

Journal of the Saudi Heart Association

Volume 33 | Issue 4

Article 14

2021

Zwolle Risk Score for Safety Assessment of Same-Day Discharge after Primary Percutaneous Coronary Intervention

Follow this and additional works at: https://www.j-saudi-heart.com/jsha

Part of the Cardiology Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation

Ali Shah, Jehangir; Ahmed Solangi, Bashir; Batra, Mahesh Kumar; Khan, Kamran Ahmed; Shah, Ghazanfar Ali; Ali, Gulzar; Zehra, Mehwish; Hassan, Muhammad; Zubair, Muhammad; and Karim, Musa (2021) "Zwolle Risk Score for Safety Assessment of Same-Day Discharge after Primary Percutaneous Coronary Intervention," *Journal of the Saudi Heart Association*: Vol. 33 : Iss. 4 , Article 14. Available at: https://doi.org/10.37616/2212-5043.1283

This Original Article is brought to you for free and open access by Journal of the Saudi Heart Association. It has been accepted for inclusion in Journal of the Saudi Heart Association by an authorized editor of Journal of the Saudi Heart Association.

Zwolle Risk Score for Safety Assessment of Same-day Discharge after Primary Percutaneous Coronary Intervention

Jehangir Ali Shah ^a,^{*}, Bashir Ahmed Solangi ^a, Mahesh Kumar Batra ^a, Kamran Ahmed Khan ^a, Ghazanfar Ali Shah ^b, Gulzar Ali ^a, Mehwish Zehra ^c, Muhammad Hassan ^d, Muhammad Zubair ^a, Musa Karim ^e

^a Adult Cardiology, National Institute of Cardiovascular Diseases, Karachi, Pakistan

^b Adult Cardiology, National Institute of Cardiovascular Diseases, TMK, Pakistan

^c Medicine, Jinnah Post Graduate Medical Center, Karachi, Pakistan

^d Adult Cardiology, National Institute of Cardiovascular Diseases, Sukkur, Pakistan

^e Research, National Institute of Cardiovascular Diseases, Karachi, Pakistan

Abstract

Objectives: The Zwolle risk score (ZRS) has been considered to be a useful tool for the systematic evaluation of patients for early discharge after primary percutaneous coronary intervention (PCI). Therefore, aim of this study was to evaluate the clinical utility of ZRS for the same-day discharge strategy after primary PCI at a tertiary care cardiac center of Karachi, Pakistan.

Methods: This study was conducted at a tertiary care cardiac center between August 2019 and July 2020. Patients discharged within 24 h (same-day) of the primary PCI procedure were included. Patients were stratified as high- and low-risk based on ZRS score; low-risk (\leq 3) and high-risk (\geq 4). All patients were followed during 30-days post-procedure period for major adverse cardiac events (MACE).

Results: Out of 487 patients, 83.2% (405) were male and mean age was 54.6 ± 10.87 years. Mean ZRS was 2.34 ± 1.64 with 16.0% (78) patients in high-risk (\geq 4) group. 30-days MACE rate was observed to be 5.3% (26) with significantly higher rate among high-risk patients as compared to low-risk patients 12.8% (10) vs. 3.9% (16); p = 0.004 respectively with OR of 3.61 [1.57-8.29]. The area under the curve (AUC) of ZRS for prediction of 30-day MACE was 0.67 [95% CI: 0.58-0.77], ZRS \geq 4 had sensitivity of 38.5% and specificity of 85.2% with AUC of 0.62 [95% CI: 0.50-0.74] for prediction of 30-day MACE.

Conclusion: ZRS showed moderate discriminating potential in identifying patients with high-risk of MACE at 30-day after same-day discharge after primary PCI.

Keywords: Early discharge, Primary percutaneous coronary intervention, Zwolle risk score, ST-segment elevation myocardial infarction, Major adverse cardiac events

1. Introduction

I nadequate blood supply to the myocardium resulting from severe narrowing of the coronary arteries, known as atherosclerotic cardiovascular disease or coronary artery disease (CAD), remains the major contributor to the increasing morbidity and mortality all across the globe [1]. The acute manifestation of the disease, known as acute coronary syndrome (ACS), comprises of ST-segment elevation myocardial infarction (STEMI), Non-STEMI (NSTEMI), and unstable angina (UA). Imbalance supply and demand of oxygen can cause substantial and sustained ischaemia resulting in

* Corresponding author at: National Institute of Cardiovascular Diseases (NICVD), Rafiqui (H.J.) Shaheed Road, Karachi, 75510, Pakistan.

