pathway.

Protein function Protein H/Ca Human ID∗ Candida ID∗ Id∗∗ Cov∗∗∗

Protein O-mannosyltransferase POMT2/Pmt2 NP 037514.2 XP 719907.1 36% 89%
Protein O-mannosyltransferase POMT1/Pmt4 NP 001129586.1 XP 714280.1 34% 80%
∗Accession number at NCBI database.
∗∗Identity and ∗∗∗coverage from BLAST alignment between human and C. albicans homolog sequences, respectively.
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Figure 2: The O-linked mannosylation pathway. Human O-
linked mannosyl glycans have been characterized mainly in alpha-
dystroglycan where POMT1/2 add the first mannose residue that
is further extended with other monosaccharides by the action of
glycosyltransferases. The mannose residue can also be phospho-
rylated by the action of POMK, allowing further modification by
disaccharide repeats of xylose and glucuronic acid synthesized by
LARGE and LARGE2. Fukutin and FKRP genes are needed for
correct glycosylation, but their roles remain to be clearly defined. In
C. albicans,mannosylation involves the addition of the firstmannose
residue by the action of Pmt1-5, and that is further extended with
four additional mannose residues by the action of Mnt 1 and Mnt2.

begins with the addition of one 𝛼-linked mannose residue
to Ser or Thr residues via an ester bond. This reaction takes
place in the rER lumen and is catalysed by the protein-
mannosyl transferases that use Dol-P-man as sugar donor
[81].This enzyme activity is performed by a family composed
of five members that are subclassified in three groups: the
Pmt1 (Pmt1/5), Pmt2 (Pmt2/6), and Pmt4 subfamilies [82]
(Figure 2). The proteins encoded by these subfamilies do not
have redundant activity in vivo, as each member has specific
substrates [81–83]. In addition, these enzymes interact among
them generating protein-protein interactions. In S. cerevisiae,
Pmt1 interacts in vivo with Pmt2, and combined disruption
of PMT1 and PMT2 results in more than 90% less enzyme
activity in vitro [84]. Another predominant complex includes
Pmt5 and Pmt3, but in the absence of Pmt5, Pmt3 can form a
complex with Pmt1, and Pmt2 can form a complex with Pmt5

when Pmt3 is disrupted [84]. Pmt1, Pmt5, and Pmt6 have no
human orthologs (Table 2).

Once the glycoproteins are transported to the Golgi com-
plex, the O-linked glycans are further elongated by the Golgi
𝛼1,2-mannosyltransferases Mnt1 and Mnt2 that have redun-
dant activities to fully elongate the glycans [71, 85].This man-
nan structure can also be phosphomannosylated, and in fact,
the phosphosugar attached to O-linked mannans represents
about 20% of total cell wall phosphomannan content [21].
However, the machinery involved in this process is different
of that described for N-linked mannans, as Mnt3 and Mnt5
do not add phosphomannose to O-linked mannans [51].
Mnt proteins have no human orthologs (Table 2).

As mentioned before, sialic acid has been described in C.
albicans [33, 36], and sialidase treatment has been shown to
increase binding of the peanut agglutinin that has specificity
for the Gal𝛽1,3GalNAc sequence present in human Core
1 O-glycans which has not been described in C. albicans.
This suggests that sialic acid could be part of C. albicans
O-linked mannans and the presence of uncharacterized
galactosyltransferases.

3.1. Functions in Humans. The best characterized mam-
malian O-linked Man glycoprotein is 𝛼DG (Figure 2). This
protein is a glycosylated peripheral membrane protein
involved in linking the cytoskeleton of neurons and muscle
cells to the basal lamina through interactions with extra-
cellular proteins; glycosylation of 𝛼DG is essential for its
function [86]. To date, mutations in seven glycosyltransferase
or glycosyltransferase-like genes have been reported to affect
the O-linked mannosylation pathway and are causative for
various forms of autosomal recessive congenital muscular
dystrophies associated with variable brain and ocular abnor-
malities [87]. As it was mentioned earlier, O-Man glycans in
humans are not highly mannosylated structures; they only
possess a single Man residue. This divergence is functionally
important in the immune systems recognition of pathogenic
yeast and fungal microorganisms, including C. albicans.
Highly mannosylated structures, as those found in yeast and
fungi, are recognized as foreign by both circulating antibodies
and elements of the complement system, including both the
classical and alternative pathways [88].

