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Extracellular Vesicles (EVs) are a collection of vesicles released from cells that play an
important role in intercellular communication. Microbial infections are known as one of the
major problems in the medical field. Considering the increasing resistance of strains to
routine drug treatments, the need for new therapies seems to be more than ever. Recent
studies have shown that the EVs released from immune cells during microbial infections
had anti-microbial effects or were able to induce neighbouring cells to display anti-
microbial effects. This mini-review aimed to explore the latest studies on immune cell-
derived EVs in viral, bacterial, fungal, and parasitic infections. Review of the literature
demonstrated that specific cargos in EVs were involved in the fight against pathogenic
infections. Additionally, the transport of appropriate bioactive molecules including
miRNAs, mRNAs, and proteins via EVs could mediate the anti-microbial process. Thus,
it could be a proof-of-principle that therapeutic approaches based on EVs derived from
immune cells could offer a promising path forward, which is still in early stages and needs
further assessments.
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INTRODUCTION

The immune system is a complex system consisting of different
cell types that reside in multiple organs throughout the body. The
connection pathways in the immune system develop by direct
contacts between these cells and the release of soluble factors to
maintain cellular homeostasis and host defense (1). Raposo et al.
introduced a new means of communication based on the release
of substances into the extracellular space called Extracellular
Vesicles (EVs) (2). More than 50 years ago, Wolf et al. discovered
EVs in plasma as “platelet dust” (3). EVs include a heterogeneous
group of membrane-bound particles present in all biological
fluids. Based on their mechanism of release and size, EVs have
been categorized as a) exosomes (diameter < 150 nm), b)
microvesicles/shedding particles (150-1000 nm), and c)
apoptotic bodies (> 150 nm) (2, 4, 5). In contrast
to microvesicles that are secreted by budding from the cell
membrane, exosomes originate as intraluminal vesicles in
multivesicular endosomes and fuse with the plasma membrane
to release into the extracellular space. Exosome biogenesis
depends on various critical factors including the site of
biogenesis, protein sorting, physicochemical aspects, and
transacting mediators. Endosomal Sorting Complex Required
for Transport (ESCRT), exosome-bound proteins, annexins, and
Rab protein govern membrane transport and fusion, whereas
Alix, flotillin, and TSG101 are involved in exosome biogenesis
(6–10).

Heterogeneity in size, content and source of EVs can affect
on recipient cells responses such as cell survival, death,
inflammation and immune response, or assist pathogens to
enter and stay in the recipient cell (11). Also, EVs are isolated
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based on size by gradient ultracentrifugation, coprecipitation,
and immunoaffinity enrichment method (12). Moreover,
their characterization methods include mass spectrometry,
western blot, immunoelectron microscopy image, fluorescence
nanoparticle tracking analysis, and polychromatic flow
cytometry based on the molecules expressed on their
surface (13).

Immune cell-derived EVs are enriched in proteins, especially
tetraspanins. Tetraspanins refer to a family of ubiquitous proteins
that include CD9, CD63, CD81, and CD82. These proteins on EVs
interact with other proteins such as Major Histocompatibility
Complex (MHC) molecules and integrins expressed on target
cells, eventually leading to prime-specific immune responses (14,
15). They also exhibit special lipid compositions in significant
quantities, including sphingomyelin, phosphatidylcholine, and
phosphatidylethanolamine (16–19). Immune cell-derived EVs
also contain a unique set of enzymes that are involved in lipid
metabolism (phospholipase A2, C, and D) (16, 20). Immune cell-
derived EVs alter many physiological and pathological processes.
In addition, they play important roles in innate and acquired
immune responses including antigen presentation, immune cells
maturation, differentiation, activation, and suppression, and anti-
inflammatory and anti-microbial effects (21–23). Moreover, EVs
from host cells can participate in anti-microbial immunity via the
production and release of Interferon (IFN), IL-12, granzyme B,
perforin, non-coding RNA, etc. (24–26).