Received 14 September 2021; revised 15 October 2021; accepted 25 October 2021. Available online 12 November 2021.

E-mail address: dr_shah_80@hotmail.com (J.A. Shah).

death of myocardiocytes which generally termed as mvocardial infarction (MI) [2]. Transmural ischaemia in cases of STEMI involve full thickness of the myocardium, while NSTEMI does not spread to full thickness, hence early detection and restoration of blood flow is crucial to minimize the infarct size and preservation of myocardium [3,4]. Time is crucial in the management of STEMI and various initiatives have been taken to minimize the ischemic time. In the current clinical practice guidelines, the primary percutaneous coronary intervention (PCI) within the 12 h window period, starting from time of onset of symptoms, remains the recommended reperfusion therapy [3,4].

A significant improvements in the prognosis has been witnessed for the STEMI patients in the recent years, which can be attributed to the adoption of evidence based medicines and therapies and significant advancements it the treatment modalities. However, rate of post- STEMI complications and recurrent ischemia is still substantially high among these patients [5-8]. Occurrence of severe, occasionally life-threatening, complications such as reinfarction, stent thrombosis, malignant arrhythmias, heart failure, and other mechanical complications are associated with STEMI [9]. This necessitates coronary care unit monitoring of these patients for at least 24-48 h. With the increasing number of patients with CAD requiring extended post-procedure hospital care, identification of low-risk patients has become crucial in whom early discharge could be safe. Reduced post-procedure hospital stay can be beneficial for patients as well as it can have substantial financial implications for healthcare systems of low and middle-income countries with funding and resource constraints [10]. Safety and feasibility of early discharge (within 48-72 h of procedure) has been established by various studies [11–14]. Also same-day discharge strategy showed promising results with lower rate of major adverse cardiac events after 30-days of the procedure [10].

A systematic evaluation of candidate patients for decision making regarding early discharge is important to optimize clinical outcomes of primary PCI. Hence, Zwolle Risk Score (ZRS) was developed to guide physicians' decision making regarding early discharge [15]. Its utility has been evaluated by various studies for 72 h discharge [16–18], however; performance of ZRS in same-day discharge strategy for primary PCI has never been evaluated.

2. Objectives

Therefore, aim of this study was to evaluate the clinical utility of ZRS for the same-day discharge

Abbreviations					
CVD NSTEMI STEMI PCI ZRS MACE TIMI ROC AUC CI SD OR	cardiovascular diseases non-ST elevation myocardial infarction ST elevation myocardial infarction percutaneous coronary intervention Zwolle risk score major adverse cardiac events Thrombolysis in Myocardial Infarction receiver operating characteristic area under the curve confidence interval standard deviation odds ratio				

strategy in patients with STEMI underwent primary PCI at a tertiary care cardiac center of Karachi, Pakistan.

3. Methods

This prospective observational cohort study is a sub-group analysis of a previously reported study by Shah JA et al. [10]. This study was conducted at a tertiary care cardiac hospital of Karachi, Pakistan between August 2019 and July 2020. Study included consecutive patients with STEMI that were discharged to home by treating physician within in 24 h (same-day) of primary PCI procedure. This study was approved by the ethical review board of the institution and consent for participation, and followup was taken from all the patients. A detailed descriptions of patient recruitment, management, and evaluation criteria are presented elsewhere [10]. Patients with myocardial infarction complicated by cardiogenic shock, atrioventricular (AV) block, or history of prior cardiac surgery or intervention or patients lost to follow-up at 30-day (3.4% (17)) [10] were excluded from the study.

Along with demographic and clinical characteristics, described elsewhere [10], the Zwolle risk score (ZRS) was calculated as per the scoring criteria defined by De Luca G et al. [15] based on age, Killip class at presentation, total ischemic time (defined as symptom onset to device activation time), anterior wall myocardial infarction (AWMI), pre-procedure TIMI (Thrombolysis in Myocardial Infarction) flow grade, and number of diseased vessels. Patients were categorized into high- and low-risk group based on additive score; low-risk (<3) and high-risk (>4). All patients were followed during 30-days post-procedure period, telephonic or physical, and major adverse cardiac events (MACE) were noted which included mortality, re-infarction, repeat revascularization, cerebrovascular events, any bleeding event, or unplanned hospitalization due to heart failure.

