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ABSTRACT

We present RISE (http://rise.zhanglab.net), a
database of RNA Interactome from Sequencing
Experiments. RNA-RNA interactions (RRIs) are
essential for RNA regulation and function. RISE pro-
vides a comprehensive collection of RRIs that mainly
come from recent transcriptome-wide sequencing-
based experiments like PARIS, SPLASH, LIGR-seq,
and MARIO, as well as targeted studies like RIA-seq,
RAP-BRNA and CLASH. It also includes interac-
tions aggregated from other primary databases
and publications. The RISE database currently
contains 328,811 RNA-RNA interactions mainly in
human, mouse and yeast. While most existing RNA
databases mainly contain interactions of miRNA
targeting, notably, more than half of the RRIs in RISE
are among mRNA and long non-coding RNAs. We
compared different RRI datasets in RISE and found
limited overlaps in interactions resolved by different
techniques and in different cell lines. It may suggest
technology preference and also dynamic natures
of RRIs. We also analyzed the basic features of the
human and mouse RRI networks and found that
they tend to be scale-free, small-world, hierarchical
and modular. The analysis may nominate important
RNAs or RRIs for further investigation. Finally, RISE
provides a Circos plot and several table views for
integrative visualization, with extensive molecular
and functional annotations to facilitate exploration
of biological functions for any RRI of interest.

INTRODUCTION

RNA molecules in the cell do not exist alone. During
their life cycle, they interact with many different molecules,
including proteins, DNA and other RNAs (1-4). These
interactions are essential to understanding the biological
functions and molecular mechanisms of both messenger
RNAs (mRNAs) and noncoding RNAs (ncRNAs). RNA
molecules can directly interact with other RNAs through
base-pairing. For instance, the 3 UTRs of mRNAs can
be targeted by miRNAs, and the intronic regions of pre-
mRNAs can be recognized by the spliceosomal small nu-
clear RNAs (snRNAs). In addition to protein-coding mR-
NAs and canonical ncRNAs, mammalian genomes con-
tain many thousands of long noncoding RNAs (IncRNAs)
(5-7). Some IncRNAs play important and diverse roles in
gene regulation through interactions with other RNAs (8—
10). For example, many IncRNAs can be competing tar-
gets of shared miRNAs with other mRNAs, forming a com-
plex regulatory competing endogenous RNA (ceRNA) net-
work (3,11). These observations indicate that intermolecu-
lar RNA-RNA interactions (RRIs) may be a general strat-
egy used by RNA molecules in the cell. Collection of RRIs
thus may provide insights into the biological functions and
regulatory mechanisms of both mRNAs and ncRNAs.

Mapping in vivo RRIs had remained challenging until the
recent development of several sequencing-based technolo-
gies. For example, CLASH (12,13), hiCLIP (14), RIA-seq
(15) and RAP-RNA (16) can detect RRIs for a target RNA
or a protein. More recently, some techniques have been de-
veloped to identify transcriptome-wide RRI networks (i.e.
RNA interactomes). For example, PARIS (17), SPLASH
(18) and LIGR-seq (19) can massively discover direct RRIs
in a cell; and MARIO (20) can map RRIs assisted by pro-
teins.
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Figure 1. Framework to construct the RISE database. We collected RRIs from transcriptome-wide and targeted sequencing experiments, and other
databases and publications. We performed quality control to obtain non-redundant intermolecular RRI entries. We then annotated RRIs with exten-
sive molecular and functional information, including (i) RBP binding sites, (ii) RNA editing and modification sites, (iii) SNPs and pan-cancer mutations,
and (iv) gene expression levels from various cell and tissue types. Finally, RISE provides integrative Circos plot visualization and table views for the search

results.