The first reports pertaining to functionally active immune
cell-derived EVs were provided by Raposo et al. (27). They
showed that B cell-derived EVs could stimulate antigen-specific
T cell responses via functional peptide–MHC II complexes.
Antigen presentation usually needs Antigen Presenting Cells
(APCs), which process antigenic peptides and form MHC-
peptide complexes. After that, this complex binds to T cell
receptors with the synergism of co-stimulatory molecules to
activate and proliferate T cells. However, EVs, especially
exosomes, make the host’s immune system stronger against
invading pathogens without the interaction between APCs and
T cells and even without the reprocessing of MHC-peptide
complex by the recipient APCs. This results from the fact that
they are enriched in efficient carriers of MHC II-peptide
complexes and other molecules, allowing robust T cell
activation (22, 28–33). What follows includes the investigation
of the role of immune cell-derived EVs in combating pathogens.
IMMUNE CELL-DERIVED
EXTRACELLULAR VESICLES IN VIRAL
INFECTION THERAPY

Generally, a variety of virus-infected cells release EVs that are
related to the pathogenesis, diagnostics, and therapeutics of viral
diseases. It is noteworthy that immune cell-derived EVs play an
important role in the treatment of viral infections. The review of
the literature revealed evidence for the EVs derived from
monocytes, macrophages, and T cells in the treatment of
viral diseases.
GRAPHICAL ABSTRACT | Summary of the antimicrobial effect of immune
cell-derived extracellular vesicles (EVs) on bacteria, viral, fungal, and parasitic
diseases.
June 2022 | Volume 13 | Article 906078

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Keshtkar et al. Immune Cell-Derived Extracellular Vesicles and Pathogenic Infections
Different types of Micro RNA (miRNA) are present in EVs,
which are involved in the regulation of cell to cell
communication. The cytosol expression of miR-29a and miR-
150 was previously reported (1). Further studies indicated
strongly upregulated miR-29a and miR-150 in the HIV-
Infected macrophages (2). The potential of miR-150
involvement in the HIV/AIDS disease progression and therapy
has been elucidated, as well. Accordingly, miR-150 suppression
might facilitate HIV-1 treatment (34).

Researchers investigated the role of macrophage-
derivedexosomes in the inhibition of DNA replication in
Hepatitis BVirus (HBV). They analyzed the expression of
different exosomal miRNA and suggested that they were
closely related to liver inflammation injury and viral
replication (35). In another research, miR-638 was found to
target the regulation of a variety of cellular processes such as
proliferation, apoptosis, and inflammation (36).

The induction of the macrophages using INF can result in the
production of exosomes mediating antiviral activity against
HBV. This phenomenon might be associated with the transfer
of miR-574-5p from macrophages to HBV-infected hepatocytes,
leading to the suppression of HBV replication and expression
(37). On the other hand, macrophage-derived exosomes can
exert their antiviral properties by transferring IFN-a to infected
cells. In this regard, Yao et al. reported that the exosomes derived
from macrophages induced anti-HBV activity through
the delivery of IFN-a to hepatocytes. The exosomes used
T cell immunoglobulin and mucin receptor 1 to enter the
hepatocytes (38).

A recent study investigated the reduction of inflammation in
Hepatitis C Virus (HCV) treatment amongst HIV/HCV-
coinfected individuals. The results indicated that in the
coinfected people, miR-19a, miR-221, and miR-223 were
upregulated in the monocyte-derived exosomes, which were
related to the reduction of plasma inflammation and activation
of Nuclear Factor-kB (NF-kB) in the liver (6). Another research
showed that miR-221 triggered the anti-inflammatory cascade in
monocytes (39) and hindered HIV-1 entry into macrophages by
targeting the CD4 viral receptor (40).

It has been reported that miR-19a is involved in the
restoration of monocyte immune functions in the coinfection
of HIV/HCV (41). miR-223 has been identified as an anti-
inflammatory microRNA which acts through the NF-kB
pathway (42). The NF-kB pathway has long been regarded as a
prototypic pro-inflammatory signalling pathway. Pro- and anti-
inflammatory roles of this pathway have been underlined in
recent studies. Accordingly, NF-kB exerted anti-inflammatory
effects through the direct inhibition of pro-inflammatory genes
as well as impacts on the expression or activity of anti-
inflammatory cytokines (43).