IBM SPSS software version 21 was used for the analysis of data. Appropriate frequency percentage or mean \pm standard deviation (SD)/median [interquartile range (IQR)] were calculated. Patients in lowand high-risk group were compared for demographic and clinical characteristics and 30-day outcomes with the help of appropriate independent sample t-test/ Mann–Whitney U test and Chi-square test/Fisher's exact test. The area under the curve (AUC) along with its 95% confidence interval (95%) were obtained for ZRS to predict 30-day MACE using the receiver operating characteristic (ROC) curve analysis. Crude odds ratio (95% CI) for 30-day MACE and outcomes were computed for high-risk group. P-value ≤ 0.05 was considered statistically significant.

4. Results

A total of 487 same-day discharged patients were included, out of which 83.2% (405) were male patients and mean age was 54.6 \pm 10.87 years with 14.8% (72) elderly (>65 years) patients. More than 90% (444) of the patients were in Killip class I at presentation. Mean ZRS was 2.34 \pm 1.64 with 16.0% (78) patients in high-risk group. Baseline characteristics, angiographic findings, procedural characteristics and post-procedure complications by highand low-risk groups are presented in Table 1.

Thirty-day MACE rate was observed to be 5.3% (26), with a significantly higher rate among high-risk group as compared to low-risk group 12.8% (10) vs. 3.9% (16); p = 0.004 respectively. High-risk group had significantly higher risk of 30-day MACE with OR of 3.61 [1.57–8.29]. Similarly, risk of 30-day all-cause mortality was higher among patients in high-risk group with OR of 5.6 [1.76–17.84] with 30-day all-cause mortality rate of 7.7% (6) vs. 1.5% (6); p = 0.006 respectively. The 30-day major adverse cardiac events rate stratified by low- and high-risk groups are presented in Table 2.

The ROC of ZRS for prediction of 30-day MACE is presented in Fig. 1. The AUC of ZRS for prediction of 30-day MACE was found to be 0.67 [95% CI: 0.58-0.77], cut-off criteria of ZRS \geq 4 for a high-risk group had a sensitivity of 38.5% and specificity of 85.2% with AUC of 0.62 [95% CI: 0.5-0.74] for prediction of 30-day MACE.

5. Discussion

The aim of this study was to assess the utility of the ZRS for the same-day discharge strategy after primary PCI. ZRS showed moderate discriminating power in identifying patients at higher risk of 30-day MACE with AUC of 0.67 [0.58–0.77] and MACE rate of 12.8% for the patients with ZRS of \geq 4 (high-risk)

as against the 3.9% among patients with ZRS of <3(low-risk).Safety of early discharge strategy (48-72 h) after primary PCI with appropriately planned follow-up has been well established for low-risk patients in various studies. Zwolle risk score is among the most commonly used systematic assessment criteria for the identification of low-risk patients [19]. Some studies have also used NTproBNP (<200 pg/mL) [9] and CADILLAC risk score \leq 2,28 for the identification of candidate patients for early discharge [20]. Although data are scarce regarding same-day discharge strategy after primary PCI, only few studies so far have reported favorable outcomes of same-day discharge strategy in elective procedures [21-23] and only single observational study so far has been reported for primary PCI patients [11].

In a study conducted by Lim TW et al. [16] ZRS has shown to have excellent discriminative capability in identifying patients at high-risk of 30-day MACE and mortality among patients discharged within 72 h of primary PCI with AUC of 0.79 [95% CI: 0.68–0.90]. Tralhão A et al. [17] further provided evidence regarding applicability of ZRS for safe discharge of patients within 72 h of primary PCI with excellent AUC of 0.94 [95% CI: 0.91-0.97]. Schellings DA et al. [9] reported added advantage of baseline N-terminal pro-brain natriuretic peptide (NT-proBNP) along with ZRS to optimize the accuracy of identification of low-risk patients eligible for early (within 72 h) discharge after primary PCI. The combination of NT-proBNP ≤200 pg/mL and ZRS <2 had the optimal accuracy for predicting low-risk patients. In comparison to these earlier studies, the performance of ZRS was observed more specific (85.2%) than sensitive (38.5%) in identifying patients at high-risk of 30-day MACE after discharge within 24 h of procedure with moderate discriminating power (AUC = 0.67 [95% CI: 0.58-0.77]).

