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Abstract: Sexual dimorphism is associated not only with somatic and behavioral differences between
men and women, but also with physiological differences reflected in organ metabolism. Genes
regulated by sex hormones differ in expression in various tissues, which is especially important in
the case of liver metabolism, with the liver being a target organ for sex hormones as its cells express
estrogen receptors (ERs: ERα, also known as ESR1 or NR3A; ERβ; GPER (G protein-coupled ER,
also known as GPR 30)) and the androgen receptor (AR) in both men and women. Differences in
sex hormone levels and sex hormone-specific gene expression are mentioned as some of the main
variations in causes of the incidence of hepatic diseases; for example, hepatocellular carcinoma (HCC)
is more common in men, while women have an increased risk of autoimmune liver disease and
show more acute liver failure symptoms in alcoholic liver disease. In non-alcoholic fatty liver disease
(NAFLD), the distinction is less pronounced, but increased incidences are suggested among men and
postmenopausal women, probably due to an increased tendency towards visceral fat accumulation.

Keywords: gender-dependent liver failure; hepatic glucose metabolism; insulin resistance; type 2
diabetes; metabolic syndrome; hepatic lipid metabolism; non-alcoholic fatty liver disease; cirrhosis;
hepatocellular carcinoma; transgenic animal models; clinical cases

1. Sex Hormone-Dependent Glucose Metabolism in a Healthy Liver, in Insulin Resistance (IR)
and in Diabetes (T2D)

1.1. Cellular Transporters Involved in Glucose Transport: Their Expression in IR, T2D and MetS
(metabolic syndrome)

The liver is one of the organs responsible for glucose metabolism due to its production of glucose
(glucogenesis), which is stored as glucogen (glycogenogenesis) (Figure 1), and is degraded as needed
via the glycolytic pathway (glycogenolysis) or converted to fatty acids by the lipogenic pathway
(lipogenesis). Glucose transport is directed by the Na+-coupled glucose transporters (SGLT) or glucose
transporters (GLUT). Among the former, SGLT1 and SGLT2 serve as transporters, and SGLT3 is a
glucose sensor. In humans, the GLUT family includes 14 isoforms which have diverse affinities
and different expression profiles, thus enabling tissue adaptation of glucose uptake via GLUT gene
expression [1]. Glucose absorption and release depends on the current needs of the body, and take
place mainly through the activation of GLUT2, one of GLUT’s isoforms. Bi-directional transport via
GLUT2 is responsible for the glucose balance in the cell, and GLUT2 up-regulation plays a more
important role in the export of glucose than in its import to the liver [1]. Nevertheless, to ensure
proper expression of glucose-dependent genes in the liver, it is necessary to maintain a proper balance
between intracellular and extracellular GLUT2-dependent glucose concentrations [2]. In the liver, the
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GLUT2 level is increased by glucose, insulin and fatty acid synthase (FASN) stimulation, and studies
on GLUT2 knockout mice confirm that glucose uptake by hepatocytes is a major source of glucose for
lipogenesis [2].
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Figure 1. Graphical comparison of glycogenesis and glycogenolysis pathways. 

Epidemiological studies show sex differences in type 2 diabetes (T2D) and indicate a higher 
prevalence in men than in women [3]. Men are also more likely to suffer from obesity and effects of 
sedentary lifestyle than women, probably due to differences in insulin sensitivity and regional fat 
storage [4], which may be due to disrupted sex hormone homeostasis. In a study on castrated rats, an 
increased level of glucose in blood and a higher level of GLUT2 mRNA and protein expression was 
found as a result of endogenous androgens deficiency [5]. Supplementation with testosterone (T) or 
testosterone with estradiol (E2) normalized the level of GLUT2 mRNA and protein expression in the 
liver of the rats, whereas supplementation with E2 alone had no effect [5]. In vitro data indicated that 
the addition of testosterone and 17β estradiol to the medium of non-malignant Chang liver cells 
significantly increased the insulin receptor mRNA expression and glucose oxidation and that these 
processes were not the effect of insulin action. So, compared to the individual effects of T and E2, 
their combination significantly increased the glucose oxidation which is similar to the effect of insulin 
[6]. In the aforementioned study by Muthusamy [5], testosterone deficient rats were characterised by 
increased hepatic glucose synthesis (hyperglycaemia) and symptoms similar to T2D or metabolic 
syndrome (MetS) [5]. Because the normal testosterone level improved the levels of GLUT2 mRNA 
and protein expression, it can be supposed that T directly influences the GLUT2 gene transcription 
and translation [5]. Another report indicated that exogenous T encouraged synthesis of glycogen in 
both castrated and non-castrated rats [7]. At the same time, in humans, a high level of testosterone 
was related to a low risk of diabetes in men and a high risk in women [7]. An excess of androgens in 
women with polycystic ovary syndrome (PCOS) disrupts hepatic glucose metabolism as a result of a 
reduced glucose concentration in blood due to insulin action and glycogen synthesis; furthermore, 
PCOS predisposes women to insulin resistance (IR) [8,9]. However, estrogens have been shown to 
have little effect on GLUT2 and the insulin receptor in the livers of male rats, although this caused an 
increase in the insulin receptor levels in the human liver cell line (HepG2) [10] and non-malignant 
Chang liver cells [6]. Furthermore, testosterone supplementation resulted in the non-malignant 
Chang liver cells up-regulating the mRNA level for the insulin receptor and increasing insulin 
sensitivity [6]. 
  

Figure 1. Graphical comparison of glycogenesis and glycogenolysis pathways.