3.2. Functions in C. albicans. Loss of PMT2 or combined
disruption of PMT1 and PMT4 led to nonviable cells, indi-
cating that O-linked mannosylation is essential for growth
and cell viability [81]. In addition, incompleteO-linked man-
nan elaboration has been associated with rearrangements
in the cell wall composition, increasing sensitivity to cell
wall perturbing agents, defects in morphogenesis, reduced
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tissue adhesion, defective biofilm formation, and virulence
attenuation [71, 81, 89–91].

The O-linked mannans are key cell wall elements during
the C. albicans sensing by immune cells. This cell wall
component is sensed by TLR4 receptor [88], and loss of either
O-linked mannans or TLR4 receptor has a negative impact
on cytokine production by human PBMCs [88], on the
proinflammatory response of oral epithelial cells [92], and on
yeast killing by human polymorphonuclear cells [93]. Indeed,
TLR4−/− knockout mice are more susceptible to infections
caused by C. albicans due a defective immune response
against the fungus [94, 95]. Furthermore, it has been demon-
strated that simultaneous stimulation of dectin-1 and either
TLR2 or TLR4 significantly enhances cytokine production in
both human monocytes and macrophages [96, 97]. There-
fore, it has been hypothesized that recognition of O-linked
mannans plays a pivotal role, along with 𝛽1,3-glucan sensing,
in the establishment of a protective anti-Candida immune
response.

However, the relevance of O-linked mannans during
C. albicans sensing is not the same for different kinds of
immune cells, as yeast cells lacking both MNT1 and MNT2,
and therefore expressing truncated O-linked mannans at
the cell wall surface [71], are as good as the wild type
control cells to stimulate binding and cytokine production
by human dendritic cells [98]. Moreover, there are some C.
albicans strains whose immune sensing is independent of
recognition via TLR4, suggesting that the fungus might be
able to modulate the production of this cell wall component
[99].

4. The GPI Anchors

The GPI anchors are complex structures that comprise a
phospholipid tail, a glycan core, and a phosphoethanolamine
linker (Figure 3).This structure is attached to the C-terminus
of some eukaryotic proteins, allowing their anchoring to cell
membranes or thewall.The core glycan,mannose(𝛼1-2)man-
nose(𝛼1-6)mannose(𝛼1-4)glucosamine(𝛼1-6)myo-inositol is
highly conserved in eukaryotes, but it can be modi-
fied with other residues such as mannose, phosphoeth-
anolamine (Etn-P), galactose, sialic acid, and others. The
GPI synthetic pathway (Figure 3) initiates on the cytoplasmic
side of the rER with the transfer of GlcNAc from the UDP-
GlcNAc donor to phosphatidylinositol. This step requires
several proteins that form complex (GPI-GnT), PIG-A/Gpi3,
PIG-C/Gpi2, PIG-H/Gpi15, PIG-P/Gpi19, PIG-Q/Gpi1, and
PIG-Y/Eri1 (mammals/yeast) [100–107]; see Table 4.

Next, GlcNAc-PI is deacetylated by PIG-L/Gpi12, gener-
ating GlcN-PI [108], which requires crossing the rER mem-
brane to continue the synthetic pathway within the lumen.
This transport, as in the other proteinmodification described
above, is carried out by a rERflippase.Then, inositol acylation
takes place due to the acyltransferase activity of PIG-W/Gwt1,
being the donor acyl-CoA [109, 110]. GPI mannosylation
takes place using Dol-P-Man as mannose donor and begins
with action of the mannosyltransferase PIG-M/Gpi14 in
complex with PIG-X/Pbn1 that adds the first mannose (𝛼1,4-
linked) to GlcN [111]. The second (𝛼1,6-linked) and third
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Figure 3: The GPI anchorage pathway. GPIs are glycolopids that
act as a membrane anchor for many cell surface proteins and are
composed of an inositol molecule that is sequentially modified in
the ER with a Man3GlcN glycan and phosphoethanolamine groups.
Numbers show sequential steps for the synthesis of a Man3GlcN
glycan bearing GPI. A GPI-transamidase complex acts upon the
phosphoethanolamine group linked to the terminal mannose to add
the surface protein. The C. albicans Smp3 adds a fourth mannose
residue that is essential for protein transfer; but in humans it is
not essential for transamidation and its expression appears to be
restricted to brain and colon.