Though same-day discharge strategy has substantial implications for patients as well as for the healthcare system in optimizing and rationalizing the use of resources, optimization of patient selection is also equally important to maintain the effectiveness of primary PCI. The ZRS score, otherwise established risk stratification modality, failed to attain optimal discriminating value to detect the patients at higher risk of 30-day MACE after primary PCI. Hence, risk stratification tools, such as ZRS need calibration for identification of candidate patients for the same-day discharge after primary PCI. Echocardiographic and angiographic findings along with careful clinical evaluation of patients can provide additional power to the criteria of categorization [17]. Additionally due importance

Characteristics	Total	Zwolle risk score (ZRS)		P-value
		Low-risk (≤3)	High-risk (≥4)	
Total (N)	487	409	78	_
Gender				
Male	83.2% (405)	84.1% (344)	78.2% (61)	0.202
Female	16.8% (82)	15.9% (65)	21.8% (17)	
Age (years)	54.6 ± 10.87	53.17 ± 10.42	62.08 ± 10.14	< 0.001*
\leq 45 years	21.1% (103)	23.7% (97)	7.7% (6)	0.001*
46–65 years	64.1% (312)	64.8% (265)	60.3% (47)	0.444
> 65 years	14.8% (72)	11.5% (47)	32.1% (25)	< 0.001*
KILLIP Class				
Ι	91.2% (444)	100% (409)	44.9% (35)	0.006*
П	8.8% (43)	0% (0)	55.1% (43)	
Duration of CP (minutes)	263 [150-450]	240 [150-450]	300 [135-420]	0.299
Type of myocardial infarction				
Anterior	53.2% (259)	47.4% (194)	83.3% (65)	< 0.001*
Inferior	40.5% (197)	45.7% (187)	12.8% (10)	<0.001*
Posterior	4.3% (21)	4.6% (19)	2.6% (2)	0.407
Lateral	2.1% (10)	2.2% (9)	1.3% (1)	0.600
Co-morbid conditions and risk fa		2.270 (3)	1.5 /6 (1)	0.000
Hypertension	49.9% (243)	48.4% (198)	57.7% (45)	0.133
Diabetes	36.6% (178)	37.9% (155)	29.5% (23)	0.155
Family history of IHD	4.7% (23)	4.9% (20)	3.8% (3)	0.690
5				
Smoking	33.9% (165)	33.7% (138)	34.6% (27)	0.881
Obesity	4.5% (22)	4.6% (19)	3.8% (3)	0.755
Access for the procedure	40 50/ (241)	40.0% (204)		0.00
Radial	49.5% (241)	49.9% (204)	47.4% (37)	0.693
Femoral	50.5% (246)	50.1% (205)	52.6% (41)	
Number of vessels involved				0.007
Single vessel disease	23% (112)	23% (94)	23.1% (18)	0.986
Two vessel disease	37.8% (184)	39.9% (163)	26.9% (21)	0.031*
Three vessel disease	39.2% (191)	37.2% (152)	50% (39)	0.033*
Culprit coronary artery				
Left main	1.8% (9)	1.7% (7)	2.6% (2)	0.608
LAD	57.1% (278)	52.8% (216)	79.5% (62)	< 0.001*
RCA	27.5% (134)	30.6% (125)	11.5% (9)	< 0.001*
LCX	11.7% (57)	13% (53)	5.1% (4)	0.049*
Ramus	1.2% (6)	1.5% (6)	0% (0)	0.282
Diagonal	0.6% (3)	0.5% (2)	1.3% (1)	0.412
Pre-procedural TIMI (thrombolys) flow grade		
0	48.9% (238)	46.7% (191)	60.3% (47)	0.028*
Ι	42.9% (209)	46% (188)	26.9% (21)	0.002*
II	5.1% (25)	5.1% (21)	5.1% (4)	0.998
III	3.1% (15)	2.2% (9)	7.7% (6)	0.01*
Post-procedural TIMI (thromboly	sis in myocardial infarction	n) flow grade		
0	1% (5)	0.2% (1)	5.2% (4)	< 0.001*
Ι	0.2% (1)	0% (0)	1.3% (1)	0.022*
П	14.4% (69)	12% (48)	27.3% (21)	< 0.001*
III	84.3% (403)	87.8% (352)	66.2% (51)	< 0.001*
Post-procedure complication(s)	· · ·			
Total	0.82% (4)	0.73% (3)	1.28% (1)	0.504
Major bleeding	0.21% (1)	0.24% (1)	0% (0)	_
VT	0.21% (1)	0.24% (1)	0% (0)	_
Dissection	0.21% (1)	0% (0)	1.28% (1)	_
Other	0.21%(1) 0.21%(1)	0.24% (1)	0% (0)	_
*significant at 5%.	0.21/0 (1/	0.21/0 (1)	070 (0)	

 Table 1. Demographic and clinical characteristics, angiographic and procedural details, and post-procedure complications by high- and low-risk group.