Epidemiological studies show sex differences in type 2 diabetes (T2D) and indicate a higher
prevalence in men than in women [3]. Men are also more likely to suffer from obesity and effects of
sedentary lifestyle than women, probably due to differences in insulin sensitivity and regional fat
storage [4], which may be due to disrupted sex hormone homeostasis. In a study on castrated rats,
an increased level of glucose in blood and a higher level of GLUT2 mRNA and protein expression
was found as a result of endogenous androgens deficiency [5]. Supplementation with testosterone (T)
or testosterone with estradiol (E2) normalized the level of GLUT2 mRNA and protein expression in
the liver of the rats, whereas supplementation with E2 alone had no effect [5]. In vitro data indicated
that the addition of testosterone and 17β estradiol to the medium of non-malignant Chang liver cells
significantly increased the insulin receptor mRNA expression and glucose oxidation and that these
processes were not the effect of insulin action. So, compared to the individual effects of T and E2, their
combination significantly increased the glucose oxidation which is similar to the effect of insulin [6].
In the aforementioned study by Muthusamy [5], testosterone deficient rats were characterised by
increased hepatic glucose synthesis (hyperglycaemia) and symptoms similar to T2D or metabolic
syndrome (MetS) [5]. Because the normal testosterone level improved the levels of GLUT2 mRNA
and protein expression, it can be supposed that T directly influences the GLUT2 gene transcription
and translation [5]. Another report indicated that exogenous T encouraged synthesis of glycogen in
both castrated and non-castrated rats [7]. At the same time, in humans, a high level of testosterone
was related to a low risk of diabetes in men and a high risk in women [7]. An excess of androgens in
women with polycystic ovary syndrome (PCOS) disrupts hepatic glucose metabolism as a result of a
reduced glucose concentration in blood due to insulin action and glycogen synthesis; furthermore,
PCOS predisposes women to insulin resistance (IR) [8,9]. However, estrogens have been shown to
have little effect on GLUT2 and the insulin receptor in the livers of male rats, although this caused an
increase in the insulin receptor levels in the human liver cell line (HepG2) [10] and non-malignant
Chang liver cells [6]. Furthermore, testosterone supplementation resulted in the non-malignant Chang
liver cells up-regulating the mRNA level for the insulin receptor and increasing insulin sensitivity [6].
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1.2. Relationship between Androgens/Androgen Receptor/5α-Reductase and Hepatic Glucose Homeostasis

A lack of an androgen receptor (AR) in males promotes IR which could promote T2D development.
For example, an in vivo study performed on AR knockout (AR−/y) male mice showed a gradual
decrease in sensitivity to insulin and attenuated glucose tolerance which increased with age. Aging
AR−/y mice also exhibited accelerated hyperinsulinemia [4]. Another experiment on sex-dependent
insulin resistance was carried out on hepatic AR knockout mice, where overweight male H-AR−/y, but
not female H-AR−/− mice, fed a high-fat diet (HFD) were characterized by reduced sensitivity to insulin
as a result of increased expression of protein-tyrosine phosphatase 1B (PTP1B, negative regulator of the
insulin signaling pathway). So, the hepatic androgen receptor, as a positive factor, could also play an
important role in avoiding IR development [11]. The authors of the publication suggest that “strategies
aimed at increasing AR activity specifically in the liver through tissue-selective AR modulators could
therefore improve both hepatic insulin and leptin sensitivity and improve both lipid and glucose
homeostasis”. In another study 5α-reductase-knockout (5αR1−/−, but not 5αR2−/−) mice with an ALIOS
diet (American lifestyle-induced obesity syndrome) had decreased hepatic mRNA expression of genes
involved in insulin signaling [12]. However, overweight male Zucker rats (castrated and non-castrated)
showed hyperinsulinemia induced by finasteride (which is an inhibitor of 5α-R2 and not 5α-R1) [13].
Male 5αR1-knockout mice on HFD showed a higher average weight gain and hyperinsulinemia then
wild type (WT) animals [13]. This suggests that lack of activity of 5α-reductase, the enzyme that
converts T to DHT, induces IR. Interestingly, in another study [14], expression of the ERα transcript in
the liver was decreased by DHT treatment of orchidectomized (ORX) male mice, although there was
no significant impact on ERβ or AR transcripts.

1.3. Relationship between Estrogens/Estrogen Receptors/Aromatase and Hepatic Glucose Homeostasis

The relationship between estrogen concentration and metabolic homeostasis has also been found
in a study carried out on aromatase-deficient patients and aromatase-knockout animals (ArKO mice);
these patients, such as a male patient with inactive ERα [15], displayed diminished glucose metabolism,
insulin resistance and hyperinsulinemia [16]. Exogenous estrogen supplementation of the male
patient with attenuated ERα did not recover homeostasis of glucose and did not restore insulin
to normal level, whereas the aromatase-deficient patients revised their metabolic anomalies [15].
Estrogen supplementation increases synthesis and release of insulin [17,18], and may also change
liver GLUT expression [1]. Therefore, these sex hormones are important in hepatic insulin clearance.
Postmenopausal women, after an oral hormone replacement therapy (HRT) at low doses, did not
show any changes to IR but exhibited a slight increase in hepatic insulin clearance [19]. Estrogens also
reduce gluconeogenesis and increase liver glycogen synthesis and storage, and lower blood glucose
levels [20]. As well as this, observations on ovariectomized (OVX) rodents support the view that
estrogens decrease glucose levels [21,22]. This correlates with increased glucagon signalling due to
an increased expression of the glucagon receptor (GLR), which stimulates glucose production by
activating gluconeogenic enzymes in OVX rats [23]. As a glucose imbalance after an ovariectomy is
not reversed by exogenous E2 [23], it can be assumed that this disturbed homeostasis was due to a lack
of progesterone. While the classic, nuclear progesterone receptor (PR) has not been detected in the
liver [24], progesterone—in addition to binding to membrane PR [25]—can also bind to the nuclear
AR [26] and thus induce metabolic effects in human hepatocytes, similar to hepatic glycogenolysis and
gluconeogenesis regulated by the epinephrine/β2-adrenergic receptor pathway as a result of estrogen
action [27].

T2D and MetS development are known to be related to the polymorphism in the gene encoding
ERα; for example, a study on men with identified ERα-deficiency showed an imbalance in glucose
metabolism [28]. ERα knockout (ERαKO) mice also display attenuated glucose tolerance with IR
in their livers, while ERβ knockout (ERβKO) mice have normal glucose tolerance, which suggests
that ERα and not ERβ plays an important role in regulating glucose homeostasis in the liver [20,29].
The normalization of glucose homeostasis, insulin concentration and the reverse obesity in mice
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with ERα deficiency and removed ovaries, suggests that ERβ may be a base of diabetogenic and
adipogenic phenotype. In contrast, ERβKO mice had better insulin sensitivity and glucose tolerance
without increased body fat storage. That is why ERα is indicated as an important factor in metabolic
regulation [29]. Similarly, a declining glucose tolerance was also observed in GPER1 knockout mice
(G protein-coupled estrogen receptor 1), although GLUT2 expression and glucokinase activity were not
altered [30]. The mouse GLUT2 promoter includes both a PPAR-γ (peroxisome proliferator activator
receptor-gamma) response element as well as a steroid hormone response element [31,32], and that is
why ERs with PPAR-γ could together regulate the gene encoded glucose transporter type [33].

