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Mutation in the germline is the ultimate source of genetic variation, but little is known about the influence of germline chro-

matin structure on mutational processes. Using ATAC-seq, we profile the open chromatin landscape of human spermato-

gonia, the most proliferative cell type of the germline, identifying transcription factor binding sites (TFBSs) and PRDM9

binding sites, a subset of which will initiate meiotic recombination. We observe an increase in rare structural variant

(SV) breakpoints at PRDM9-bound sites, implicating meiotic recombination in the generation of structural variation.

Many germline TFBSs, such as NRF1, are also associated with increased rates of SV breakpoints, apparently independent

of recombination. Singleton short insertions (≥5 bp) are highly enriched at TFBSs, particularly at sites bound by testis active
TFs, and their rates correlate with those of structural variant breakpoints. Short insertions often duplicate the TFBS motif,

leading to clustering of motif sites near regulatory regions in this male-driven evolutionary process. Increased mutation

loads at germline TFBSs disproportionately affect neural enhancers with activity in spermatogonia, potentially altering neu-

rodevelopmental regulatory architecture. Local chromatin structure in spermatogonia is thus pervasive in shaping both evo-

lution and disease.

[Supplemental material is available for this article.]

Mutation is the ultimate source of genetic variation, and inherited
variation must invariably arise in the germline. It is well estab-
lished from cross-species comparisons that the rate of nucleotide
substitution mutations fluctuates at the multimegabase (>106

bp) scale across the genome (Wolfe et al. 1989; Hodgkinson
and Eyre-Walker 2011), with early replicating regions subject
to reduced rates of mutation. These patterns similarly manifest
in the rate of human single-nucleotide polymorphisms (SNPs)
(Stamatoyannopoulos et al. 2009). Germline structural variation
in the human genome is also associated with replication timing,
such that copy number variants (CNVs) emerging from homolo-
gous recombination–based mechanisms are enriched in early rep-
licating regions, whereas CNVs arising from nonhomologous
mechanisms are enriched in late replicating regions (Koren et al.
2012). Local chromatin structure also influences the mutation
rate. However, finer-scale variation (<1 Mb) in the germline muta-
tion rate has so far only been related to genomic features derived
from somatic cells (Gonzalez-Perez et al. 2019) because human
germline-derived measures of chromatin structure have only re-
cently become available (Guo et al. 2017, 2018). Transcription fac-
tor binding sites (TFBSs) are particularly prone to point mutations
in cancer (Kaiser et al. 2016), probably owing to interference be-
tween TF binding and the replication and repair machinery
(Reijns et al. 2015; Sabarinathan et al. 2016; Afek et al. 2020),

but the mutational consequences of binding at these sites in the
germline is unknown.

During meiosis, homologous recombination may introduce
short mutations or render genomic regions prone to rearrange-
ments (Pratto et al. 2014; Halldorsson et al. 2019). A key player
in this process is PRDM9, which binds its cognate sequence motif
and directs double-strand break (DSB) formation in meiotic pro-
phase (Baudat et al. 2010; Myers et al. 2010). In humans, PRDM9
binding site occupancy has only been directly assayed in a somatic
cell line (Altemose et al. 2017), whereas indirect measures of
PRDM9 activity include a proxy for DSBs (DMC1-bound single-
stranded DNA [ssDNA]) in testis (Pratto et al. 2014), as well as pop-
ulation genetic-based measures of recombination hotspots (HSs)
(Myers et al. 2005; The 1000 Genomes Project Consortium
2015). ThemethodATAC-seq (Buenrostro et al. 2013) reports chro-
matin accessibility and provides a snapshot of all active regulatory
regions and occupied binding sites in a given tissue. In particular,
ATAC-seq footprinting (Sherwood et al. 2014; Li et al. 2019), when
applied to spermatogonia, has the potential to reveal the binding
of hundreds of TFs, as well as PRDM9, in the male germline. In ad-
dition, large human genome sequencing projects can be used to re-
veal patterns of mutation rates, by focusing on extremely rare
variants (Messer 2009; Carlson et al. 2018; Li and Luscombe
2020). Making use of such variant data sets as well as novel
ATAC-seq data in spermatogonia, we study the mutational land-
scape at TFBSs in accessible human spermatogonial chromatin.
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Results

Spermatogonial regulatory regions are enriched for rare deletion

breakpoints

We used ATAC-seq to identify open chromatin sites in FGFR3-posi-
tive spermatogonial cells isolated from dissociated human testicular
samples. FGFR3 ismost highly expressed in self-renewing spermato-
gonial stem cells, with low expression also being detected in early
differentiating spermatogonia (Guo et al. 2018; Sohni et al. 2019);
its expression thus overlaps with the onset of PRDM9 expression
in premeiotic spermatogonia (Human Protein Atlas: https://www
.proteinatlas.org/ENSG00000164256-PRDM9/celltype/testis and
https://www.proteinatlas.org/ENSG00000068078-FGFR3/celltype/
testis) (Guoet al. 2018).Open chromatin inFGFR3-positive cellswas
identified using standard peak detection analysis (Methods;
Supplemental Datasets 1–3), and multiple metrics (Supplemental
Fig. S1A–C) indicated high data quality (Yan et al. 2020).
Hierarchical clustering (Ramírez et al. 2016) showed that this novel
spermatogonial ATAC-seq data set displays a genome-wide distribu-
tion of peaks consistent with other spermatogonial-derived data
and is distinct from ES cell and somatic tissue data sets
(Supplemental Fig. S2).

We assessed the enrichments of different classes of sequence
variants at spermatogonial active sites, including singleton SV
breakpoint frequencies as a proxy for themutation rate of such var-
iants. We made use of ultrarare genomic variants from a variety
of human sequencing studies: the Deciphering Developmental
Disorders (DDD) study (Deciphering Developmental Disorders
Study 2015;McRae et al. 2017) of severe and undiagnosed develop-
mental disorders (https://www.ddduk.org/), a large collection of
variants from an aggregated database (gnomAD) (http://gnomad
.broadinstitute.org/), and de novo variants from trio sequencing
studies (An et al. 2018; http://denovo-db.gs.washington.edu/;
https://research.mss.ng/). Based on the DDD data set, a combina-
tion of high-density arrayCGH and exome sequencing (Decipher-
ing Developmental Disorders Study 2015), we identified 6704
singleton deletion variants among 9625 DDD probands (carrier
frequency of ∼0.002% in the combined data set) (Supplemental
Table S1).