 Characteristics
 Total

 Zwolle risk score (ZRS)
 P-value

*significant at 5%.

 \overrightarrow{IHD} = ischemic heart diseases, CP = chest pain, RCA = right coronary artery, LAD = left anterior descending artery, LCx = left circumflex artery, VT = ventricular tachycardia.

Characteristics	Total	Zwolle risk score (ZRS)		P-value
		Low-risk (≤3)	High-risk (≥4)	
N	487	409	78	
MACE	5.3% (26)	3.9% (16)	12.8% (10)	0.004*
All-cause death	2.5% (12)	1.5% (6)	7.7% (6)	0.006*
Re-infarction	0.6% (3)	0.5% (2)	1.3% (1)	0.408
Bleeding events	0.6% (3)	0.7% (3)	0% (0)	>0.999
Cerebrovascular events	1.4% (7)	1.5% (6)	1.3% (1)	>0.999
Hospitalization for HF	0.4% (2)	0.5% (2)	0% (0)	>0.999
Repeat-revascularization	1.4% (7)	1% (4)	3.8% (3)	0.085

Table 2. 30-day major adverse cardiac event stratified by low- and high-risk group.

*significant at 5%.

HF = heart failure, MACE = major adverse cardiac event.

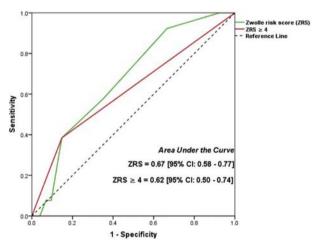


Fig. 1. Receiver operating characteristic of Zwolle risk score for prediction of 30-day major adverse cardiac events.

should be given to various patient related factors such as ejection fraction, renal function, frailty score, age, presence of arrhythmias, and hemodynamic status to help prevent unnecessary discharge of higher risk patients. Along with appropriate measures to improve cardiac rehabilitation, patient education, and drug titration as some researchers have shown concern regarding these with the early discharge strategy [24].

Even though this is first study evaluating utility of ZRS for the prediction of high-risk patients after discharge within 24 h of primary PCI. However, limitations of the study include single center coverage, relatively small sample size, and nonrandomized study design. Hence, further large scale randomized studies are needed to validate the use of ZRS to facilitate physicians in clinical decision making regarding same-day discharge.

6. Conclusion

The ZRS showed moderate discriminating potential in identifying patients with high-risk of MACE at 30-day after same-day (within 24 h) discharge after primary PCI. Further large scale randomized studies are needed for the calibration of ZRS to optimize categorization of patients that can potentially benefit from the same-day discharge after primary PCI.

Disclaimer

None to declare.

Author contributions

Conception: Jehangir Ali Shah, Bashir Ahmed Solangi. Literature review: Jehangir Ali Shah, Mahesh Kumar Batra, Kamran Ahmed Khan, Gulzar Ali, Muhammad Hassan. Methodology: Jehangir Ali Shah, Mahesh Kumar Batra, Ghazanfar Ali Shah, Gulzar Ali, Muhammad Zubair, Musa Karim. Software, Analysis and/or Interpretation: Jehangir Ali Shah, Ghazanfar Ali Shah, Mehwish Zehra, Muhammad Hassan, Muhammad Zubair, Musa Karim. Investigation, Resources: Jehangir Ali Shah, Bashir Ahmed Solangi, Mahesh Kumar Batra, Kamran Ahmed Khan, Ghazanfar Ali Shah, Gulzar Ali, Mehwish Zehra, Muhammad Hassan. Data collection and/or Processing: Mahesh Kumar Batra, Kamran Ahmed Khan, Gulzar Ali, Muhammad Hassan, Muhammad Zubair, Musa Karim. Writer-Original draft: Jehangir Ali Shah, Kamran Ahmed Khan, Ghazanfar Ali Shah, Gulzar Ali, Mehwish Zehra, Muhammad Hassan. Writing- Review & Editing: Jehangir Ali Shah, Bashir Ahmed Solangi, Kamran Ahmed Khan, Mehwish Zehra. Visualization: Jehangir Ali Shah, Mehwish Zehra. Supervision: Bashir Ahmed Solangi, Kamran Ahmed Khan. Project Administration: Jehangir Ali Shah, Muhammad Zubair, Musa Karim. Fundings: Jehangir Ali Shah, Bashir Ahmed Solangi. Other: Jehangir Ali Shah, Bashir Ahmed Solangi, Mahesh Kumar Batra, Kamran Ahmed Khan, Ghazanfar Ali