Ovariectomies of female Holstman rats did not affect liver glycogen levels or phosphoenolpyruvate
carboxykinase (PEPCK, the main enzyme in the gluconeogenesis pathway) gene expression, but after
E2 replacement the expression was altered (glycogen–increased, PEPCK–decreased) [34]. However,
according to another study [35], following the ovariectomy of obese female rats the expression of
lipogenic (sterol-regulatory element-binding protein 1c, SREBP-1c; FASN) and adipogenic (PPAR-γ)
genes in the liver increased significantly, and administration of exogenous E2 or an ERα agonist
(16a-LE2) reduced hepatic expression of SREBP-1c, FASN and PPAR-γ, while an ERβ agonist (8β-VE2)
comparably increased PPARγ expression to the same level of mRNA as in non-treated ovariectomized
animals [35]. Both agonist of ERs not only decreased lipogenesis but also lowered triglyceride (TG)
accumulation in the liver. Therefore, the systemic insulin sensitivity was improved by the activation of
ERα and also ERβ, most likely as a result of the anabolic activity of ERβ [35]. (Summary of the above
data in Table 1.)

Table 1. Summary data on impact of the hormone imbalance, disturbance of the sex hormone receptors
and the enzyme activity/expression on the hepatic metabolism of carbohydrate in relation to the gender
as a cause of many physiological dysfunctions, syndromes or diseases.

Hormone Imbalance or
Receptor/Enzyme Dysfunction Results References

Disturbed carbohydrate metabolism in male

↓ Testosterone Hyperglycemia, T2D, MetS Muthusamy et al. [5]

AR (lack) IR, T2D Lin et al. [4]

AR knockout ↓ Glucose metabolism, IR,
hyperinsulinemia Lin et al. [4]

AR knockout + HFD ↓ Sensitivity to insulin Lin et al. [11]

5α-red1 knockout + ALIOS Hyperinsulinemia Dowman et al. [12]

5α-red1 knockout + HFD Hyperinsulinemia Livingstone et al. [13]

↓ ERα ↓ Glucose metabolism, IR,
hyperinsulinemia, T2D, MetS

Zirilli et al. [16],
Yamada et al. [28]

ERαKO ↓ Glucose tolerance, hepatic IR Bryzgalova et al. [20],
Nilsson et al. [29]

↓ Testosterone Hyperglycemia, T2D, MetS Muthusamy et al. [5]

Disturbed carbohydrate metabolism in female

↓ Testosterone ↑ Glucose Kelly et al. [7]

↓ Estrogens ↑ Diabetes Saengsirisuwan et al. [21],
Feigh et al. [22]

ALIOS—American lifestyle-induced obesity syndrome, AR—androgen receptor; ERα—estrogen receptor alpha,
ERαKO—ERα knockout, HFD—high-fat diet, IR—insulin resistance, MetS—metabolic syndrome, T2D—type 2
diabetes, 5α-red1—5α reductase type 1.
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2. Sex Hormone-Dependent Lipid Metabolism in the Normal Liver, in Nonalcoholic Fatty Liver
Disease (NAFLD), Obesity and in Metabolic Syndrome (MetS)

There is an increasing amount of evidence from animal cell culture and clinical studies that
testosterone/androgens control the expression of important regulatory proteins involved not only
in glycolysis and glycogen synthesis but also in lipid and cholesterol metabolism [7]. For example,
dihydrotestosterone treatment of orchidectomized male mice caused obesity, decreased energy
utilization and fat oxidation, ane increased HDL-C and TG levels correlating with lowered bile
acid synthesis as a result of down-expression of 7α-hydroxylase gene [14]. In addition, in AR knockout
male mice (AR−/y) the exogenous DHT did not reverse the metabolic anomalies and IR [11].

2.1. Relationship between Estrogens/Estrogen Receptors/Aromatase and Hepatic Lipid Homeostasis

In the case of hepatic lipid metabolism, it should be emphasized that estrogens are also crucial.
In both sexes, estrogen signalling via ER is important in the regulation of lipogenesis, as evidenced
by experimental animal models and clinical studies. Women with breast cancer were treated with
tamoxifen (selective modulator of ER, with anti-estrogenic effect) although hepatic steatosis caused by
an impairment of fatty acids (FA) β-oxidation in estrogen deficient livers is a frequent complication
associated with this therapy [1]. Genome-wide analysis demonstrates that transcriptional activity of
ERα oscillates depending on the phase of the mouse estrous cycle and this oscillation is required for
pulsating transcription of FA and cholesterol genes. This ER-dependent physiological programming
changes during gestation and after termination of fallopian tube as a result of progressing age or
surgically induced menopause, signifying that ER signalling is crucial for appropriate liver physiology
in relation to the energetic necessities of reproductive age. Therefore, any changes in the amplitude
and frequency of the cycle are related with the accumulation of fat in the liver [36]. Accordingly, the
oscillation of ER expression has great importance for limiting fat deposition in the livers of women
of reproductive age, and appropriate HRT in post-menopausal women or after surgical menopause,
and has an important role for hepatic metabolism [36]. This protective function of estrogens is mainly
attributed to ERα signalling [37] because, as was shown in microarray analysis, male and female
ERαKO mice exhibit a fatty liver due to the up-expression of lipogenic genes and down-expression of
genes involved in lipid intake [34]. Mice with liver ERα-knockout (LKO) [38] and Gpr30-deficient mice
(GPR30; orphan G protein-coupled receptor 30) [39] fed a HFD had increased liver triglycerides and
diacylglycerides, and female rather than male mice had significantly lower HDL-C level along with an
increase in fat liver accumulation with insulin resistance. Thus, both ERα and GPER (G protein-coupled
ER, also known as GPR 30) must be present in the liver cells to maintain lipid homeostasis.