Permutation analysis shows that DDD singleton breakpoints
are enriched at spermatogonial ATAC-seq sites, their overlap being
more than four times the expected genome-wide rate (Supplemen-
tal Table S2), and shifted permutation Z-scores reveal that the en-
richment is specific to the ATAC-seq peaks as opposed to wider
genomic regions (Fig. 1B,D). We also considered 6013 deletions
(represented by their unique breakpoint coordinates; seeMethods)
that were present in the DDD consensus data set (Deciphering
Developmental Disorders Study 2015) at a frequency of at least
1%, representing variants expected to be relatively common in hu-
man populations (Methods; Supplemental Table S1). These vari-
ants show a dip in frequency and downward trend near active
sites (Fig. 1A,C). However, we note that the overlap between com-
mon variant breakpoints and ATAC-seq peaks is still approximate-
ly twofold higher than the expected genome-wide rate (P<10−4).
We conclude that singleton deletion breakpoints often occur at
TFBSs in spermatogonia, suggesting a higher mutational input or
less accurate repair at these sites compared with neighboring re-
gions. The breakpoints of more common variants are observed
less frequently at the same binding sites, which may indicate the
action of purifying selection in the removal of deleterious muta-
tions at these active regulatory sites.

Similar trends are also observed for singleton deletion break-
points from an independent large-scale aggregated data set of hu-
man variants (Fig. 1F) from whole-genome sequence (WGS)
analysis (Supplemental Table S1; Collins et al. 2020). We again
find a significant enrichment of singleton variant breakpoints at
ATAC-seq peaks, and this enrichment is not seen for common var-
iants (Fig. 1E).

Locally elevated mutation at spermatogonial TFBSs

Comparedwith larger structural variants, such as those (up tomeg-
abase-sized) deletions examined above, indels have been shown to
occur at a higher rate of about six new variants per genome and
generation (Besenbacher et al. 2016). Short indels (≤4 bp) are
thought to arise owing to replication slippage (Levinson and Gut-
man 1987; Montgomery et al. 2013), whereas longer variants have
been considered a hallmark of inaccurate DNA repair after DSBs
(Rodgers and McVey 2016). Here, we focus on gnomAD singleton
indels ≤20 bp as these variants are expected to be well resolved us-
ing short-read sequencing. To enable higher spatial resolution of
the mutation patterns at ATAC-seq-defined accessible chromatin
regions, and for the subsequent inference of the associated DNA-
binding proteins, we identified 706,008 protein binding sites us-
ing ATAC-seq footprinting analysis (Methods; Supplemental Ta-
bles S3, S4; Li et al. 2019). The rate of singleton 5- to 20-bp
insertions at footprinted spermatogonial protein binding sites ap-
proximately doubles from background expectation and is highly
concentrated to within 1 kb of the binding site (Fig. 2B); shifted
Z-scores based on genome-wide circular permutations similarly
show a highly localized spike of insertions around TFBSs (Fig.
2D). This pattern starkly contrasts the localized depletion of com-
mon variants of the same mutation class at the same binding sites
(Fig. 2A,C), again implicating a locally elevated mutation rate and
purifying selection. In fact, most classes of rare mutation (single-
ton SVs, smaller and longer indels, SNPs) are significantly enriched
at spermatogonial TFBSs (Fig. 3), and in the gnomAD data set, in
which all singleton classes have been ascertained byWGS, the en-
richment is strongest for insertions ≥5 bp. We confirmed the
enrichment of singleton short insertions and SV deletion break-
points at spermatogonial TFBSs, using an independent permuta-
tion approach with BEDTools’ “bedtools shuffle” (Supplemental
Methods; Supplemental Table S5; Quinlan and Hall 2010).

In addition to singleton variants from large population sam-
ples, we also compiled a set of gold standard de novo short variants
from a range of trio sequencing studies (seeMethods). The de novo
variants show a similar trend to the gnomAD singleton variants,
with a moderate (∼10%–60%) increase of mutation rates at TFBSs
for all categories of short 1- to 2-bp sequence variants, but larger
increase of ∼130% for insertions of 5–20 bp (Fig. 3). These results
were confirmed using a set of independent positive and negative
control sites (Supplemental Fig. S3A,B). We conclude that regula-
tory sites that are active in spermatogonia show unusual parallel
enrichments for both large SV breakpoints and 5- to 20-bp inser-
tions, consistent with localized DNA damage or error-prone repair.

Germline PRDM9 and NRF1 binding generate HSs for structural

variation

To examine any differences in mutational loads associated with
different binding factors, we analyzed mutational patterns strati-
fied by the binding factors included in the JASPAR database
(Sandelin et al. 2004). We accounted for redundancy caused by
multiple factors binding to a singlemotif by considering 167motif

Elevated mutation rates at spermatogonial TFBSs

Genome Research 1995
www.genome.org

https://www.proteinatlas.org/ENSG00000164256-PRDM9/celltype/testis
https://www.proteinatlas.org/ENSG00000164256-PRDM9/celltype/testis
https://www.proteinatlas.org/ENSG00000164256-PRDM9/celltype/testis
https://www.proteinatlas.org/ENSG00000164256-PRDM9/celltype/testis
https://www.proteinatlas.org/ENSG00000164256-PRDM9/celltype/testis
https://www.proteinatlas.org/ENSG00000068078-FGFR3/celltype/testis
https://www.proteinatlas.org/ENSG00000068078-FGFR3/celltype/testis
https://www.proteinatlas.org/ENSG00000068078-FGFR3/celltype/testis
https://www.proteinatlas.org/ENSG00000068078-FGFR3/celltype/testis
https://www.proteinatlas.org/ENSG00000068078-FGFR3/celltype/testis
https://www.proteinatlas.org/ENSG00000068078-FGFR3/celltype/testis
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275407.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275407.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275407.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275407.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275407.121/-/DC1
https://www.ddduk.org/
https://www.ddduk.org/
https://www.ddduk.org/
https://www.ddduk.org/
https://www.ddduk.org/
http://gnomad.broadinstitute.org/
http://gnomad.broadinstitute.org/
http://gnomad.broadinstitute.org/
http://gnomad.broadinstitute.org/
http://gnomad.broadinstitute.org/
http://denovo-db.gs.washington.edu/
http://denovo-db.gs.washington.edu/
http://denovo-db.gs.washington.edu/
http://denovo-db.gs.washington.edu/
http://denovo-db.gs.washington.edu/
http://denovo-db.gs.washington.edu/
https://research.mss.ng/
https://research.mss.ng/
https://research.mss.ng/
https://research.mss.ng/
https://research.mss.ng/
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275407.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275407.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275407.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275407.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275407.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275407.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275407.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275407.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275407.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275407.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275407.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275407.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275407.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275407.121/-/DC1


A B

C D

E F

Figure 1. Locally elevated structural variation rates at spermatogonial regulatory sites. SV breakpoint count (A,B) and circular permutation shifted Z-
scores (C,D) of deletion breakpoints in the DDD cohort, centered around the midpoints of spermatogonial ATAC-seq peaks. “Singletons” are break-
points of deletions with a frequency of∼0.002% across population samples; “common” variants are seen at a frequency of at least 1% in the DDD
consensus data set (see main text); permutation P-values indicate significant enrichment for both types of variants at ATAC-seq peaks (P<10−5 in
each case). (E,F) Circular permutation shifted Z-scores of gnomAD deletion breakpoints, centered around spermatogonial ATAC-seq peaks.
“Singletons” are breakpoints of deletions with a frequency of ∼0.002% across population samples; “common” variants are seen at a frequency of at
least 5% in the gnomAD V.2 data set. Permutation P-values indicate significant enrichment for singleton breakpoints (P<10−5) and a significant deple-
tion for common variants (P<0.01).
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families (Supplemental Table S6). Furthermore, using the reported
binding site motif for PRDM9 (Myers et al. 2008), we defined 9778
putative PRDM9-bound sites corroborated by evidence for
H3K4me3 enrichment in testis (Methods).