The RRIs generated by these large-scale studies have not
been systematically collected and analyzed. Currently, there
are several databases that contain RRI information, such
as NPInter (21), RAID (22) and RAIN (23). But these
databases focus mainly on miRNAs-mRNA interactions
(Supplementary Table S1), i.e. RRIs of miRNA targeting.
In addition, RRIs in these databases usually contain little
information about their cell types, resolving technologies,
etc. However, RRIs are highly dynamic in vivo (17); thus
it will be important to include these details in annotation
and analysis. Furthermore, RRIs in these databases are of-
ten of limited resolution and do not contain precise inter-
acting sites on the RNA transcripts.

To address these challenges, we construct RISE, a com-
prehensive database of RNA Interactome from Sequencing
Experiments (Figure 1). The RRIs are from recently de-
veloped transcriptome-wide and targeted sequencing-based
experiments, as well as several primary databases and pub-
lications (Table 1). Based on the RISE database, we are then

able to compare different RRI datasets and study the net-
work characteristics of the global RNA interactomes. RISE
also annotates each RRI with extensive molecular and func-
tional information. The database is a ready-to-use resource
for researchers looking for interaction and other functional
information on individual RNAs, and analyzing RRI net-
works of specific pathways or systems.

DATA COLLECTION AND ANALYSIS
RRIs from sequencing-based experiments

The RRIs in RISE mainly come from sequencing-based ex-
periments, including global (i.e. transcriptome-wide) stud-
ies like (i) PARIS, (ii)) SPLASH, (iii) MARIO and (iv)
LIGR-seq, as well as targeted studies like (v) RIA-seq, (vi)
RAP-RNA and (vii) CLASH. Notably, hiCLIP dataset was
not included in RISE because it only provides RRIs within
the same RNA transcript (i.e. intramolecular RRIs) (14).
Among the global studies, we processed the raw data and
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Table 1. Overview of data collected in the RISE database

Number of Number of
Category Method/Resource Species Cell line interactions involved genes
Transcriptome-wide studies PARIS Human HEK?293T 25824 16 192
Human Hela (high RNase) 25552 19 335
Human Hela (low RNase) 20 330 17 009
Mouse mESC 29 514 12 625
MARIO Mouse MEF 7167 2936
Mouse mESC? 99 290 15309
Mouse mESCP 37 441 9715
SPLASH Human hESC 3345 971
Human HeLa 5799 1 649
Human LCL 4213 429
Human hESC (RA treated) 1770 671
LIGR-seq Human HEK?293T 641 749
Targeted studies RIA-seq Human Keratinocytes (TINCR) 3609 1815
RAP-RNA Mouse mESC (Malatl) 495 489
Mouse mESC (Ul snRNA) 12278 8 635
CLASH Human HEK?293 (miRNAs) 18 508 7260
Yeast BY4741 (miRNAs) 253 47
From other databases/dataset NPInter v3.0 Human — 3691 2525
Mouse — 52 83
RAID v2.0 Human — 22 521 6262
Mouse — 3440 2130
RAIN Human — 2881 1189
Mouse — 36 31
PMID 26673718 E. coli - 64 68
S. enterica — 45 49
Yeast — 52 45
Total — - - 328 811 56 295

4This experiment uses UV-crosslinking to detect RRIs mediated by one protein.
YThis experiment uses chemical crosslinking to detect RRIs mediated by multiple proteins.

identified the RRIs for PARIS because the processed data
was not directly available (17); while for the other technolo-
gies, we obtained the RRIs from the correspondent publi-
cations.

(1) For PARIS, we identified RNA duplex regions using
the computational method in the reference (17). Briefly, we
first downloaded the raw data from GSE74353, and mapped
reads to transcriptomes using STAR (24). We took only the
longest isoform as the representative transcript if a gene has
multiple transcripts. Then we used in-house scripts (https://
github.com/qczhang/paris) to identify RNA duplex regions
following the protocols in the reference (17). Finally, only
intermolecular RRIs were retained.

processed data from https://csb5.github.io/splash and http:
/fmariotools.ucsd.edu/legacy/Data_Resources.html, respec-
tively. (iv—vii) For LIGR-seq, RIA-seq, RAP-RNA and
CLASH, we obtained the processed data from the refer-
ences (19), (15), (16) and (12,13) respectively.