The estrogenic pathway of regulation of the liver function also heavily depends on the activity
of aromatase, an enzyme that converts androgens to estrogens. In aromatase knockout (ArKO)
male mice, but not in ArKO female mice, the developed liver steatosis could be normalized by the
administration of exogenous estrogens [40], and impaired hepatic FA β-oxidation was caused by
disturbing the activity of peroxisomal very long-chain acyl-CoA synthetase (VLACS), fatty acyl-CoA
oxidase (AOX) and medium-chain acyl-CoA dehydrogenase [41,42]. These impairments were inverted
by exogenous E2 [41] or treatment with pitavastatin that is able to re-establish FA β-oxidation via the
PPAR-α and abolish hepatic steatosis [42]. As such, estrogen therapy is used to aid recovery from
metabolic anomalies in aromatase-deficient patients [15]. In castrated male rats, E2 supplementation
also decreased FA production and lipid collection, and prevented nonalcoholic fatty liver disease [43].
Similar to the increase in hepatic triglycerides and diacylglyceride in liver ERα-knockout HFD fed mice,
the alteration of insulin-stimulated ACC (acetyl-CoA carboxylase) phosphorylation and DGAT1/2
(diacylglycerol O-acyltransferase 1/2) protein levels were also observed due to decreased insulin
sensitivity [38]. Males on a HFD showed that estrogen (via ERα) helps avoid not only hepatic but also
whole body IR. Therefore, intensifying hepatic estrogen-ERα pathways could reduce the effect of obesity,
diabetes and cardiovascular risk [38]. Another study on a mouse knockout model (ArKO) [44] showed
obesity and liver steatosis due to an impaired FA β-oxidation and an increased FASN level in the liver
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of both female and male mice. This is in line with the findings of Foryst-Ludwig et al. [45], according
to whom ERα mainly mediates beneficial metabolic effects of estrogens such as anti-lipogenesis,
improvement of insulin sensitivity and glucose tolerance, and reduction of body fat mass. In contrast,
ERβ activation seems to be detrimental for the maintenance of regular glucose and lipid homeostasis.
Hypoestrogenemia caused by ovarian senescence significantly increases the risk of steatohepatitis and
liver fibrosis severity both in humans with NAFLD and in zebrafish with experimental steatosis [46].
Therefore, estrogen deficiency promotes the development of NASH (nonalcoholic steatohepatitis) and
estrogen treatment improved NASH progression in bilateral ovariectomized mice fed a high-fat and
high-cholesterol (HFHC) diet [47].

It was also shown that not only classic, nuclear ERα and ERβ act in liver metabolism. Some very
interesting results are presented in a study carried out on a “membrane-only ERα” mouse model
(MOER, ligand-binding domain of receptor is present within the plasma membrane) injected with
propyl-pyrazole-triol or trisphenol (PPT), a selective agonist of ERα [48]. This experiment showed
that the expression of many lipid synthesis-related genes was decreased in “MOER” mice but was
not suppressed in ERKO mice, indicating that only membrane-localized ERα was necessary for the
suppression of these genes (cholesterol, TG and FA content was decreased only in livers from MOER
mice exposed to PPT, but not in the livers from the ERKO mice). Therefore, the inhibition of gene
expression mediated by membrane-localized ERα caused the aforementioned metabolic phenotype that
did not require nuclear ERα. Consequently, the membrane-localized ERα is responsible for protection
against hyperlipidemia by reducing the expression of some genes involved in lipid synthesis in the
liver [48]. Although ERα in the liver is considered anti-lipogenic, data from literature on the role of ERβ
in the liver is not consistent. Mice with a lack of ERβ are heavier but their livers are lighter as a result
of reduced hepatic TG storage accompanied by whole body higher insulin sensitivity [49], indicating
that ERβ in the liver can perform lipogenic and diabetogenic functions, because—as was documented
by Foryst-Ludwig et al. [49]—this receptor deactivates the adipocytic gene expression induced by
PPAR-γ and finally leads to a reduction in adipogenesis. This is confirmed by the discoveries of some
mutations in the ERβ gene of obese female adolescents or women with bulimia [50,51].

2.2. Correlation of Non-Alcoholic Fatty Liver Disease (NAFLD)/Non-Alcoholic Steatohepatitis (NASH) with
Sex Steroids

Non-alcoholic fatty liver disease (NAFLD) includes the entire spectrum of steatohepatitis as a
non-alcoholic steatohepatitis (NASH) with or without fibrosis, cirrhosis and hepatocellular carcinoma
(HCC) [52–55], related to systemic features [56,57] and excessive mortality from cardiovascular and
liver diseases [58–61]. Histologically indistinguishable from alcoholic liver disease, the NAFLD [62] is
closely related to insulin resistance [63] and metabolic syndrome [53,54].

There are studies which show that androgens protect against NAFLD [43], because low serum
T levels and hepatic steatosis in men are closely related [64]. However, other reports show opposite
results, with androgens promoting the development and progression of NAFLD [65,66]. In vitro data
similarly suggests that exposure to excessive amounts of androgens (including corticosterone) can lead
to lipogenesis [12]. These inconsistencies may result from the use of various animal models, genders,
methods of treatment or combinations of various steroid hormone replacements. In addition, it is
the T to DHT ratio that is most important for the development and progression of NAFLD rather
than the concentrations of T or DHT [67]. In the human liver, both isoforms of 5α-reductase (5αR1,
5αR2) are present, and the level of the first isoform becomes higher with the growing severity of
NAFLD symptoms. Mice with 5α-reductase knockout (5αR1−/−, 5αR2−/−) do not convert testosterone
into DHT. Implementing an ALIOS diet for these knockout mice induced a development of great
hepatic steatosis only in 5αR1−/−, but not 5αR2−/− [12]. This steatosis was driven largely by impaired
corticosterone clearance rather than decreased DHT [12]. Similarly, male 5αR1-knockout mice on a
HFD diet also demonstrated hepatic steatosis as a result of hepatic reduction in FA β-oxidation and
increased TG accumulation [13]. The authors of the mentioned study also observed hepatic steatosis
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in obese male Zucker rats, both intact and castrated, after treatment with finasteride (5α-reductase
type 2 inhibitor) [13]. The hepatic steatosis was independent of DHT, but changes in 5αR1 activity
with non-selective 5α-reductase inhibition in overweight men with prostate disease could indicate the
beginning and progression of hepatic metabolic failure [13].