The spermatogonial binding sites of 11% (19/167) of motif
families overlapped DDD singleton deletion breakpoints more of-
ten than expected, and similarly, 29% (48/167) of motif families
were significantly enriched for gnomAD singleton deletion break-
points (Bonferroni-corrected P=0.017); nomotif familywas found
to be depleted for breakpoints in either data set (Supplemental
Tables S3, S4), suggesting that increased load is a common feature
of TFBSs bound by different transcription factors in the germline.
Similarly, singleton 5- to 20-bp insertions from the gnomAD data-
base were found to be significantly enriched at 29% (48/167) of
families (Bonferroni-corrected P=0.017), and nominally, 84%
(140/167) of families showed enrichment for these insertions
(Supplemental Table S4). Again, no TFBS family was found to be
depleted for these rare variants. Collectively, these results suggest
that TFBSs active in spermatogonia incur locally elevated burdens
of short insertions and large structural variants across many differ-
ent binding motifs.

Certain motif families appear to carry notably higher muta-
tional loads than the general disruption seen across all TFBSs.
Based on the insertion fold enrichment (IFE), namely, the ratio
of the observed to expected numbers of insertions (5–20 bp),
PRDM9 binding sites are among themost disrupted sites in the ge-
nome (IFE =6.3), and this also holds for PRDM9 sites outside

known sites of recombination (IFE =6.7 for 8139 PRDM9 sites
with a distance of at least 500 bp fromHSs and ssDNA sites, respec-
tively). PRDM9 sites are similarly associated with higher rates of
singleton deletion breakpoints (Fig. 4A,C), in line with the roles
of PRDM9 during recombination, though PRDM9 sites outside
known sites of recombination also show this trend (observed over-
laps with deletion breakpoints = 9; expected =1; P <10−4). Two
other TFBS families, corresponding to nuclear respiratory factor 1
(NRF1; IFE =7.0) and HINFP (IFE=6.6) exceed the disruption
seen at PRDM9 sites, and NRF1 sites are also disrupted at high rates
according to DDD and gnomAD breakpoint data (Supplemental
Tables S3, S4). Shifted Z-scores for the enrichment of short inser-
tions (5–20 bp) at both the NRF1 and PRDM9 binding sites are
in the top four, next to SP/KLF transcription factors (motif families
938 and 992), suggesting strong focal enrichments at these sites
(Supplemental Tables S6, S7). NRF1 has been shown to be an im-
portant testis-expressed gene with meiosis-specific functions
(Wang et al. 2017; Palmer et al. 2019), but NRF1 binding sites
have, to our knowledge, not been reported to be foci for genomic
instability. We find similar enrichments of short insertions (5–20
bp) at TFBSs in SSEA4- and KIT-marked spermatogonial samples
produced in previous ATAC-seq studies (Guo et al. 2017, 2018).
Reprocessing these previous data sets identically to our own reveals
that PRDM9, NRF1, and HINFP sites are again among the top five
disrupted motif families (Supplemental Tables S8, S9).

Although both PRDM9 and NRF1 binding sites are GC rich,
their modest motif similarity suggests that the two factors occupy

A B

C D

Figure 2. Increased rates of short insertions focused on spermatogonial binding sites. Insertion count (A,B) and shifted Z-scores (C,D) of gnomAD single-
ton and common insertions (5–20 bp), centered around spermatogonial TFBSs. Singletons are seen only once in the gnomAD V.3 data set (allele frequency
≤0.001%) and are significantly enriched at binding sites (P<10−4); common variants have an allele frequency of at least 5% within gnomAD V.3 and are
significantly depleted at binding sites (P<10−4).
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distinct binding motifs (PWMclus: Pearson’s correlation distance
r =0.35 for PRDM9 vs. NRF1) and should not converge on the
same sites. However, in practice, PRDM9 and NRF1 binding sites
were often found within the same regulatory regions, such that
many (1199) ATAC-seq peaks contained both NRF1 and PRDM9
binding motifs. The disruption of motifs within these cobound
peaks was notably higher, with NRF1 motifs being disrupted by
short insertions 10.8-fold the expected rate (observed: 108; expect-
ed: 10) and PRDM9 motifs 11.2-fold the expected rate (observed:
146; expected: 13) when co-occurring with the other factor (P<
10−4 in each case). Similarly, 1311 ATAC-seq peaks contained a
motif for both CTCF and PRDM9, and CTCFmotifs in these peaks
were more highly disrupted by short insertions (ratio = 6.3; ob-
served: 69; expected: 11) compared with all CTCF motifs
(Supplemental Table S4), as was PRDM9 (ratio = 8.2; observed:
115; expected: 14; P< 10−4 in each case).

The excess of insertions observed at particular motif sites
is not a trivial consequence of statistical power (i.e., the number
of TFBSs in the genome); for example, the number of binding
sites identified for PRDM9 and NRF1 is fewer than many
other factors (fewer than 10,000 sites each) (Supplemental Tables
S3, S4).

In general, mutational loads appear to be dependent on the
level of chromatin accessibility (MACS2 peak scores) (Zhang
et al. 2008) and the number of factors predicted to bind at
ATAC-seq defined regulatory regions, such that regions in the up-
per quartile of accessibility that are also occupied by more than
four factors incur the highest indel loads (Supplemental Fig.
S4A–D). The significant positive correlation between the rates of

binding site disruption via singleton in-
sertions and deletion breakpoints across
all motif families (Spearman’s R= 0.52;
P<10−5) (Supplemental Fig. S5A–C) sug-
gests that the two types of damage may
be mechanistically linked. In support
of this idea, singleton short insertions
(5–20 bp) and singleton SV deletion
breakpoints overlap at the exact nucleo-
tide position more often than expected
(genome-wide Z-score = 26.31; P<10−4)
(see also Supplemental Fig. S6). This over-
lap is unlikely to be owing to erroneous
variant calling in the singleton data set
because we observe similar patterns for
common variants of the same variant
categories (genome-wide Z-score = 62.9;
P<10−4).

Short insertions generate clustered

binding sites within regulatory regions

Five- to 20-bp insertions observed at
TFBSs frequently occur within only a
few nucleotides of the binding motifs,
whereas other classes of short variants
do not show such a precisely localized in-
crease (Fig. 5; Supplemental Fig. S7).
Despite amoderate genome-wide enrich-
ment (Fig. 3), the 1- to 2-bp insertions
characteristic of polymerase slippage do
not peak in the immediate neighbor-
hood of TFBSs (Fig. 5; Supplemental Fig.