RRIs from other databases

RISE also includes RRIs curated from other primary
databases and publications, including (i) RAIN, (ii) RAID
v2.0, (iii) NPInter v3.0 and (iv) a dataset of experimentally
confirmed RRIs.

(1) For RAIN, we downloaded the dataset from: http:
/Irth.dk/resources/rain. (ii) For RAID v2.0, we downloaded
the dataset from: http://www.rna-society.org/raid, and then
filtered the entries of non-RRIs or RRIs with confident
scores below 0.6. (iii) For NPInter v3.0, we downloaded

the dataset from: http://www.bioinfo.org/NPInter, and then
selected the set of high-confidence RRIs, which were de-
fined as those from literature mining and supported by
low-throughput experiments. (iv) In a comparative study of
RRI prediction methods, the authors compiled a dataset
of experimentally confirmed snoRNA-rRNA and sRNA—
mRNA interactions. We obtained the dataset directly from
the reference (25).

Comparison and analysis of RRIs

For all datasets, to facilitate cross-experiments comparison,
we converted the genomic coordinates into hg38 for human
and mm10 for mouse using CrossMap (26), when necessary.
We also converted the RefSeq IDs into Ensembl gene IDs
using BioMart (27), and the miRNA names into Ensembl
gene IDs using miR Base (28). We only retained intermolec-
ular RRIs in all these datasets.

To analyze the RRI networks (i.e. RNA interactomes) in
RISE, we first defined a set of unique RRIs in human and
mouse by collapsing redundant RRI entries. Finally, the
human RNA interactome comprises 112 444 unique RRIs
among 29 875 RNA transcripts; while the mouse RNA in-
teractome comprises 166 183 unique RRIs among 22 630
RNA transcripts. Then we used the Python package Net-
workX 1.10 (29) to calculate six characteristics of the RNA
interactome networks, including (i) distribution of nodes
degree, P(k), for nodes of degree k; (ii) distribution of short-
est path, S(/), for the shortest paths of length /; (iii) average
clustering coefficient, C(k); (iv) average neighborhood con-
nectivity, N(k); (v) average betweenness centrality, B(k) and
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Figure 2. Distribution of RRIs by RNA types and comparison of RRIs from different studies in the RISE database. (A) Circos plot showing RRIs between
different types of interacting RNAs in human. (B) Overlap of RRIs in different cell lines and experimental conditions detected by the PARIS method. (C)
Overlap of RRIs detected by the PARIS and the SPLASH methods in the HeLa cell line. The comparison in (B, C) is counted on the RNA molecular level
regardless of the precise interacting regions. And we used the same transcriptome from the SPLASH study as the mapping reference of PARIS in (C) for
cross-technology comparison (which explains the RRI number differences between B and C).

(vi) average closeness centrality, L(k); all for nodes of degree

Molecular annotation for RRIs

To facilitate in-depth investigations of RNA functions and
regulations by RISE users, we annotated the genes and in-
teracting regions involved in the RRIs with an array of
molecular details. We retrieved RBP binding sites from
CLIPdb (30), RNA editing sites from RADAR (31) and
DARNED (32), RNA modification sites from RMBase
(33), single nucleotide polymorphisms (SNPs) from dbSNP
version 142 (34), pan-cancer somatic mutations (35) and
gene expression levels in various cell and tissue types from
recent publications (36). Finally, the integrative visualiza-
tion of the RRIs was implemented using a Circos plot (37)
and a set of table views.

Database architecture

All metadata in RISE are stored in a MySQL database. The
web interface of RISE was implemented with Hyper Text

Markup Language (HTML), Cascading Style Sheets (CSS)
and Hypertext Preprocessor (PHP). Web design was based
on the free templates of Bootstrap (http://getbootstrap.
com).