Up to now, limited studies have been conducted on anti-viral
responses through T cell-derived EVs. T cell-derived exosomes
could prime Dendritic Cells (DCs) through their cargos, which
are genomic and mitochondrial DNA. These factors triggered
antiviral responses via the cGAS/STING cytosolic DNA-sensing
pathway as well as the expression of Interferon Regulatory Factor
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3 (IRF3)-dependent genes (44). T cell-derived exosomes have
also been proposed for the treatment of COVID-19 infection. In
a single-arm, open-labeled, combined interventional (phase I/II
trials) clinical trial (NCT04389385), the safety and efficacy of T
cell-derived exosomes in the treatment of COVID-19 infection
was explored. In that project, specific T cells from COVID-19
were activated and expanded through exposure with viral peptide
fragments and cytokines. The results suggested that mediators
like IFN-gamma in the secreted exosomes from T cells might
inhibit the coronavirus (45).

Overall, the literature review provided proof-of-principle for
the application of immune cell-derived EVs in anti-viral
strategies. Accordingly, specific cargos in exosomes were
involved in the fight against viral infections, and the transport
of appropriate bioactive molecules including miRNAs
via exosomes could mediate the antiviral process.
IMMUNE CELL-DERIVED
EXTRACELLULAR VESICLES IN
BACTERIAL INFECTION THERAPY

One of the new approaches in the diagnosis, pathogenesis, and
treatment of bacterial infections is the use of EVs separated from
infected immune cells. EVs released from infected immune cells
have shown anti-bacterial effects on pathogenic bacteria.
Neutrophil-derived EVs, in particular, are one of the most
important innate immune cells for controlling bacterial
infections (46). Timar et al. investigated the effects of EVs
derived from human Neutrophilic Granulocytes (PMNs) in
response to Staphylococcus aurous infection (47). They came to
the conclusion that the pre-stimulation of PMNs by various
agents induced the release of EVs with different biological
properties. Accordingly, only the PMNs stimulated with
opsonized particles produced EVs that had the ability to
impair bacterial growth. Moreover, the anti-bacterial effect of
PMN-derived EVs was correlated to the aggregation of bacteria
on their surface, which depended on intact cytoskeleton and
metabolic activity within the vesicles. Nonetheless, the anti-
bacterial activity of EVs in response to Staphylococcus aurous
infection was not limited to these bacteria, as the growth of
Escherichia coli was inhibited by neutrophil-derived EVs, as well.
However, this anti-microbial activity had no effects on Proteus
mirabilis infections, suggesting some levels of specificity on
different types of bacteria (32, 47). Interestingly, the anti-
bacterial activity of neutrophil-derived EVs depended on
particles/bacterial opsonisation through the activation of
PLCϒ2 and opsonin receptors as well as the presence of
extracellular calcium and Mac-1 integrin complex, independent
of the phagocytic process (48, 49).

In another study, EVs derived from neutrophils infected with
Mycobacterium tuberculosis (Mtb) activated macrophages and
promoted the clearance of intracellular Mtb via enhancing early
superoxide anion production and autophagy induction (50). This
suggested that EVs acted indirectly by promoting the immune
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response in neighbouring cells. In an interesting study by Garcia-
Martinez et al., EVs released from J774A.1 mice’s macrophage
cell line mitigated the bacterial load and production of MCP-1
and TNF-a cytokines in a phosphatidylserine-dependent
manner in Mtb-infected macrophages, which suggested the
anti-bacterial activity of EVs including exosomes. Furthermore,
in vivo results indicated the reduction of the lung bacterial load
by macrophage-derived EVs (51).

The mechanism of the anti-bacterial action of EVs is not
entirely clear. EVs may be able to capture pathogen derived
nucleic acid and protein and transport them to host cell and
trigger anti-bacterial immune activity. The results of the research
carried out by Cheng and Schorey demonstrated that the
transport of Mycobacterium RNA to EVs released from
infected macrophage led to the activation of the host RIG-I/
MAVS/TBK1/IRF3 RNA sensing signaling and the production of
type I INF in recipient cells (52). They showed that the present of
pathogen RNA in EVs is dependent on the bacteria’s SecA2
secretion system, suggesting the intercellular transfer of bacterial
RNA through host cell-derived EVs may also be perceived for
other pathogens that express a SecA2 secretion system such as
Staphylococcus, Listeria, and Streptococcus species (53).
Moreover, EVs released from Mtb-infected macrophages
induced autophagy via LC3-associated pathway and enhanced
bacterial killing. Indeed, LC3-associated pathway illustrates an
autophagy-dependent antimicrobial pathway in host cells that
led to increasing microbial degradation (54). Furthermore, the
combination of moxifloxacin and EVs isolated from Mtb-
infected macrophages notably lowered the bacterial burden
compared to drug treatment alone (52), suggesting a new
immunotherapeutic approach to treat drug-resistant Mtb.