In another study [68], a very low T serum level in feminised (Tfm) male mice on a normal diet
showed increased lipid accumulation although this was significantly less than cholesterol-fed Tfm
mice. Tfm mice on a normal diet demonstrated increased gene expression of hormone sensitive lipase,
stearoyl-CoA desaturase-1 (SCD1) and PPAR-γ, although acetyl-CoA carboxylase alpha (ACACA) and
FASN were not altered. Yet testosterone supplementation caused a reduction in the lipid deposition
in the liver of Tfm mice compared to placebo-treated Tfm as a result of a decrease in the expression
of key regulatory enzymes of fatty acid synthesis [68]. Hepatic AR-knockout (H-AR−/y) male (but
not female) mice on a HFD diet also developed hepatic steatosis as a result of a rise in SREBP-1c and
PPAR-γ [4,11]. Moreover, the insulin resistance of these male mice was associated with a decline of
phosphoinositide-3 kinase (PI3K) action, increased phosphoenolpyruvate carboxykinase (PEPCK)
expression, and correlated with increased protein-tyrosine phosphatase 1B expression (PTP1B). Loss of
AR in aging H-AR−/y male mice caused a rise in hepatic TG volume, so that hepatic androgen receptors
may be a key for avoiding liver steatosis development. Lin et al. [11] proposed the development of
AR agonists to target hepatic AR and thus improved the effectiveness of therapies used in metabolic
syndrome in male patients. Male mice with complete (not only hepatic) AR knockout (ARKO)
developed increasing triglyceride deposition in liver, obesity, and severe IR [4]. As hepatic AR
has a greater effect in men than in women [7,11], Kanaya et al. [69] performed an experiment to
try to better understand how elevated androgen levels regulate food intake and obesity in females.
Ovariectomized female mice treated with DHT (non-aromatazable androgen) exhibited increased
food intake, significantly higher lipids storage in the liver, and other signs of biochemical dysfunction
(increased fasting glucose, impaired glucose tolerance, resistance to leptin) [69].

The aforementioned reports indicate that androgens have a major influence on lipid metabolism
in female livers. There are also many indications that hyperandrogenic women with PCOS may
indirectly increase the risk of NAFLD by obesity, IR, and directly by the hepatotoxic effect (significantly
increased level of alanine aminotransferase (ALT)) [70]. Compared to premenopausal women, men and
postmenopausal women have higher LDL-C and lower HDL-C concentration in blood, so estrogens
could play an important role in decreased hepatic fats storage [71]. This indicates that menopause
is related to increased body weight and higher risk of metabolic diseases. In an OVX mice model of
menopause [72], increased adiposity was prevented by estrogen replacement. In that study, treatment
with E2 was associated with general reduction of adipose tissue mass (because of down-regulation of
lipogenic genes under the control of SREBP-1c). In the liver, endogenous E2, similar to the adipose
tissue, caused a decrease in the expression of lipogenic genes. It was shown by D’Eon et al. [72], that
in the liver, estradiol participated in free fatty acids dividing during oxidation and prevented TG
storage by up-regulation of PPAR-δ and by direct initiation of AMP-activated protein kinase (AMPK).
Accordingly, genomic and non-genomic actions of E2 promote leanness in OVX mice independently of
reduced energy intake [72].

There is ample evidence from screening studies that the prevalence of NAFLD is higher in males
compared to females, regardless of age [73–78]. In a study examining the incidence of NAFLD in
women, 7.5% of those going through menopause and 6.1% of postmenopausal women were found to
have NAFLD, in comparison to 3.5% of premenopausal women [76]. The increased risk of NAFLD did
not correlate with hormone replacement therapy. The incidence of NAFLD in women rose with age,
but did not change with age in men [76]. Thus, this indirectly indicates that endogenous (contrary to
exogenous) estrogens could play a protective function against the advancement of NAFLD in women.
On the other hand, there is data indicating that hormone-replacement therapy may lessen the risk of
diabetes, but its mechanisms are unclear [79]. In contrast, an Italian multicentre study on almost 5500
healthy hysterectomised women who received tamoxifen or placebo for five years showed that the
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medicament increased the risk of NAFLD/NASH development only in overweight and obese women
with features of MetS [80]. A study on women with T2D documented that low doses of hormone
replacement therapy significantly reduced liver enzymes: AST, ALT, GGT (γ-glutamyltransferase), and
ALP (alkaline phosphatase) in serum, potentially due to a reduced level of hepatic fat accumulation [81].
Authors of this publication indicate that the explanation for the HRT improvement of liver physiology
could help in the search of the effective treatment of non-alcoholic fatty liver disease among women.
(Summary of the above data in Table 2.)

Table 2. Summary data on impact of the hormone imbalance, disturbance of the sex hormone receptors
and the enzyme activity/expression on the hepatic metabolism of lipids in relation to the gender as a
cause of many physiological dysfunction, syndromes and diseases.

Hormone Imbalance or
Receptor/Enzyme Dysfunction Results References

disturbed lipids metabolism in male

↓ Testosterone ↑ Hepatic steatosis
↓ Hepatic steatosis

Vőlzke et al. [64]
Jones et al. [65]

Schwingel et al. [66]

5α-red1 knockout + ALIOS Hepatic steatosis Dowman et al. [12]

5α-red1 knockout + HFD ↑ TG, hepatic steatosis Livingstone et al. [13]

Hepatic AR- knockout + HFD Hepatic steatosis, IR Lin et al. [4],
Lin et al. [11]

↓ AR ↑ TG in liver, hepatic steatosis Lin et al. [4]

ARKO ↑ TG in liver, obesity, IR Lin et al. [4]

ArKO Liver steatosis, obesity Hewitt et al. [40],
Fisher et al. [44]

↓ Aromatase Metabolic anomalies Maffei et al. [15]

↓ ERα + HFD ↑ TG, ↑ diacylglyceride, IR Zhu et al. [38]

ERαKO Fatty liver Bryzgalova et al. [20]