S7). We examined the consequences of elevated 5- to 20-bp inser-
tion rates at TFBSs using an exhaustive motif search algorithm
(Bailey et al. 2009), which finds overrepresented sequence motifs
among a set of input sequences. We found that the inserted se-
quences at a mutated TFBS often contain additional copies of the
sequence motif corresponding to the original TFBS (Fig. 6A;
Supplemental Fig. S8), suggesting that many insertions at TFBSs
are tandem duplication events, including events at CTCF, NRF1,
and PRDM9 sites. The presence of these motif-containing single-
ton insertions appears to reveal a novelmutationalmechanism ex-
pected to increase the number of binding sites for a binding factor
and to lead to the expansion of TFBS clusters. CTCF binding sites
are known to occur in clusters (Kentepozidou et al. 2020) and are
often affected by singleton insertions in our data set (ranked
12th out of 167 motif families, based on the number of insertions
per TFBS) (Supplemental Table S4). We find that spermatogonial
active sites show a greater enrichment of singleton insertions
than control binding sites outside ATAC-seq peaks (Fig. 6C).
Combined with a positive correlation between homotypic motif
clustering and insertion rate (Fig. 6B), this suggests that spermato-
gonial binding sites are progressively accruing motif clusters.

These unusual patterns of clustered TFBSs at indel break-
points appear to be specific to spermatogonial ATAC-seq peaks
and do not reflect genome-wide trends. Applying the MEME-
ChIP algorithm on 50-bp regions flanking singleton insertion
and deletion breakpoints, we were able to rediscover the sequence
motifs of commonly disrupted binding sites, including the motifs
of PRDM9 and NRF1 (Supplemental Table S10). In contrast, ge-
nome-wide, the motifs discovered flanking these variants were

Figure 3. Parallel enrichments of short variants and SV breakpoints at spermatogonial binding sites.
Circular permutation results are based on 10,000 permutations; results for singleton variants and de
novo mutation are shown. The y-axis shows the ratio of observed over expected variant counts.
Mutation categories with significant enrichment are indicated by asterisks: (∗∗∗) P<0.001). The type
of variant tested and the total number of observed variants overlapping spermatogonial TFBSs are indi-
cated below each bar.
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Figure 4. Binding factors associated with the highest rates of mutation at spermatogonial binding sites. Plots are centered on the binding sites of a given
motif family inside ATAC-seq footprints. (A,B) Singleton (A) and common (B) deletion breakpoints in the DDD cohort; singletons are breakpoints of dele-
tions with a frequency of∼0.002% across population samples; common variants are seen at a frequency of at least 1% in the DDD consensus data set. (C,D)
Singleton (C) and common (D) insertions (5–20 bp) in the gnomAD data set. Singletons are seen only once in gnomAD V.3 (allele frequency ≤0.001%),
and common variants have an allele frequency of at least 5% within gnomAD V.3. Only 10-kb regions around TFBSs with ≥95% unique mappability
(umap24 scores) were included. The top five disrupted motifs are shown, listed in order of enrichment of singleton variants in the circular permutations
(all enrichments of singletons are associated with P-values < 10−4).

SNPs

Figure 5. Elevated singleton insertion rates at PRDM9 and NRF1 binding sites contrast with other short variant classes. All gnomAD variants have been
down-sampled to a total of 650,000 variants per analysis, making the y-axes directly comparable; individual bins are 5 bp in size. Only regions around TFBSs
with ≥95% unique mappability (umap24 scores) were included.
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more likely to be simple repeats and other low complexity se-
quences that did not match known TFBS motifs, suggesting that
processes other than transcription factor binding drive DNAbreak-
age outside of active regulatory sites.

Genomic instability at spermatogonial TFBSs impacts enhancers

active in neural development

Because many regulatory regions of the genome are active across a
variety of cell types (Andersson et al. 2014), mutation at TFBSs in
spermatogonia might disrupt gene regulation in other tissues.
The developing brain is of particular interest, given reports of in-
creased SV burdens in neurodevelopmental disorders (Girirajan
et al. 2011; Leppa et al. 2016; Collins et al. 2017). We classified
developmentally active human brain enhancers (distal regulatory
elements) supported by neocortical ATAC-seq data (de la Torre-
Ubieta et al. 2018) according to whether they were either active
(10,888 brain enhancers) or inactive (26,162 brain enhancers) in
themale germline.We then calculated the odds ratio of a singleton
mutation affecting a brain enhancer that is also active in sperma-
togonia relative to a brain enhancer that is inactive in spermatogo-
nia. For DDD singleton deletion breakpoints, the odds ratio was
6.82 (95% CI= [5.34,8.71]), and for a singleton gnomAD insertion

(5–20 bp), it was 4.69 (95% CI= [4.46,4.93]). This suggests that ac-
tivity in spermatogonia greatly predisposes a brain enhancer to
DNA damage, and this damage manifests in enhancers that share
activity with the male germline (Fig. 7A,B). Brain enhancers that
are shared with spermatogonia are, on average, more accessible
in the developing brain than those that are inactive in the germ-
line (the median “mean of normalized counts” for the two types
of brain enhancers were 104.8 and 54.1, respectively; Wilcoxon
test W=197340000, P-value<10−15), suggesting a link between
enhancer activity, the sharing of enhancers across tissues, and pro-
pensity to mutation. The subset of brain enhancers that over-
lapped spermatogonial active sites were not enriched for specific
motifs, and the number of motif sites for each motif family were
highly correlated between brain and spermatogonia (Spearman’s
rho=0.95, P<10−15). That is, the propensity to mutation does
not appear to be driven by an enrichment of specificmotif families
in brain enhancers.

Spermatogonia accessible TFBS motifs incur increased rates

of disruption

We cannot exclude a small contribution of the TFBS sequence it-
self on the predisposition to mutation (Kondrashov and Rogozin

A

B C

Figure 6. Insertions at spermatogonial TFBSs generate motif clusters in the genome. (A) JASPAR database sequence motifs identified in the footprints of
spermatogonial ATAC-seq peaks (left) and the motifs identified in the singleton insertions (5–20 bp; right). The number of insertion sites (N) that were cho-
sen by MEME to construct the motif are shown on the right. (B) For each motif family, we plot the insertion fold enrichment (IFE) on the x-axis and the
degree of spermatogonial motif clustering on the y-axis; the least square regression line is indicated in blue. Motif clustering is measured as the distance
to the nearest motif at spermatogonial active sites, relative to the distance formotifs at ENCODE active sites. (C) The IFE is contrasted between FIMO control
motif sites (left) and spermatogonial active motif sites (right); the Wilcoxon test was performed to compare the IFE at the two classes of sites.
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2004), but our data suggest that TF binding is a major driver of in-
sertion and deletionmutation in the human germline. This is sup-
ported by the fact that we see an increase of disruption of brain
enhancers if they are active in spermatogonia (Fig. 7) and, more
generally, an increase in the mutational load for sites that are ac-
tive across other somatic tissue if binding also occurs in the germ-
line (Supplemental Table S11). In addition, control motif sites
(representing the same TFBS but located outside of ATAC-seq
peaks) are subject to lower rates ofmutation comparedwithmotifs
within spermatogonial ATAC-seq peaks (Fig. 6C). Motifs within
peaks carry, on average, 73% more mutations than their control
counterparts, and for the most highly disrupted motifs, the dis-
crepancy between active and control motifs is even larger. For ex-
ample, PRDM9 motifs are 3.4-fold, HINFP 2.9-fold, and NRF1
motifs 2.6-fold more disrupted if they are active in spermatogonia,
relative to spermatogonia inactive motifs. We note that this in-
crease in disruption is likely to be a conservative estimate because
some control sites may be bound at time points in the germline
that our ATAC-seq data cannot ascertain.