336

Shah, Gulzar Ali, Mehwish Zehra, Muhammad Hassan, Muhammad Zubair, Musa Karim.

Source of funding

None to declare.

Conflict of interest

None to declare.

References

- Vogel B, Claessen BE, Arnold SV, Chan D, Cohen DJ, Giannitsis E, et al. ST-segment elevation myocardial infarction. Nat Rev Dis Primers 2019;5(1):1–20. https://doi.org/ 10.1038/s41572-019-0090-3.
- [2] Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth universal definition of myocardial infarction (2018). Eur Heart J 2019;40(3):237–69. https:// doi.org/10.1093/eurheartj/ehy462.
- [3] Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 2018;39(2):119-77. https:// doi.org/10.1093/eurheartj/ehx393.
- [4] Jneid H, Addison D, Bhatt DL, Fonarow GC, Gokak S, Grady KL, et al. 2017 AHA/ACC clinical performance and quality measures for adults with ST-elevation and non–STelevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Performance Measures. Circ Cardiovasc Qual Outcomes 2017;10(10):e000032. https://doi.org/10.1161/ hcq.000000000000032.
- [5] Jernberg T, Hasvold P, Henriksson M, Hjelm H, Thuresson M, Janzon M. Cardiovascular risk in postmyocardial infarction patients: nationwide real world data demonstrate the importance of a long-term perspective. Eur Heart J 2015;36(19):1163–70. https://doi.org/10.1093/ eurheartj/ehu505.
- [6] Desta L, Jernberg T, Löfman I, Hofman-Bang C, Hagerman I, Spaak J, et al. Incidence, temporal trends, and prognostic impact of heart failure complicating acute myocardial infarction: the SWEDEHEART Registry (Swedish Web-System for Enhancement and Development of Evidence-Based Care in Heart Disease Evaluated According to Recommended Therapies): a study of 199,851 patients admitted with index acute myocardial infarctions, 1996 to 2008. JACC Heart Fail 2015;3(3): 234–42. https://doi.org/10.1016/j.jchf.2014.10.007.
- [7] Krishnan U, Brejt JA, Schulman-Marcus J, Swaminathan RV, Feldman DN, Goyal P, et al. Temporal trends in the clinical acuity of patients with ST-segment elevation myocardial infarction. Am J Med 2018;131(1):100–9. https://doi.org/ 10.1016/j.amjmed.2017.06.040.
- [8] Sugiyama T, Hasegawa K, Kobayashi Y, Takahashi O, Fukui T, Tsugawa Y. Differential time trends of outcomes and costs of care for acute myocardial infarction hospitalizations by ST elevation and type of intervention in the United States, 2001–2011. J Am Heart Assoc 2015;4(3): e001445. https://doi.org/10.1161/JAHA.114.001445.
- [9] Schellings DA, Adiyaman A, Giannitsis E, Hamm C, Suryapranata H, Ten Berg JM, et al. Early discharge after primary percutaneous coronary intervention: the added value of N-terminal pro-brain natriuretic peptide to the Z

wolle risk score. J Am Heart Assoc 2014;3(6):e001089. https://doi.org/10.1161/JAHA.114.001089.