LKO + ↓ Gpr30 + HFD ↑ TG, ↑ diacylglyceride Zhu et al. [38],
Meoli et al. [39]

disturbed lipids metabolism in female

↓ Estrogen ↑ LDL-C, ↓ HDL-C, hepatic steatosis Trapani et al. [71],
Chen et al. [1]

↓ Estrogen + HFD/HFHC NASH Kamada et al. [47]

LKO + ↓ Gpr30 + HFD ↑ TG, ↑ diacylglyceride, ↓ HDL-C, ↑
fat liver accumulation, IR

Zhu et al. [38],
Meoli et al. [39]

ERαKO Fatty liver Bryzgalova et al. [34]

ArKO Liver steatosis, obesity Fisher et al. [44]

Hyperandrogenism + PCOS Obesity, IR, NAFLD Bohdanowicz-Pawlak et al. [70]

ALIOS—American lifestyle-induced obesity syndrome, AR—androgen receptor, ARKO—AR knockout,
ArKO—aromatase-knockout, ERα—estrogen receptor alpha, ERαKO—ERα knockout, Gpr30—orphan G
protein-coupled receptor 30, HDL-C—high-density lipoprotein HFD—high-fat diet, HFHC—high-fat an
high-cholesterol diet, IR—insulin resistance, LDL-C—low-density lipoprotein, LKO—liver ERα knockout,
MetS—metabolic syndrome, NAFLD—non-alcoholic fatty liver disease, PCOS—polycystic ovary syndrome,
T2D—type 2 diabetes, TG—triglycerides, 5α-red1—5α reductase type 1.

3. HBV/HCV and Hepatocellular Carcinoma (HCC, Hepatoma)

Hepatitis B (HBV) and hepatitis C (HCV) are two hepatotropic viruses belonging to the family
of Hepadnaviridae and Flaviviridae (respectively), differing in genome, life cycle and molecular
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prediction. HBV is a DNA virus that has an ability to integrate into the DNA of the host cell. In contrast,
HCV is an RNA virus that replicates in cytoplasmic membranous host cell networks. The innate and
adaptive immune responses are the main mechanism involved in determining persistent hepatitis
infection, and the innate immune response is the first line of defence against viral infections [82].

The HBV contagion and subsequent consequences of infection are different in males and
females [83–89]. The effects of sex differences, especially sex hormones, on the innate immune
response to HBV are largely unknown, which is at least partly due to the lack of appropriate research
models. Slightly more is known about gender differences in the adaptive immune response to HBV
infection. For instance, after a prophylactic vaccination against HBV, women have a higher titre of
anti-HBV antibodies than men [90]. Hepatocellular carcinoma (HCC) development, pathogenesis and
disease progression-induced hepatitis B infection show gender-related differences [91]. HBV-related
HCC occurs more often in men than in women [92]. Rates of liver cancer in men are typically 2 to 4 [93]
or even 3 to 5 [94] times higher than in women. Gender-related variation in liver cancers is common in
mammals, from rodents to humans, and was firstly described in mice in the late 1930s, with female
mice being resistant to liver cancer [95]. The remarkable gender disparity suggests an important role of
sex hormones in HCC pathogenesis [96]. It is probable that the specific immune response of the host is
reflected in HBV replication and viral protein levels. Likewise, in a study conducted on HBV infected
mice, males had up-expressed DNA and protein of HBV in comparison to females. The reduced
functionality (not the number) of CD8+ T lymphocytes was accompanied by increased numbers of
regulatory T cells (T reg) in males which may explain why, among male HBV human patients, there
are more infections and more failed cases of immunotherapy than in women [91].

3.1. Relationship between Estrogens/ERs and HBV-Related Acute Liver Failure Such as HCC

The sexual dimorphism of hepatitis B virus-related liver diseases may be related to estrogen and
its receptors. One possible explanation is that the ERα polymorphism leads to a defective immune
cell response to estrogen in HBV-related acute liver failure [97]. Antiviral modulation of immune
responses by sex hormones can also help to explain the prevalence of HCC in men, as in the case of
chemically induced HCC by diethylnitrosamine (DEN, a chemical carcinogen), which is more severe
in males than in female mice, due to an increased production of IL-6 by Kupffer cells (in a manner
dependent on the Toll-like receptor adaptor protein MyD88) in the male liver [98]. Interleukin 6 (IL-6)
is a multifunctional cytokine that is largely responsible for the hepatic response to systemic infection or
inflammation, often referred to as an ‘acute phase response’ [99]. Naugler et al. [98] demonstrated
that estrogens inhibited IL-6 by reducing the activation by Myd 88-induced NF-κB. Physiological
doses of estrogens can suppress metastasis of HCC not only by decreasing IL-6 expression but also by
decreasing hepatocyte growth factor levels [100]. The hepatocarcinogenic effect of IL-6 in hepatocytes
can be stopped by inhibiting transcription factor STAT3 and reducing the activity of mitogen-activated
protein kinase JNK (c-Jun N-terminal kinases) [98]. The protection against the development of liver
cancer in carcinogen-treated mice also depends on ERα-mediated estrogen signaling of forkhead box
protein A (Foxa) factors such as Foxa1 and Foxa2 [101] pioneer transcription factors in the liver, crucial
for steroid hormone signalling (estrogens and androgens) as essential controllers of variations of liver
cancer in terms of gender [95]. The integrative genomic analysis showed that the risk of HCC in
women might be associated with the SERPINA6-rs1998056 regulated by FOXA/ERα [102].

3.2. Relationship between Androgens/AR and HBV-Related Acute Liver Failure Such as HCC

Mechanisms through AR that can mediate the expansion of HCC also include the modulation
of innate immunity. Shi et al. [103]. showed that AR could suppress IL-12A expression at the
transcriptional level via direct binding to the IL-12A promoter region which results in repressing
the efficacy of natural killer (NK; related innate immune surveillance) cell cytotoxicity against liver
cancer cells. On the other hand, there is also evidence that activated AR can inhibit HCC metastasis
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by inducing cellular apoptosis by modulation of p38 kinase phosphorylation [104], shown to be
mitogenic-dependent and playing a significant role in HCC [105–107].