Because the X Chromosome spends only one third of its time
in males, the sex with the higher number of germ cell divisions, a
depletion of mutations on the X Chromosome is expected for a
male-biased mutational process. We find the X Chromosome to
be strongly depleted for short singleton gnomAD insertions (5–
20 bp), with a ratio of X to autosome variants per uniquelymappa-
ble site of 0.78 (Supplemental Table S12). However, we note that,
despite the overall reduced rate of insertions on the X, ATAC-seq
peaks on the X are still subject to increased rates of insertions com-
pared with genome-wide expectations, suggesting that the in-
ferred effects of protein binding on mutation are larger than the
reduction in mutation owing to X-linkage (38 observed insertions
in X-linked ATAC-seq peaks, whereas 11 were expected; P<10−4).

To test which candidate genomic feature most reliably pre-
dicts DNA damage, we used random forest regression to model
the rate of singleton variants within 5-kb genomicwindows, based
on their overlapwith spermatogonial TFBSs, ssDNA sites, LD-based
HSs, average GC content, mappability, gene density, replication

time, as well as various repeat families (LTRs, SINEs, LINEs, and
simple repeats). In models of genome-wide short insertion rates
or deletion breakpoint rates, measures of replication timing and
GC content were important predictors of mutation load as expect-
ed (Supplemental Fig. S9). Mappability was an important factor for
predicting mutation rates genome-wide, perhaps reflecting the as-
sociation between segmentally duplicated (low mappability) re-
gions and rapid structural evolution or perhaps suggesting that a
fraction of variants may be erroneously called in the gnomAD
data set (only regions with high mappability were included in
our more detailed analyses of TFBSs) (Figs. 3–7; Supplemental
Fig. S7). However, spermatogonial ATAC-seq-derived TFBSs con-
tributed additional predictive power to the models, even at the
scale of the entire genome. The same TFBSs appear to be somewhat
more important features in models that specifically predict dam-
age at active brain enhancers (Supplemental Fig. S9). Genome-
wide, deletion breakpoints and 5- to 20-bp insertions were en-
riched in early replicating DNA (Spearman’s rank correlation
with replication timing: rho= 0.08, P<10−15 and rho=0.07, P<
10−15, respectively). In contrast, the presence of repeat elements
had almost no impact in predicting either short insertion or dele-
tion breakpoint rates (Supplemental Fig. S9). We conclude that
germline active regulatory sites, through their occupancy by
DNA-binding factors, make a substantial contribution to ge-
nome-wide de novo structural variant rates, independent of other
genomic features.

Discussion

Wehave shown enrichments of rare and de novo SV breakpoints at
spermatogonial regulatory sites defined by ATAC-seq, suggesting
that these sites suffer high rates of DSBs in the male germline.
The same sites show unusual parallel enrichments for short vari-
ants and particularly 5- to 20-bp insertions. These loads appear
to be positively correlated with the levels of chromatin accessibil-
ity/nucleosome disruption (ATAC-seq peak binding strength) and
the number of factors predicted to bind within the region. These

A B

Figure 7. Neural enhancers with activity in spermatogonia suffer elevated mutation rates. (A,B) Singleton DDD deletion breakpoint (A) and singleton
gnomAD insertion (B; 5–20 bp) count around brain active enhancers. Enhancers were classified as being also active in spermatogonia (red) or inactive
in spermatogonia (blue). Plotted is the average number of variants per brain enhancer: in 5-kb windows or 100-bp windows, respectively. In B, only
10-kb regions around enhancers with≥95% uniquemappability (umap24 scores) were included (3409 brain enhancers that are inactive in spermatogonia
and 1029 that are active).

Elevated mutation rates at spermatogonial TFBSs

Genome Research 2001
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275407.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275407.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275407.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275407.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275407.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275407.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275407.121/-/DC1


results have implications for the evolution of binding site patterns
within regulatory regions, as well as for disrupted regulation in
somatic tissues.

Homotypic clusters of TFBSs are a pervasive feature of both in-
vertebrate and vertebrate genomes and have long been known to
be a common feature of human promoter and enhancer regions
(Gotea et al. 2010). Various adaptive hypotheses have been pro-
posed for the presence of such clusters such that they provide func-
tional redundancywithin a regulatory region, enable the diffusion
of TF binding across a region, and allow cooperative DNA binding
of TF molecules (Gotea et al. 2010). More recently, it has been
suggested that homotypic TFBS clusters may also contribute to
phase separation and the compartmentalization of the nucleus
(Kribelbauer et al. 2019). Similarly, the clustered patterns of
CTCF sites in the genome have been ascribed critical roles in chro-
matin architecture and regulation, particularly at regulatory
domain boundaries. However, these boundary regions have been
shown to exhibit genome instability (Kaiser and Semple 2018)
and recurrently acquire new CTCF binding sites in dynamically
evolving clusters (Kentepozidou et al. 2020). The data presented
here suggest that binding site clusters may arise solely as a selec-
tively neutral consequence of the unusual mutational loads at
germline TFBSs, with clusters maintained by recurrent DNA dam-
age and misrepair.

We observe significant enrichments of both large SV break-
points and small insertions together at spermatogonial TFBSs.
This parallel enrichment may originate from DNA breakage,
followed by misrepair, conceivably via a pathway such as nonalle-
lic homologous recombination (NAHR). It is known that NAHR
can create large insertions and deletions (Kim et al. 2016), and
PRDM9 activity is implicated in certain developmental disorders
arising via NAHR (McVean 2010; Myers et al. 2008; Berg et al.
2010). For example, the locations of PRDM9 binding HSs coincide
with recurrent SV breakpoints causing Charcot–Marie–Tooth dis-
ease, as well as Hunter and Potocki–Lupski/Smith–Magenis syn-
dromes (Pratto et al. 2014). It is possible that the sequence
similarity at TFBSs scattered across the genome may make them
particularly prone to NAHR. However, the sequence similarity be-
tween the low copy repeat units, known to be involved inNAHR, is
usually of the size of several kilobases (Gu et al. 2008), rather than
sequences on the scale of TFBSs. The NHEJ pathway can also lead
to short insertions after DNAbreakage, usually inG0 andG1 phases
of the cell cycle. Indeed, NHEJ is themost common repair pathway
of DSBs inmammals, and it is typically error prone (vanGent et al.
2001; Lieber et al. 2003). During NHEJ, DSB ends are resected to
form single-stranded overhangs, but when pairing occurs between
the tips of the overhangs, sequences near the breakpoints will of-
ten be duplicated (Rodgers andMcVey 2016). Two previous studies
using human–chimpanzee–macaque multiple alignments have
shown that high numbers of short insertions have occurred in
the human lineage (Kvikstad et al. 2007; Messer and Arndt
2007), and both conclude that these insertions preferentially
take place in the male germline, evidenced by decreased mutation
rates on the X Chromosome, with similar observations in rodents
(Makova et al. 2004).