(𝛼1,2-linked) mannose units are transferred by PIG-V/Gpi18
and PIGB/Gpi10 mannosyltransferases, respectively [112–
115]. The enzyme Smp3 catalyses the addition of a fourth
mannose residue (𝛼1,2-linked) to Man-3 of the glycan core,
being an essential step in yeast and Candida cells, as it is
required for subsequent attachment of phosphoethanolamine
[116, 117]. Mammalian cells mostly transfer trimannosyl-
GPIs to proteins and do not require the addition of a
fourth mannose residue, but a human ortholog of the yeast
mannosyltransferase Smp3 that adds a fourth, 𝛼1,2-linked
Man to trimannosyl GPI precursors has been identified,
displaying high expression in brain and colon, suggesting
that Man

4
-GPIs elaboration could be tissue-specific [117]. In

C. albicans, Smp3 and is essential for viability and has been
proposed to be a potential antifungal target [118].

An Etn-P unit can be attached to the first mannose of
the glycan core as a side branch by PIG-N/Mcd4 and also to
the second mannose by a complex of PIG-F/Gpi11 and PIG-
G/Gpi7 [119–121]. Finally, a moiety of Etn-P is added to the
thirdmannose of the core, being this residue the one bound to
the protein through an amide link. A transferase association
between PIG-O/Gpi13 and PIG-F/Gpi11 is responsible for
this step [122, 123]. The GPI synthetic pathway is highly
conserved, but GPIs can be further modified in the lipid and
glycan moieties depending on genus, species, and protein
type [124].

The GPI-anchored proteins have a C-terminal sequence
that directs the attachment of a GPI anchor. The removal
of the C-terminal GPI signal sequence and its replacement
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Table 4: Human and C. albicans homologous proteins involved in GPI glycosylation.

Protein function Protein H/Ca Human ID∗ Candida ID∗ Id∗∗ Cov∗∗∗

GlcNAc-PI synthesis

PIG-A/Gpi3 NP 002632.1 XP 717439.1 49% 94%
PIG-C/Gpi2 NP 714969.1 XP 717493.1 31% 90%
PIG-H/Gpi15 NP 004560.1 XP 718197.1 33% 44%
PIG-P/Gpi19 NP 710149.1 XP 714916.1 33% 37%
PIG-Q/Gpi1 NP 683721.1 XP 714683.1 30% 42%
PIG-Y/Eri1 NP 001036081.1 XP 715355.1 64% 9%

GlcNAc-PI de-N-acetylation PIG-L/Gpi12 NP 004269.1 XP 723585.1 29% 55%
Inositol acylation PIG-W/Gwt1 NP 848612.2 XP 712842.1 28% 99%
𝛼1,6-mannosyltransferase PIG-M/Gpi14 NP 660150.1 XP 722653.1 38% 94%
𝛼1,6-mannosyltransferase PIG-X/Pbn1 NP 001159776.1 XP 716695.1 19% 24%
Etn-P transfer to Man-1 PIG-N/Mcd4 NP 789744.1 XP 716313.1 37% 95%
𝛼1,6-mannosyltransferase PIG-V/Gpi18 NP 060307.2 XP 713712.1 24% 82%
𝛼1,2-mannosyltransferase PIG-B/Gpi10 NP 004846.4 XP 721904.1 31% 97%
Etn-P transfer to Man-3 PIG-O/Gpi13 NP 001188413.1 XP 720956.1 38% 53%
Etn-P transfer to Man-2 and 3 PIG-F/Gpi11 NP 002634.1 XP 720511 35% 44%
Etn-P transfer to Man-2 PIG-G/Gpi7 NP 001120650.1 XP 710743.1 38% 47%
𝛼1,2-mannosyltransferase Smp3 NP 079439.2 XP 715333.1 26% 91%
Etn-P transfer to Man-2 Gpi7 NP 001120650.1 EEQ42670.1 40% 72%
GPI transamidase PIG-K/Gpi8 NP 005473.1 XP 711741.1 56% 78%