Today, drug delivery systems at the nanoscale take up
considerable space. Various formulations of nanomedicines
have been used to enhance the therapeutic efficacy of chemical
and biomolecular medicines. EVs have appeared to be
biocompatible vehicles for the delivery of various drugs
including antibiotics. Yang et al. disclosed that macrophage-
derived EVs with encapsulated linezolid antibiotics were more
effective against Methicillin-Resistant Staphylococcus aureus
(MRSA) infections in comparison to free linezolid antibiotics
(55). Thus, EVs derived from immune cells were found to be
biocompatible vehicles for the delivery of various drugs including
anti-microbial agents.

More recently, it was demonstrated that EVs released from
Chlamydia psittaci-infected DCs were strongly able to induce
INF-g production and secretion in natural killer cells through a
TNF-a/TNF receptor interaction (56). The combination of EVs
with INF-g and TNF-a released from infected DCs and
neighbouring NK cells limited the C. psittaci growth in
infected epithelial cells and attenuated the subversion bacterial
resistance to apoptosis. Overall, that study emphasized that the
induction of pro-inflammatory cytokines by EVs derived from
host immune cells could further activate the anti-bacterial
defense (56). A similar mechanism was also applied by the
host to deliver cytokines for the activation of immune response
in combat with infections. Accordingly, DC-derived EVs
Frontiers in Immunology | www.frontiersin.org 4
transferred the pro-inflammatory cytokine TNF-a and
activated the neighbouring epithelial cells, leading to the
release of additional inflammatory cytokines and chemokines
as well as the promotion of the innate immune response. All in
all, these limited studies highlighted the role of immune cell-
derived EVs in response to bacterial infections. Yet, more
detailed studies in this area are warranted.
IMMUNE CELL-DERIVED
EXTRACELLULAR VESICLES IN FUNGAL
AND PARASITIC INFECTION THERAPY

The immune system is concomitantly involved with infectious
agents such as fungi and parasites to generate exosomes that are
applicable in defense against these pathogens. Hence, immune
cell-derived EVs could be considered a valuable treatment
target against these infectious agents. In this regard,
investigations were done on Aspergillus fumigatus and
Candida albicans, as two clinically relevant’ human fungal
pathogens, to explore the host’s immune response (57). Based
on the findings, anti-fungal responses from neutrophil-
produced EVs were shown in response to A. fumigatus
infection. Indeed, A. fumigatus stimulates EV produced by
human neutrophils and utilizing these EVs in vitro led to the
elimination of fungal hyphae (58, 59). As such, during infection
with opsonized A.fumigatus, fresh human polymorph nuclear
granulocytes(PMNs) were extracted, and then EV release by
human neutrophils were collected and co-incubated with fungi
for 4 to 6 hour at a different multiplicity of infection (MOI) to
one PMNs to optimize minimal cell death in the PMN
population (60). Accordingly, the EVs could attach to and
enter fungal conidia and inhibit their growth (57).
Surprisingly, anti-fungal cargo proteins including cathepsin G
and azurocidin were identified in these anti-fungal EVs through
mass spectrometry-based proteomic analysis. Notably, these
productions from the host were specifically affirmed against a
mutant strain of A. fumigatus (61). Conversely, a recent study
found that monocyte-derived EVs presented anti-inflammatory
functions in the context of C. albicans infection. TGF-b1-
transporting EVs, as anti-inflammatory vesicles, were released
via interaction between Complement Receptor 3 (CR3, also
known as CD11b/CD18) on monocytes and soluble b-glucan
produced from C. albicans (62). In addition, TGF-b1 led to the
development of immune modulation, favoring the survival of
C. albicans commensalism (63). Inconsistent with the anti-
fungal role of EVs in A. fumigatus infection, these EVs
appeared to provide an opportunity for C. albicans to be a
human commensal. It is noteworthy that the lipid-enclosed
Amphotericin B (AmBisome) was utilized instead of
amphotericin B, which enhanced the uptake and decreased
the off-target effects (64). This technique is classically similar to
transfer via EVs. Overall, these findings proved a promising
path forward to target exosomes for fungal pathogens of
interest (65, 66).
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Plasmodium berghei, as a rodent malaria parasite, leads to the
secretion of plasma cell-derived EVs and stimulates antigen-
presenting cells through CD40, which generates an inflammatory
response that causes the initiation of effector T cells activity (67).
Therefore, macrophage induction triggers the parasite clearance.
Evidence has indicated that the distinct properties of EVs make
them of interest for new drugs and treatment prospects in
parasitic infections. Hence, attention has to be paid to the
potential of exosomes as a therapeutic agent and vaccine target
in parasitic diseases.