In addition to affecting the immune response, sex hormones can also directly affect the activity
of the virus. In general, the HBV surface antigen (HBsAg) circulates at a higher level in the serum
of male mice than in females [108], and its level decreases after castration, thus indicating that the
expression of the viral antigen and viral replication are regulated by androgens [109]. The HBV
genome integrated into the host cell DNA contains two androgen respond elements (ARE) in the
enhancer region I. When the AR-androgen complex is internalized to hepatocytes, it binds to both
the nuclear and viral ARE sequences, thereby activating the transcription of the HBV genome and
the production of HBV X (HBx) protein [110]. This protein, in turn, facilitates dimerization of AR
and enhances transcriptional activity of AR by activating Src kinase, thus creating a feedback loop
that can promote hepatocarcinogenesis [92]. The AR further acts in conjunction with other molecules,
such as cell cycle-related kinases (CCRKs), which in turn activate oncogenic β-catenin in hepatocytes.
This mechanism indicates that androgens/AR signalling may promote the development of HBV-related
hepatocellular carcinoma and explains the higher incidences of HCC as well as higher HBV titres in
male serum than female [111]. Conversely, estrogen signalling probably inhibits hepatocarcinogenesis
and protects against HBV-related HCC progression. The molecular mechanism of estrogen is mediated
by the binding to the nuclear ERα which inhibits the enhancer I of HBV and transcription of integrated
viral genomes [92,111].

3.3. Complicity of Noncoding mRNAs in the Onset and Progression of HCC

Progression of HCC is also related with several long noncoding RNAs such as lncRNAs, which
have miR-374b/421 and miR-545/374a clusters. Considering that the estrogen-related receptor gamma
(ESRRG) is a potential target gene of miR-545, it has been hypothesized that this mechanism may be
associated with a lower incidence of HVC-induced HCC in women. As the miR-545 and miR-374a
were up-expressed in male versus female HCC individuals in a study by Zhao et al. [112], the authors
of the study concluded that the up-expressed miR-545/374a cluster could be related to a low chance of
recovery, and suggested the employment of miR-545/374a levels in sera for HCC diagnostics. The role
of E2 in regulating the activation of p53 and miR-23a expression could be crucial to understanding
the sex differences observed in HCC [113]. In miRNA PCR array, Huang et al. [113] found more
than a two-fold alteration in apoptotic miRNAs (25 was upregulated and 10 was downregulated) in
E2-treated cells. Among these miRNAs, expression of miR-23a was related to p53 functional status
in the male-derived liver cell-lines. Moreover, miR-23a expression correlated negatively with the
expression of target gene X-linked inhibitor of apoptosis protein (XIAP), but positively with the
caspase-3/7 activity. So, a decrease of XIAP may contribute to caspase-3 activity and cell apoptosis.
The authors of the study emphasize the huge potential of miRNAs as biomarkers and therapeutic
agents thanks to their ability to control gene expression. In research in which lentivirus-mediated
ERα small interfering RNA (siRNA) was transfected into HCC cells (Hep3B), the downregulation of
ERα expression caused the inhibition of cell proliferation, reduced cell invasion, slowed-down cell
population at S phase, and increased the rate of apoptosis [114]. According to these authors, ERα may
play a very important role in carcinogenesis of HCC and its knockdown may offer a new potential
gene therapy approach for human liver cancer in the future. In addition, it has been proved that the
promotor of pri-miR-216a has an androgen-responsive element [115]. The up-expression of miR-216a
was mainly noticed in male patients, as a result of transcriptional activation of pri-miR-216a by the
androgen signaling further reinforced by X protein (HBV protein) [115].

3.4. HCC Malignancy and Sex Hormones

Generally, a correlation between the axis of androgen/androgen receptor and HCC incidence
have been confirmed, but the mechanism is still largely unknown. For example, it is proposed that
androgen/AR complex after binding to promoter of Nanog (pluripotency factor) can promote HCC
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stemness. It is worth emphasizing that, in HCC tissues, AR expression was abnormally high and
showed a correlation with Nanog expression [116]. Another study revealed a “vicious circle” of
androgenic signaling. This signaling increases the expression of CCRK (cycle-related kinase, a direct
AR transcriptional target), which results in the activation of the Wnt/β-catenin/TCF (T cell factor)
pathway that finally leads to up-expression of AR in HCC cells [117]. CCRK was overexpressed
in approximately 70% of HCCs and was significantly correlated with tumor staging. Thus, the
interaction of AR/CCRK stimulates cell cycle progression and induces tumor formation (promotion of
hepatocarcinogenesis) [117]. It was noted that the expression of matrix metalloproteinase 9 (MMP9),
an important marker of migration, adhesion, invasion and metastasis of liver cancer [118], was higher
in HCC tumors in mice lacking specific AR in the liver (L-AR−/y) compared to WT-animals. It was also
found that AR suppresses cell migration via suppression of nuclear factor kappa B (NF-κB)-MMP9
pathway [104]. In their next paper, the authors showed that AR affects cell adhesion and cellular
mobility through the AR-β1-integrin-PI3K/AKT signaling pathway in HCC [119]. The L-AR-/y mice
with carcinogen-induced HCC developed more undifferentiated and larger size tumors at the metastatic
stage and died earlier with increased lung metastasis [104]. These results indicated that hepatic AR
may play dual opposite roles, to promote HCC initiation but suppress HCC metastasis.

DEN-injected female mice exhibited scarcer dysplastic foci and less acute early stage of HCC
than males, with more differentiated tumors and fewer metastases [120]. Castration of these mice
down-regulated cyclin E kinase and amplified hepatocyte apoptosis, and estradiol/progesterone
enhanced those effects. In control female mice, cyclin E kinase activity was lower than in males, and
testosterone administration of ovariectomized mice increased cyclin E and its kinase activity and
accelerated hepatocarcinogenesis. Moreover, exogenous testosterone not only up-expressed cell cycle
regulators (cyclin D1 and E, CDK2) but also down-expressed p53 and p21, which improved hepatocyte
viability. Conversely, E2 inhibited hepatocyte cell cycle markers, increased p53 and reduced hepatocyte
and HCC viability. This study showed that both sex hormones determined the male predominance to
hepatocarcinogenesis: castration of male mice delayed the onset of HCC [120]. Moreover, the DHT to
T ratio is also an essential indicator, because it is elevated in patients with HCC in contrast to patients
with cirrhosis or healthy individuals [121]. Furthermore, the size and cell division activity of HCC
significantly declines after blood DHT levels drop [122]. Therefore, in terms of tumorigenesis, DHT
(a more active T metabolite and AR ligand) cannot be omitted. According to Yu et al. DHT reinforces
hepatocellular carcinoma cell division depending on AR activation [123], and the decline in HCC
malignancy after AR antagonism treatment is linked with a decrease in blood DHT [124]. This data
confirms the observations of Dowman et al. [12], where more than half of the mice after one year of the
ALIOS diet revealed hepatocellular lesions similar to those observed in HCC, compared to one-fifth
of 5αR2−/− and zero of 5αR1−/− (isoform 5α-reductase knockout) mice. Because of this, it has been
proposed that the 5αR1 deletion could have protective function against the NAFLD-associated HCC
expansion, and this enzyme isoform may become a therapeutic target [12].