GAA1 NP 003792.1 XP 710522.1 35% 49%
PIG-S/Gpi17 NP 149975.1 XP 716135.1 27% 48%
PIG-T/Gpi16 NP 057021.2 XP 720200.1 29% 94%
PIG-U/Cdc91 NP 536724.1 XP 720773.1 24% 92%

Inositol deacylation PGAP-1/Bst1 NP 079265.2 XP 713657.1 31% 75%
sn-2 deacylation PGAP3/Per1 NP 219487.3 XP 712020.1 26% 95%
sn-2 acylation PGAP2/Cwh43 NP 001269969.1 XP 717850.1
∗Accession number at NCBI database.
∗∗Identity and ∗∗∗coverage from BLAST alignment between human and C. albicans homologous sequences, respectively.

with GPI on the lumen of rER are catalyzed by the GPI
transamidase (GPIT), which is a complex consisting of the
membrane proteins PIG-K/Gpi8, GAA-1, PIG-S/Gpi-17, PIG-
T/Gpi16, and PIG-U/Cdc91 [125, 126]. In the first step of the
GPIT-catalyzed reaction, the GPI signal sequence is cleaved
and the newly generated 𝛼-carbonyl group is attached via a
thioester linkage to the PIG-K subunit of GPIT. Nucleophilic
attack on the activated carbonyl by the amino group of the
terminal EtN-P residue of GPI regenerates GPIT and yields a
GPI-anchored protein.

After transfer, the inositol group introduced before man-
nosylation of the GPI precursor is removed in humans
and yeast by the orthologous PGAP1/Bst1 deacylase ER
proteins [127]. Yeast is able to remodel the shorter acyl chains
of the diacylglycerol shortly after transfer to either base-
labile C

26:0
/C
26:0

diacylglycerols or to a base-stable ceramide
consisting of C

18:0
phytosphingosine and a hydroxy-C

26:0

fatty acid. The remodeling initiates with the removal by
PGAP3/Per1 of the acyl chain at the sn-2 position of
the diacylglycerol [128, 129]. PGAP3-dependent removal of
unsaturated fatty acyl chains at the sn-2 position occurs
predominantly in the Golgi, whereas Per1 activity is located
in the rER.

Next, a C
26:0

acyl chain is introduced at sn-2 by the
O-acyltransferase Gup1 that is the only enzyme involved
in GPI anchor synthesis in C. albicans that has no human
ortholog [130]. The mammalian PGAP2 protein is involved
in the subsequent introduction of a saturated (C

18:0
) fatty

acid at sn-2 [131]. Mutations in the yeast gene that encodes
a homolog of PGAP2, CWH43, albeit a much larger protein,
cause cell wall abnormalities consistent with defects in cell
surface anchorage of GPI proteins. In mammals, remodeling
at sn-2 requires prior inositol deacylation by PGAP1 [129].
ThePGAP3- and PGAP2-dependent remodeling activities, in
turn, are necessary for theGPI-anchored proteins to associate
with lipid rafts.

4.1. Functions in Humans. The obvious role for GPI-anchors
is the attachment of proteins to cell surface. Examples include
cell surface receptors (e.g., folate receptor, CD14), cell adhe-
sion molecules (e.g., neural cell adhesion molecule), cell sur-
face hydrolases (e.g., alkaline phosphatase), and complement
regulatory proteins (e.g., decay-accelerating factor [CD55]).
Human diseases arise by failures in this posttranslational
process, stressing its importance for proper function of
human cells. The paroxysmal nocturnal hemoglobinuria is
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a consequence of lower surface expression of GPI-proteins,
due to clonal acquired mutations in PIG-A [132]. Inherited
mutation in the promoter region of PIG-M impairs the
binding of the transcription factors, resulting in abrogation of
GPI mannosylation, leading to propensity to venous throm-
bosis and seizures [133]. Other congenital diseases involving
defective PIG anchoring have been recently described [134].