The data presented here suggest that different DNA-binding
proteins differ widely in their impact on mutation rates. The two
proteins with the largest impacts, NRF1 and PRDM9, are both
highly expressed in testis, revealing a possible link between the ex-
pression level of a gene encoding a DNA-binding protein and the
propensity for breakage or inefficient repair at the sites the protein
binds. Incidentally, NRF1 has a pLI score of 0.999, indicating that

it is extremely loss-of function intolerant and crucial for the organ-
ism’s functioning (Karczewski et al. 2020). A previous study
(Montgomery et al. 2013), using The 1000 Genomes Project
Consortium polymorphism data, failed to find an increase in
indels at PRDM9 motifs genome-wide. This highlights the impor-
tance of using ATAC-seq data to confine the search for motifs to
germline active sites only, combined with singleton variants
from large-scale sequencing studies as a more powerful strategy
to explore fine-scale mutational patterns.

Although studies of coding sequences, such as the DDD
(DecipheringDevelopmental Disorders Study 2015), have revealed
many of the genes disrupted in developmental disorders, more
than half of cases lack a putatively causal variant (McRae et al.
2017), stimulating interest in the noncoding remainder of the ge-
nome and, particularly, regulatory regions active in development.
Limited sequencing data, covering a fraction of human regulatory
regions, suggest that de novo mutations are enriched in these re-
gions and are therefore likely to contribute to neurodevelopmental
disorders at some level (Short et al. 2018; Gerrard et al. 2020).
However, there appear to be very few, if any, individual regulatory
elements recurrentlymutated acrossmultiple cases to cause neuro-
developmental disorders with a dominantmechanism (Short et al.
2018). The data presented here suggest a potential solution to this
paradox, in which combinations of mutations at multiple regula-
tory regions may underlie a disease phenotype. The frequency of
such combinations is expected to be many times higher if they in-
volve regulatory regions bound by factors such as NRF1. In such
cases, an entire class of sites, rather than an individual site, is sub-
ject to recurrent mutation.

Methods

Identification of spermatogonial binding sites

Samples of testicular tissue were obtained from three patients un-
dergoing orchiectomywith total processing completed within∼5–
7 h of explant. Tissue was obtained after informed consent
through the Lothian NRS BioResource, and the study was ap-
proved by NHS Lothian (Lothian R&D project number 2015/
0370TB). Tissue samples were disaggregated into cells, and cells
were labeled with a phycoerythrin (PE)-conjugated antibody
against the cell surface marker FGFR3 (FAB766P, clone 136334,
R&D systems). Spermatogonial cells were isolated using a
FACSAria II cell sorter (BD Biosciences) based on PE fluorescence
and cell shape, according to forward/side scatter. Isolated cells
were subjected to ATAC-seq using the protocol and reagents previ-
ously described (Buenrostro et al. 2013), followed by paired-end se-
quencing on Illumina HiSeq 4000 (75-bp read length). We
combined reads from separate sequencing runs into three biologi-
cal replicates, based on origin and morphological appearance of
the FACS sorted cells. Replicate 1 was combined sequencing runs
H.5.1 and H.5.4; a noncancer patient; large cells, high side scatter;
and 58,000 and 42,000 cells, respectively. Replicate 2 was com-
bined sequencing runs H.5.2 and H.5.5, the same noncancer pa-
tient as Replicate 1, large cells, and 36,000 and 23,000 cells,
respectively. Replicate 3 was combined sequencing runs H.7.3
and H.10.2, normal tissue from cancer patients, large cells, and
69,000 and 24,000 cells, respectively. Raw reads were processed
and ATAC-seq peaks called as described in the Supplemental
Methods. For the downstreammutation analyses, ATAC-seq peaks
from Replicates 1 and 2 (the noncancer patient) were merged, cre-
ating a single peak set. This data set also formed the basis for the
footprinting analysis, which used, as input, the combined short
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sequencing fragments of Replicates 1 and 2, running “rgt-hint
footprinting” with ‐‐atac-seq and ‐‐bias-correction, followed by
“rgt-motifanalysis matching” with the option ‐‐remove-strand-
duplicates (Li et al. 2019). Input motifs were the 579 position-
weight matrices (PWMs) of the JASPAR vertebrate database
(Sandelin et al. 2004) as well as the 13-mer PRDM9 motif
“CCNCCNTNNCCNC” (Myers et al. 2010), whichwas also provid-
ed as a PWM.The tissue donor for Replicates 1 and 2was a carrier of
the most common (European) alleles of PRDM9, which was con-
firmed by investigating his allelic state at the SNP (rs6889665)
identified by Hinch et al. (2011); this SNP was covered by our
ATAC-seq by 10 reads, all of which were “T.” Accordingly, we as-
sume that the donor is a carrier of the A and/or B allele of
PRDM9 (both of which bind the same DNAmotif), and the search
for the 13-mer PRDM9motif in this patient’s ATAC-seq data can be
used as a proxy for PRDM9 binding in European populations. In
addition, Replicate 3 was processed in the same way as the com-
bined Replicates 1 and 2 and served as a positive control to assess
the genome-wide enrichment of mutations at spermatogonial ac-
cessible sites (Supplemental Fig. S3).

JASPAR input motifs are often highly similar, resulting in
multiple binding proteins being identified by the rgt-hint pipeline
to bind at the sameATAC-seq footprint; this is biologically implau-
sible (because only one protein is likely to occupy a given site), and
we clustered motifs by similarity, using the default parameters of
the PWMclus CCAT package (Jiang and Singh 2014). This resulted
in a set of 167motif families of similar bindingmotifs (Supplemen-
tal Table S7). Using BEDTools (Quinlan andHall 2010), wemerged
overlapping binding sites that belonged tomotifs of the same fam-
ily (thus calling them only once), and we alsomerged palindromic
binding sites called on both strands. Because PRDM9 is known to
leave a characteristic histone methylation mark on bound DNA
(Grey et al. 2011; Powers et al. 2016), we intersected the PRDM9
motif sites with testis-derived H3K4me3 marks (called in an
PRDM9 A/B heterozygous individuals) from Pratto et al. (2014).
This resulted in a stringent set of PRDM9 sites, whichwere both lo-
cated in ATAC-seq footprints and carried the H3K4me3 mark in
human testis. ATAC-seq-defined PRDM9 sites showed moderate
overlap with DMC1-bound ssDNA sites (Pratto et al. 2014), as
well as recombination HSs (Myers et al. 2005), which may reflect
the fact that most cells in our experiments are likely to be premei-
otic: Only 10% and 11% of PRDM9 sites were within 500 bp of a
ssDNA peak and a recombination HS, respectively, whereas 44%
of DMC1-bound sites overlap with LD-defined HSs. However, we
find that stronger ssDNA peaks are more likely to be near a
PRDM9 binding site (Supplemental Fig. S10).