- [10] Shah JA, Saghir T, Ahmed B, ul Haq SA, Kumar R, Mengal MN, et al. Safety and feasibility of same day discharge strategy for primary percutaneous coronary intervention. Global Heart 2021;16(1):46. https://doi.org/ 10.5334/gh.1035.
- [11] Kotowycz MA, Cosman TL, Tartaglia C, Afzal R, Syal RP, Natarajan MK. Safety and feasibility of early hospital discharge in ST-segment elevation myocardial infarction–A prospective and randomized trial in low-risk primary percutaneous coronary intervention patients (the safe-depart trial). Am Heart J 2010;159(1):117.e1–6. https://doi.org/ 10.1016/j.ahj.2009.10.024.
- [12] Jones DA, Rathod KS, Howard JP, Gallagher S, Antoniou S, De Palma R, et al. Safety and feasibility of hospital discharge 2 days following primary percutaneous intervention for STsegment elevation myocardial infarction. Heart 2012;98(23): 1722–7. https://doi.org/10.1136/heartjnl-2012-302414.
- [13] Laurencet M-E, Girardin F, Rigamonti F, Bevand A, Meyer P, Carballo D, et al. Early discharge in low-risk patients hospitalized for acute coronary syndromes: feasibility, safety and reasons for prolonged length of stay. PloS One 2016;11(8):e0161493. https://doi.org/10.1371/journal.pone. 0161493.
- [14] Novobílský K, Kryza R, Černý P, Kaučák V, Mrózek J, Horák I. Early discharge (within 72 h) in low risk patients after acute ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention. Single centre experience. Cor Vasa 2015;57(1):e45–9. https:// doi.org/10.1016/j.crvasa.2014.10.001.
- [15] De Luca G, Suryapranata H, van't Hof AW, de Boer M-J, Hoorntje JC, Dambrink J-HE, et al. Prognostic assessment of patients with acute myocardial infarction treated with primary angioplasty: implications for early discharge. Circulation 2004;109(22):2737–43. https://doi.org/10.1161/ 01.cir.0000131765.73959.87.
- [16] Lim TW, Karim TS, Fernando M, Haydar J, Lightowler R, Yip B, et al. Utility of Zwolle risk score in guiding low-risk STEMI discharge. Heart Lung Circ 2021;30(4):489–95. https://doi.org/10.1016/j.hlc.2020.08.026.
 [17] Tralhão A, Ferreira AM, Madeira S, Santos MB, Castro M,
- [17] Tralhão A, Ferreira AM, Madeira S, Santos MB, Castro M, Rosário I, et al. Applicability of the Zwolle risk score for safe early discharge after primary percutaneous coronary intervention in ST-segment elevation myocardial infarction. Rev Port Cardiol 2015;34(9):535–41. https://doi.org/10.1016/ j.repc.2015.04.006.
- [18] Davey T, Tan N, Seman M, Neil C, Chan W, Cox N. A singlecentre experience of the Zwolle risk score in identifying lowrisk ST-elevation myocardial infarction patients for safe early discharge. Heart Lung Circ 2018;27:S381–2. https://doi.org/ 10.1016/j.hlc.2018.06.761.
- [19] Gong W, Li A, Ai H, Shi H, Wang X, Nie S. Safety of early discharge after primary angioplasty in low-risk patients with ST-segment elevation myocardial infarction: a meta-analysis of randomised controlled trials. Eur J Prev Cardiol 2018;25(8): 807–15. https://doi.org/10.1177/2047487318763823.
- [20] Sharkawi MA, Filippaios A, Dani SS, Shah SP, Riskalla N, Venesy DM, et al. Identifying patients for safe early hospital discharge following ST elevation myocardial infarction. Catheter Cardiovasc Interv 2017;89(7):1141-6. https:// doi.org/10.1002/ccd.26873.
- [21] Rubimbura V, Rostain L, Duval AM, Akakpo S, Boukantar M, Boiron P, et al. Outcomes and safety of sameday discharge after percutaneous coronary intervention: a 10-year single-center study. Catheter Cardiovasc Interv 2019; 94(1):105–11. https://doi.org/10.1093/eurheartj/ehx493.5705.
- [22] Shroff A, Kupfer J, Gilchrist IC, Caputo R, Speiser B, Bertrand OF, et al. Same-day discharge after percutaneous coronary intervention: current perspectives and strategies

ORIGINAL ARTICLE

for implementation. JAMA Cardiol 2016;1(2):216–23. https://doi.org/10.1001/jamacardio.2016.0148.

- [23] Brayton KM, Patel VG, Stave C, de Lemos JA, Kumbhani DJ. Same-day discharge after percutaneous coronary intervention: a meta-analysis. J Am Coll Cardiol 2013;62(4):275–85. https://doi.org/10.1016/j.jacc.2013.03.051.
- [24] Kotowycz MA, Syal RP, Afzal R, Natarajan MK. Can we improve length of hospitalization in ST elevation myocardial infarction patients treated with primary percutaneous coronary intervention? Can J Cardiol 2009;25(10):585–8. https:// doi.org/10.1016/s0828-282x(09)70717-2.