4.2. Functions inC. albicans. As in human cells, GPI synthesis
is essential for S. cerevisiae growth [101, 135]. C. albicans has
115 putative GPI-proteins, with diverse predicted functions,
including adhesion to host tissues [136]. C. albicans GPI7
leads to an aberrant cell wall composition with increased
chitin content and less protein abundance [137], while
cells lacking Smp3 mannosyltransferase are nonviable [118].
Recently, it has been demonstrated that defects inGPI synthe-
sis affect hypha growth [138]. Yadav et al. propose that Gpi2
and Gpi19 subunits of the GPI-GnT complex regulate ergos-
terol synthesis and RAS signaling, which explains the influ-
ence of GPI synthesis in the dimorphic switch [139]. Adhesins
of the Als family are known to be GPI-proteins [140],
so it is not surprising that virulence is attenuated in GPI
mutants.

5. The Glycosylation Pathways as Potential
Drug Targets against Fungal Infections

The information gathered in the last decades about the
human glycosylation pathways has helped to differentiate the
normal processes from those found in neoplastic cells, and
these are now explored as potential strategies to treat cancer
[141, 142]. Since protein glycosylation is a key process for C.
albicans fitness and virulence attributes [4, 143], it is assumed
that the development of inhibitors for any of the glycosylation
pathwaysmay assist in treatment of candidiasis. Tunicamycin
is one of the oldest N-linked glycosylation inhibitors that
has been thoroughly characterised over the last decades. It
affects the elaboration of the N-linked glycan core [144],
and tunicamycin-treated cells of C. albicans lose the viability
[21] and the ability to generate biofilms [64], making this
molecule a potential anti-C. albicans drug. However, the
UDP-N-acetylglucosamine, dolichol phosphate GlcNAc-1-P
transferase, the molecular target of this compound, is equally
sensitive in both human and fungal cells [64].

A promising strategy for treatment of C. albicans infec-
tions could be found in the rER glucosidase inhibitors, which
have been used in the experimental control of some viruses
[145–149]. We have previously shown that C. albicans cells
require processing of the N-linked glycan core in order to
elongate their N-linked mannans, and loss of either glucosi-
dase I or II led to virulence attenuation [21]. Since the human
cells have a bypassing strategy for glucosidase trimming
via the endomannosidase enzyme activity, it is feasible to
conceive the potential low cytotoxicity of these drugs on the
host cells. Celgosivir [150], PBDNJ0804-a deoxynojirimycin
derivative [149], and CM-10-18 [147] are rER glucosidase I
inhibitors that could show anti-C. albicans activity.

The O-linked mannosylation pathway can also be tar-
geted for drug design. It was recently demonstrated that

the rhodanine-3-acetic acid derivative OGT2468 is a PMT
inhibitor in S. cerevisiae [151] and that it likely affects the same
biosynthetic pathway in C. albicans. Whether this compound
affects or not the elaboration of O-linked Man glycoprotein
in human cells remains to be addressed.

The enzymes involved in GPI synthesis are also potential
targets to develop new antifungal drugs. Gepinacin and
E1210 were found to inhibit the fungal acyltransferase Gwt1,
impairing the growth of fungal pathogens. Despite the func-
tional similarity, gepinacin has no effect on the mammalian
ortholog PIG-W. Assays on C. albicans cells treated with
gepinacin indicate that they overexpose 𝛽-glucans on the
wall surface, which triggers a better macrophage response
[152–154]. Development of Smp3 or Gup1 inhibitors would
be of value in view of their nonessential nature or absence in
humans, respectively.

6. Conclusions

Metazoa (animals) and fungi derive from a common ancestor
that existed ∼1 billion years ago, nonetheless the basis of
protein glycosylation pathways is strikingly conserved in spite
of this period. In this review,we can look at the commonbases
and differences that emerge when comparing glycosylation
mechanisms in C. albicans and humans.