Comparisons between ATAC-seq data sets

Using the same procedure as described in the Supplemental
Methods, we processed raw ATAC-seq reads from previously pub-
lisheddata sets in order to callMACS2peaks fromshort sequencing
fragments (Zhang et al. 2008). Data sets included ATAC-seq reads
from the germinal zone and cortical plate of the developing brain
(NCBI Sequence Read Archive [SRA; https://www.ncbi.nlm.nih
.gov/sra] accession numbers SRR6208926, SRR6208927, SRR620
8938, SRR6208943) (de la Torre-Ubieta et al. 2018), ATAC-seq ex-
periments of KIT+ spermatogonia (SRA accessions SRR7905001
and SRR7905002) (Guo et al. 2018), SSEA4+ spermatogonia (SRA:
SRR5099531, SRR5099532, SRR5099533, SRR5099534) (Guo
et al. 2017), and ESC cells (SRA: SRR5099535 and SRR5099536)
(Guo et al. 2017). Adapter sequences within raw sequencing data
were identified using bbmerge.sh of bbmap (https://sourceforge
.net/projects/bbmap/) and removed using cutadapt (Martin
2011), as above. ENCODE ATAC-seq data sets (liver,

ENCFF628MCV; ovary, ENCFF780JBA; spleen, ENCFF294ZCT;
testis, ENCFF048IOT; transverse colon, ENCFF377DAO) (The
ENCODE Project Consortium 2012; Davis et al. 2018) were down-
loaded as BAMfiles and converted to BEDPE format, and short frag-
ments were identified for peak calling.

Structural variant breakpoint data

Large SVs, identified by high-density arrayCGH or a combination
of arrayCGH+exome sequencing, were extracted from a cohort of
9625 DDD patients, using variant calling procedures as described
previously (Deciphering Developmental Disorders Study 2015).
We filtered the DDD variants to only keep variants that fulfilled
the following criteria: a CNsolidate wscore≥0.468, a call P<0.01,
and a mean log2 ratio of <−0.41 for deletions and 0.36 for duplica-
tions; CIFER “false positives” were removed. Singleton variants
were identified as being annotated as “novel” by the DDD release,
only seen once among the DDD patients, and not seen in the dgv
(MacDonald et al. 2014) and gnomAD V.2 (Collins et al. 2020)
structural variant data sets (80% reciprocal overlap criterion).
Because there are 9625 patients in the DDD data set, the
gnomAD V.2 data set contains SVs from 10,738 genomes, and
the dgv contains SVs from 29,084 individuals, this puts an upper
limit of the frequency of carriers of a singleton variant at
∼0.002%. Breakpoints were identified as the 5′ and 3′ coordinates
of SVs, resulting in 13,406 singleton deletion and 3406 duplica-
tion breakpoints; the resolution of the breakpoints was such that
the median and mean confidence intervals were 300 bp and 12
kb, respectively. Thus, the DDD data set has a lower resolution
compared with the WGS data, but its advantage is that it does
not suffer from mapping and variant calling issues associated
with the latter (Mahmoud et al. 2019).

We further identified 11,962 “common” deletion variants in
the DDD data set, which had a minimum variant frequency of 1%
in the consensus CNV data set as described by the DDD study
(2015), namely, pooled CNV data sets of Conrad et al. (2010),
The 1000 Genomes Project Consortium (2010), the Wellcome
Trust Case Control Consortium (2010), and the DDD normal con-
trols. We used the 80% reciprocal overlap criterion and grouped
common variants using the bedmap options ‐‐echo-map
‐‐fraction-both 0.8, followed by bedops ‐‐merge (Neph et al.
2012). The breakpoints of common variants are thus the outer-
most coordinates of all SVs that are collapsed into a given variant.
The overlap of such “common” breakpoints with ATAC-seq peaks
was assessed independently of SV allele frequencies; namely, a
group of commonSVs contributed two breakpoints to the analysis,
and this number was further reduced if one breakpoint coordinate
was shared between two common SVs, so as to only count each
common breakpoint once.

We also identified a set of singleton CNVs called with the
Manta algorithm (Chen et al. 2016) from the gnomAD V.2 data-
base (80% reciprocal overlap criterion with gnomAD V.2, dgv
and DDD variants) (Collins et al. 2020), resulting in a set of
73,063 deletion and 15,419 duplication breakpoints seen in
∼0.002% of individuals but called with a different approach com-
pared with the DDD. Common deletions and duplications (P≥
0.05) were also extracted from the gnomADV.2 data set; these var-
iants had also been called with the Manta algorithm and included
5954 deletion and 1586 duplication breakpoint sites.

Indels and SNP data

The recently released gnomADV.3 variants (indels and SNPs) were
downloaded from https://gnomad.broadinstitute.org/. Only
variants that passed all filters were kept (filtering using VCFtools
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‐‐remove-filtered-all) (Danecek et al. 2011). Multiallelic variants
were split using BCFtools (Danecek et al. 2021), and bcftools
norm ‐‐IndelGap 2 was applied to indels to allow only variants
to pass that were separated by at least 2 bp. Singleton variants
were defined as having an allele count of one, and the allele num-
ber was 100,000 or more; that is, the allele frequency of singletons
was P≤0.001%.

We subdivided gnomAD indels into singleton insertions and
deletions of different sizes: 1–2 bp (most commonly arising owing
to replication slippage) and those 5–20 bp (arising owing to other
mechanisms of DNA instability and within the size range reliably
detected by short-read sequencing). To speed up simulations and
allow for easy comparison between categories of variants, all clas-
ses of indels and single nucleotide variants were down-sampled to
650,000 variants each.

A total of 854,409 de novo SNPs and indels were compiled
from three different sources, lifted over to the hg38 assembly using
the UCSC liftOver tool as required. First, we downloaded variants
from http://denovo-db.gs.washington.edu/, including only sam-
ples from WGS studies (Michaelson et al. 2012; Ramu et al.
2013; The Genome of the Netherlands Consortium 2014;
Besenbacher et al. 2015; Turner et al. 2016, 2017; Yuen et al.
2016, 2017; Jonsson et al. 2017; Werling et al. 2018), which in-
cluded a total of 404,238 variants from 4560 samples. Additional
samples, which were not already included in the denovo-db data
set, were downloaded from the MSSNG database (https://research
.mss.ng/), version 2019/10/16, which added 2243 samples and
215,044 de novo mutations. A third source of de novo variants
came from An et al. (2018): 3805 samples and 255,107 mutations.