RESULTS AND DATABASE USAGE
Comparing RRIs from sequencing-based experiments

The compilation of a comprehensive RRI repository pro-
vides an opportunity to explore RRIs between different
types of RNAs, compare RRI datasets from different ex-
periments, and characterize the networks of RNA interac-
tomes. We first analyzed the distribution of RRIs by dif-
ferent RNA types (Figure 2A). We found that ~90% of
the RRIs in human involve mRNAs, in which a substan-
tial fraction is between two different mRNAs. We see a sim-
ilar distribution in mouse except that there are more in-
teractions with snoRNAs (Supplementary Figure S1). The
RRIs involving IncRNAs and miRNAs comprise ~15%
and ~29% of the total interactions, respectively. In con-
trast to mRNAs, most of the RRIs involving ncRNAs are
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Figure 3. Characteristics of the human RNA interactome in RISE. (A) Degree distribution of the RNAs. (B) Distribution of the shortest path between pairs
of RNAs. (C) Degree distribution of the average clustering coefficients of the RNAs. (D) Degree distribution of the average neighborhood connectivity.
(E) Degree distribution of the average betweenness centrality of the RNAs. (F) Degree distribution of the average closeness centrality of the RNAs. The

blue lines show the regression in log-space.

formed between ncRNAs and mRNAs. Next, we explored
the distributions of RRIs from different experimental ap-
proaches and found big cross-platform differences. For ex-
ample, PARIS detects many RRIs of mRNAs and IncR-
NAs, while LIGR-seq shows preference on RRIs involving
snRNAs, and SPLASH favors RRIs between mRNAs and
rRNAs (Supplementary Figure S1).

The observations above suggest great heterogeneity in the
RRI datasets from different experiments. We then systemat-
ically analyzed the overlaps among different RRI datasets.
We found substantial overlap of RRIs for the same cell line
and technology but slightly different experimental specifi-
cations (i.e. PARIS with high and low RNase, Figure 2B).
The overlap for the same technology but different cell lines
are lower although still quite statistically significant. The re-
sult suggests the dynamic and cell-specific nature of RNA
interactions. But the overlaps between different techniques
are very limited even for the same cell line (Figure 2C). One
reason is that different techniques have different preferences
or biases towards the interactions they can identify. It is also
very likely that the RRIs identified by any single experimen-
tal approach are far from saturation. One usual drawback of
sequencing-based techniques is their heavy dependency on

sequencing depth. With low sequencing depth, the stochas-
tic variation may be high.

Characteristics of the RNA interactomes

The architectures of global protein—protein interaction net-
works (i.e. interactomes) have been extensively studied; and
a recent study investigated the network features of the
RNA-RNA interactions in yeast (38—40). We are also inter-
ested in the structural and topological features of the RNA
interactomes in RISE. We first calculated the degree distri-
bution P(k) of all RNAs, representing that a given transcript
interacts with k& other ones. On average, RNAs in the hu-
man RRI network have 7 interaction partners, but it also
reveals 170 hub RNAs with >100 partners. As shown in
Figure 3A, the degree distribution of the human RNAs de-
creases slowly in a power-law fashion (yocx™"). This sug-
gests that, similar to protein interactomes, the human RNA
interactome also tends to be scale-free. We then calculate
the shortest path length distribution in the largest connected
subgraph, S(/), where [ means the number of edges in the
shortest path between any two nodes. We found that most
of them are less than 8 edges, with the longest one to be 11
edges (i.e. network diameter. Figure 3B). This means that
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most RNAs are very closely linked, suggesting that the hu-
man RNA interactome is also a small world network.

We also calculated the average clustering coefficient,
C(k), and the average neighborhood connectivity, N(k) for
all RNAs of the same interaction degree k. Both of them
are measures of the tendency of molecules in a network to
form local clusters. We found that C(k) and N(k) diminishes
when the number of interactions per RNA increases (Figure
3C and D). This suggests that RNAs with low interaction
degrees tend to form clusters, i.e. modules. These modules
are then connected by RNAs of high interaction degrees, i.¢.
hubs. It thus indicates a potential topology of hierarchical
and modular organization.