The study of C. albicans glycosylation machinery is an
important step to identify pharmacological targets to treat
local or systemic candidiasis. Ideal pharmacological targets
are represented by those elements only present inCandida. In
theN-linked glycosylation pathway at least 16 GTs participate
in mannan synthesis and are not present in humans (see
Table 2), making this pathway an attractive alternative for
drug design.Thus far, some promising approaches have been
done with glucosidase inhibitors, but their toxicity in human
cells remains to be addressed. In addition, rER-mannosidase
inhibitors could be used as an alternative approach, as fungal
cells only contain onemannosidase class Iwithin the rER, and
its loss is associated with virulence attenuation [21].

The above data indicate that fungal glycosylation path-
ways are promising for inhibitory compound screening that
are species specific, both because of the presence of many
nonhomologous proteins identified in C. albicans, partic-
ularly in the N-glycosylation pathway, and also because
of the presence of homologous proteins that have a low
degree of identity. Further studies should focus on developing
compounds to inhibit the essential functions of glycosylation
pathways taking into account these facts.
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and H. M. Mora-Montes, “Role of the fungal cell wall in patho-
genesis and antifungal resistance,” Current Fungal Infection
Reports, vol. 6, no. 4, pp. 275–282, 2012.

[144] N. P. J. Price and B. Tsvetanova, “Biosynthesis of the tuni-
camycins: a review,” Journal of Antibiotics, vol. 60, no. 8, pp. 485–
491, 2007.

[145] S. P. Lim, Q. Y. Wang, C. G. Noble et al., “Ten years of dengue
drug discovery: progress and prospects,”Antiviral Research, vol.
100, no. 2, pp. 500–519, 2013.

[146] J. Chang, T. M. Block, and J. T. Guo, “Antiviral therapies
targeting host ER alpha-glucosidases: current status and future
directions,” Antiviral Research, vol. 99, no. 3, pp. 251–260, 2013.

[147] J. Chang, T. K.Warren, X. Zhao et al., “Smallmolecule inhibitors
of ER 𝛼-glucosidases are active against multiple hemorrhagic
fever viruses,” Antiviral Research, vol. 98, no. 3, pp. 432–440,
2013.

[148] J. D. Howe, N. Smith, M. J. Lee et al., “Novel imino sugar alpha-
glucosidase inhibitors as antiviral compounds,” Bioorganic and
Medicinal Chemistry, vol. 21, no. 16, pp. 4831–4838, 2013.

[149] X.Qu, X. Pan, J.Weidner et al., “Inhibitors of endoplasmic retic-
ulum 𝛼-glucosidases potently suppress hepatitis C virus virion
assembly and release,” Antimicrobial Agents and Chemotherapy,
vol. 55, no. 3, pp. 1036–1044, 2011.



16 International Journal of Microbiology

[150] D. Durantel, “Celgosivir, an 𝛼-glucosidase I inhibitor for the
potential treatment of HCV infection,” Current Opinion in
Investigational Drugs, vol. 10, no. 8, pp. 860–870, 2009.

[151] J. Arroyo, J. Hutzler, C. Bermejo et al., “Functional and genomic
analyses of blocked protein O-mannosylation in baker’s yeast,”
Molecular Microbiology, vol. 79, no. 6, pp. 1529–1546, 2011.

[152] C. A. McLellan, L. Whitesell, O. D. King, A. K. Lancaster, R.
Mazitschek, and S. Lindquist, “Inhibiting GPI anchor biosyn-
thesis in fungi stresses the endoplasmic reticulum and enhances
immunogenicity,” ACS Chemical Biology, vol. 7, no. 9, pp. 1520–
1528, 2012.

[153] C. A. McLellan, L. Whitesell, O. D. King, A. K. Lancaster, R.
Mazitschek, and S. Lindquist, “Correction to inhibiting GPI
anchor biosynthesis in fungi stresses the endoplasmic reticulum
and enhances immunogenicity,” ACS Chemical Biology, vol. 9,
no. 4, p. 1061, 2014.

[154] N. Watanabe, M. Miyazaki, T. Horii, K. Sagane, K. Tsukahara,
and K. Hata, “E1210, a new broad-spectrum antifungal, sup-
presses Candida albicans hyphal growth through inhibition
of glycosylphosphatidylinositol biosynthesis,” Antimicrobial
Agents and Chemotherapy, vol. 56, no. 2, pp. 960–971, 2012.