Circular permutation

To obtain a genome-wide estimate of enrichment of overlap be-
tween genomic features (e.g., TFBSs andmutations), we performed
circular permutations using the Bioconductor regioneR package
(Gel et al. 2016) in R (https://www.R-project.org/) (R Core Team
2016). We used the permTest() function with parameters ntimes
=10000, randomize.function= circularRandomizeRegions, evalua-
te.function=numOverlaps, genome=hg38_masked, alternative=
“auto,”where hg38_masked= getBSgenome(”BSgenome.Hsapien-
s.UCSC.hg38.masked”). This test evaluates the number of overlaps
observedbetween two setsof genomic features, given theirorderon
the chromosome and the distance between features, that is, taking
their degree of clustering into account; Z-score analysis reveals the
degree of local enrichment of overlaps (Supplemental Methods).

For permutations involving SVs, we used the two breakpoints
of each SV and assessed the overlap of breakpoints with another
feature of interest (i.e., ATAC-seq sites), treating each breakpoint
separately.

Circular permutations in regioneR (Gel et al. 2016) were also
used to assess the mean distance between ATAC-seq peaks and
deletion breakpoints, for common and singleton variants
separately.

Brain enhancer data

Active brain enhancers came from de la Torre-Ubieta et al. (2018).
Specifically, we used the 37,050 brain enhancers that showed dif-
ferential accessibility in the germinal zone versus the cortical plate,
reflecting activity in the developing brain (de la Torre-Ubieta et al.
2018). Next, we identified brain enhancers that were also active
during the male germline formation, namely, overlapping the
spermatogonial ATAC-seq peaks. To correct for the variable size
of the brain active enhancers, we took the midpoints of each en-
hancer ±500 bp on either side and intersected these sites with

the ATAC-seq peaks using BEDTools’ “bedtools intersect”
(Quinlan and Hall 2010), thus classifying brain enhancers as sper-
matogonial “active” or “inactive.” Next, we intersected these two
categories of brain enhancers with the DDD breakpoint and
gnomAD insertion data set, respectively, to further classify them
as “disrupted” by a singleton variant or “intact.” An odds ratio
was calculated as

OR= (A/(B−A))/(C/(D−C))

with confidence intervals

CI_lower=exp(log(OR) −1.96 ∗ sqrt(1/A+1/(B-A) +1/C+1/(D−C)))
CI_higher= exp(log(OR) +1.96 ∗ sqrt(1/A+1/(B-A) +1/C+1/(D−C))),

where

A=Disrupted, sperm active
B=All sperm active
C=Disrupted, sperm inactive
D=All sperm inactive.

To analyze the enrichment of short indels and SNPs around
TFBSs and brain enhancers, we only considered genomic regions
with uniquemappability in≥95%of the region, using the bedmap
option ‐‐bases-uniq-f (Neph et al. 2012) and the mappability file
hg38_umap24 (Karimzadeh et al. 2018), converted to bedmap
format.

Random forest regression

To compare the effects of chromatin state on mutation rates, we
performed random forest regression with 200 trees, modeling the
outcome variables “singleton breakpoints” and “singleton inser-
tions (5–20 bp),” from the DDD and gnomAD V.3 respectively,
within 5-kb wide genomic windows. Predictor variables included
“spermatogonial TFBS count,” “ssDNA overlap” (from Pratto
et al. 2014), “recombination HS overlap” (from The 1000
Genomes Project Consortium 2015), “GC-content,” “replication
timing” (average of Wavelet-smooth signal in 1-kb bins of 15
ENCODE tissues, downloaded from http://hgdownload.soe.ucsc
.edu/goldenPath/hg19/encodeDCC/wgEncodeUwRepliSeq/),
“gene density,” “mappability” (proportion of sites in eachwindow
with an umap24 score of one), and the overlap with “LTRs,”
“SINEs,” “LINEs” and “simple repeats” (downloaded from the
UCSC Table Browser at https://genome.ucsc.edu/).

In a smallermodel, we subset the data set to only include 5-kb
bins that also overlap active brain enhancers (de la Torre-Ubieta
et al. 2018), and then ran the random forest regression model to
predict mutation rates within genomic regions that contain active
brain enhancers.

Motif discovery in singleton insertion sites

To find sequencemotifs within the 5- to 20-bp singleton insertion
sites from gnomAD V.3, without prior assumptions, we extracted
the FASTA sequence for insertions that fell within 10 bp of the
top 10 disrupted motif families (motif families 992, 193, 796,
907, 579, 825, 984, 171, 991).We ran theMEME4.11motif discov-
ery algorithm (Bailey et al. 2009) with “-nmotifs 1” on the inserted
sequences. This allowed us to compare the sequence motif of the
disrupted TFBSs to any recurrent motif found within the inserted
sequences.

Control motif sites

Using default search criteria, the FIMO algorithm (Grant et al.
2011) was run on the repeat masked hg38 genome sequence
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(hg38.fa.masked, downloaded from https://genome.ucsc.edu/ in
March 2020), searching the whole genome for the 579 input
JASPAR motifs and the 13-mer PRDM9motif. As with active bind-
ing sites, motif matches belonging to the same motif family were
merged and reported as a single motif match per family, and
only regions with unique umap24 mappabilities for ≥95% of sites
were kept; motifs that overlapped with spermatogonial ATAC-seq
peaks were excluded. Next, these “control” motif sites were
down-sampled to 10,000 per motif family (using BEDTools’
“bedtools sample”) (Quinlan and Hall 2010); circular permuta-
tions were performed to compare the observed to expected overlap
of the control motif sites (±10 bp) with the gnomAD singleton in-
sertions of 5–20 bp.

The FIMO predicted control sites were also used to assess the
degree of “clustering” of motifs at spermatogonia active sites. For
this purpose, we intersected the FIMOmotifs with (1) spermatogo-
nial ATAC-seq sites and (2) ENCODEMaster regulatory sites down-
loaded from https://genome.ucsc.edu/ (DNase I hypersensitivity
derived fromassays in 95 cell types). For each of the 167motif fam-
ilies, we calculated themedian distance (in base pairs) from amotif
located within the active regulatory region to the nearest FIMO
motif of the same type. Accordingly, the ratio of the median dis-
tance between motif sites (ENCODE/spermatogonia) was larger
than one if motifs at spermatogonial sites were, on average, closer
to each other thanmotifs near ENCODE sites, and we used this ra-
tio as a measure of motif clustering. When correlating the IFE with
the degree of motif clustering (Fig. 6B), we thus largely correct for
base compositional biases near active sites (which impact muta-
tion rates) (Supplemental Fig. S9), as well as the effects of historical
selection on the clustering of motifs near genes; that is, shorter in-
ter-motif distances in spermatogonia indicate that these sites have
specifically high levels of motif density in spermatogonia, beyond
the levels expected for binding sites in general.

Data access

All raw sequencing data generated in this study have been submit-
ted to the European Genome-phenome Archive (EGA; https://ega-
archive.org/) under accession number EGAS00001005366. The
ATAC-seq peak files generated in this study are available as
Supplemental Data (Supplemental Datasets 1–3) and at
Edinburgh DataShare (https://doi.org/10.7488/ds/3053).
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