We further calculated the average centrality measured by
betweenness centrality, B(k), and closeness centrality, L(k)
for RNAs of interaction degree k. As shown in Figure 3E
and F, interaction degrees and the centralities are positively
correlated. This implies that RNA interaction hubs are usu-
ally of high centrality in the network and deserve more at-
tention in functional investigation.

We repeated the analysis for mouse interactome and con-
firmed the finding that, like protein interactomes, RNA in-
teractomes also tend to be scale-free, small-world, hierar-
chical and modular. And interaction hubs tend to be essen-
tial nodes in the networks (Supplementary Figure S2).

Web interface and example usage

We designed a user-friendly web interface to query the
database. Users can input a gene name, e.g. RBFOX2, and
choose a species (human, mouse or yeast) to search within
(Figure 4A). RISE will return a table showing gene infor-
mation and a Circos plot showing RRIs and associated an-
notations (Figure 4B). The Circos plot provides visualiza-
tion of RRIs and multiple levels of annotations (Supple-
mentary Figure S3), including (i) interacting gene name and
type, (ii) gene structure (i.e. exon—intron structure of the
longest transcript), (iii) RBP binding sites, (iv) SNPs and
pan-cancer mutations, (v) RNA editing and modification
sites and (vi) RNA interactions in the RISE database.
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Next, detailed information about each RRI involving
RBFOX2 will be displayed in a table view (Figure 4B): the
first two columns are about the interacting region on RB-
FOX2, the next five columns are about the interacting re-
gion on the RNA partner, and the last four columns are
about the species, cell line, method/source and reference.
Notably, RRIs collected from other databases do not have
information of the interacting regions. Furthermore, users
can navigate the molecular annotations of the RRIs (Fig-
ure 4B). Each time users can select one annotation mod-
ule: (i) RBP binding, (ii)) RNA editing/modification, (iii)
SNPs/pan-cancer mutations or (iv) gene expression levels.
In each module, RISE provides a table showing the infor-
mation about molecular events located within the RRI re-
gions. Users can download their search results by clicking
on the ‘Export data to CSV file’ button. A more detailed
explanation of the table view can be found on the Help web

page.

DISCUSSION AND FUTURE DIRECTIONS

We present RISE, a comprehensive resource for RRIs iden-
tified through high-throughput sequencing technologies.
Currently, RISE contains 328 811 RRIs mainly from hu-
man, mouse and yeast. The RISE database provides a con-
venient interface for RRI search and enables integrative
navigation of RRIs with various molecular annotations.
The major advantages of RISE over other similar databases
(21-23) include (i) comprehensive curation of RRIs, (ii) a
large dataset of RRIs among mRNAs and IncRNAs, (iii)
details of the interacting sites and (iv) extensive annotations
for each RRI.

Notably, when comparing different RRI datasets in
RISE, we observed limited overlapping of RRIs among dif-
ferent experimental technologies even for the same cell line.
As we discussed earlier, this could be partly explained by
technology preferences and the issue of sequencing depth.
It thus highlights the value of improving the technologies
to be more sensitive and to achieve broader coverage on
RRIs. Moreover, this limited overlap is also because the
algorithms and parameters used to call interactions from
sequencing data vary from technology to technology. The
high degree of data heterogeneity poses difficulties in data
reuse, integration and further discovery. It is thus highly
desirable to develop a computational pipeline that stan-
dardizes experimental data processing and makes the results
more comparable across technologies and studies.

We anticipate further development and improvement
of the high-throughput sequencing-based technologies on
RRI detection. It will generate more datasets and enable
novel investigations into RRIs in various cellular and dis-
ease contexts. Some recent evidence has indicated linkage
between dysregulation of RRIs and human diseases such as
cancer (41) and genetic disorders (42). In addition, RRIs
can be a new class of targets for drug discovery (43). As
more data are generated in the future, we will maintain and
keep updating RISE as a repository providing information
and annotation on RRIs.

DATA AVAILABILITY

RISE is freely available at http://rise.zhanglab.net. The
datasets in RISE can be downloaded and used in accor-
dance with the GNU Public License and the license of their
primary data sources.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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