Conversely, during acute Plasmodium vivax infection in
humans, the presence of increased circulating immune cell-
derived EVs might be important on the acute inflammatory
signs of malaria vivax (68, 69). Besides, EVs derived from
Toxoplasma gondii antigen-pulsed DCs could be candidate as
an effective vaccine against toxoplasmosis, because these pulsed
DCs were able to induce humoral immunity against the parasite
(70). This was further supported by a study performed on
cutaneous leishmaniasis, which indicated that protective Th1
responses were mediated by DC-derived EVs (71). Similar results
were also obtained regarding common livestock parasites, which
showed that the EVs derived from parasite antigen-loaded DCs
played an important role in protection against the infection (72).
This could provide a proof-of-principle that therapeutic
approaches based on EVs derived from immune cells offer a
promising path forward.

Considering the results of earlier studies pertaining to the
release of EVs from parasites or parasitized cells, utilizing
suitable strategies against the function of these EVs can be a
therapeutic approach. Accordingly, there are particular
interactions between parasite-derived EVs and the immune
system (73). Another support for the therapeutic application of
exosomes in parasitic diseases comes from a study by Chappuis
et al. (74), which described challenges in the treatment of visceral
leishmaniosis including drug resistance and variable responses to
treatment regimens, leading to a long sought treatment.
Nonetheless, leishmania exosomes were found to affect the
Frontiers in Immunology | www.frontiersin.org 5
innate and adaptive immune responses (75, 76). In this regard,
designing immune cell-derived EVs containing the related drugs
or specific cargoes may lead to the activation and induction of
immune responses, inducing protection against parasitic
diseases. This technique can be used to treat such infections,
and such an insight will be highly valuable.
CONCLUSION

The studies reported in this mini-review demonstrated that the
EVs released by immune cells were able to invade various
pathogens including bacterial, viral, and fungal infections.
However, unanswered questions have remained about the
antimicrobial effects of EVs including their exact mechanism
of action. On the other hand, the exact cargos of EVs produced
by each immune cell are changeable depending on the
pathophysiology of the microenvironment. Thus, valuable
information can be gained through a close evaluation of the
role of EVs during infections. Hopefully, the years to come will
witness a change in the use of EVs as both diagnostic and
therapeutic agents for the treatment of infectious diseases.
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Heterogeneity of Neutrophil-Derived Extracellular Vesicles Reflects the Status
of the Parent Cell. Cells (2020) 9(12):2718. doi: 10.3390/cells9122718

24. Cai C, Koch B, Morikawa K, Suda G, Sakamoto N, Rueschenbaum S, et al.
Macrophage-Derived Extracellular Vesicles Induce Long-Lasting Immunity
Against Hepatitis C Virus Which is Blunted by Polyunsaturated Fatty Acids.
Front Immunol (2018) 9:723. doi: 10.3389/fimmu.2018.00723

25. Peters PJ, Borst J, Oorschot V, Fukuda M, Krähenbühl O, Tschopp J, et al.
Cytotoxic T Lymphocyte Granules are Secretory Lysosomes, Containing Both
Perforin and Granzymes. J Exp Med (1991) 173(5):1099–109. doi: 10.1084/
jem.173.5.1099

26. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-
Mediated Transfer of mRNAs and microRNAs is a Novel Mechanism of
Genetic Exchange Between Cells. Nat Cell Biol (2007) 9(6):654–9. doi:
10.1038/ncb1596

27. Tetta C, Ghigo E, Silengo L, Deregibus MC, Camussi G. Extracellular Vesicles
as an Emerging Mechanism of Cell-to-Cell Communication. Endocrine (2013)
44(1):11–9. doi: 10.1007/s12020-012-9839-0
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50. Kolonics F, Kajdácsi E, Farkas VJ, Veres DS, Khamari D, Kittel Á, et al.
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