3.5. Hypothesis about the Role of ERs in HCC

Although hepatocellular carcinoma is known to be accompanied by decreased expression of ERs,
their role in HCC is not fully understood [125]. There are some studies on the effects of estrogen/ERs
signaling on various tumor suppressors, but their results are inconclusive. The development and
invasion/progression of HCC and other cancers are associated with metastasis-associated protein 1
(MTA1) gene expression [126–128]. Additionally, the results of research carried out by Deng et al. [129]
show that ERα up-regulation inhibits the division and spread of HCC. On the other hand, the MTA1
overexpression lowers ERα-controlled inhibition of HCC cells’ division and metastasis. These results
indicate a co-regulation of ERα and MTA1 in the response to HCC, providing a basis for understanding
the gender-related difference in HCC progression. Overexpression of ERα has also been shown
to mediate apoptosis in ERα-negative Hep3B cells via the binding of ERα to specificity protein 1
(SP1). Then this complex (ERα-SP1) binds to the TNFα gene promoter, inducing the expression of
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active caspase 3 in a ligand-dependent manner [125]. It was also shown that decreased expression
of ERα mRNA due to inhibition of ion channel (KCNN4; Ca2+-activated K+ channel) by TRAM-34
(1-[(2-chlorophenyl)diphenylmethyl]-pyrazole) led to a decrease in activation of NF-kappaB, the factor
known to be involved in the development of HCC [130]. Therefore, TRAM-34 is proposed as a new
therapeutic target for the treatment of HCC.

In addition, E2 may also inhibit the progression of HCC, since E2-suppressed cell cycle markers,
increased p53-regulated p21, Bcl-XL and Bax expression, consequently reducing the viability of HCC
cells [120]. Interestingly, estradiol was shown to have a dual effect: in hepatocytes, increasing estradiol
concentrations promoted cell survival, while the opposite effect was observed in HCC cells. A primary
culture of hepatocytes and HCC cells clearly responded differently to estradiol stimulation with respect
to cell death [120]. These dual effects of estradiol have been described before: low doses of endogenous
estradiol are tumor-enhancing, while high doses of exogenously delivered estradiol inhibit tumor
formation [131,132]. This is probably why some of the results of research on the effects of estrogen on
HCC are contradictory, in addition to the existence of various estrogen receptor variants [133]. One of
ER’s alpha receptors is vER (variant estrogen receptor) which does not have the hormone-binding
domain but has a normal DNA-binding domain, responsible for the transcription of estrogen-dependent
genes [134]. In chronic hepatitis, vER transcripts, in contrast to wtER (wild-type ER), are present more
frequently in men and in HBsAg-positive subjects than in individuals with antibodies to HCV. In HCC
male patients the vER transcript is overexpressed or is the only one expressed form [133]. The much
more frequent presence of vER in men, mainly those with HBsAg, both in the early stages of the
disease and chronic hepatitis, indicates that this variant of estrogen receptor promotes the uncontrolled
proliferation and development of hyperplasia, and may be a mechanism of neoplastic alteration in
men [133]. The hepatocellular carcinoma cells that express vER are highly malignant [134,135], because
of the raised proliferation rate and because they are insensitive to tamoxifen (antiestrogen). Fortunately,
megestrol (a drug that blocks wtER and vER) does have some influence on the success of therapy in
HCC with the expression of vER [134].

3.6. Immune Response in Liver Failure and Sex Hormones

Yet another role of estrogen receptors in HCC progression was shown by Wei et al. [136] who
presented a novel link between estrogen receptor β and the NLRP3 inflammasome (an intracellular
multiprotein complex involved in the innate immune response to pathogens) in hepatocarcinogenesis.
They demonstrated that expression of ERβ was significantly downregulated in HCC tissue compared
with normal liver tissue; moreover, ERβ expression had a significant negative correlation with
disease progression and a positive correlation with the expression level of NLRP3 inflammasome
components. It is known that loss of NLRP3 inflammasome in HCC tissue contributes to tumor
progression. Treatment with 17β estradiol significantly inhibited the malignant behavior of HCC
cells through E2/ERβ/MAPK pathway-mediated upregulation of the NLRP3 inflammasome [136].
E2 could achieve the same effect (suppression of tumor growth) via regulating the polarization
(producing distinct functional phenotypes as a reaction to specific microenvironmental stimuli/signals)
of macrophages [137]. During this process, 17β-estradiol suppressed macrophage activation and
HCC development alternatively by inhibiting the interaction between ERβ and ATPase coupling
factor 6 (ATP5J, an ATPase component), and then blocking the JAK1-STAT6 signaling pathway [137].
These results could contribute to the implementation of a new HCC therapeutic strategy based on the
discovered aforementioned mechanism.

3.7. Activity of Aromatase/Estrogens/ERs (and Variants) in HCC

A study by Carruba et al. [138,139] carried out on nontumoral, cirrhotic, and malignant human
liver tissue samples (in vivo) and in HepG2, HuH7, and HA22T cells (in vitro) revealed for the first
time that the level of the aromatase enzyme is significantly increased in liver cancer cells (malignant
human liver tissue and HepG2 hepatoma cells), which leads to an increase in the local conversion of
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estrogens from androgens. Aromatase expression is moderate (or intermediate) in cirrhotic human
liver samples (or HuH7 cells) and undetectable (or very low) in nontumoral human liver tissue (or
HA22T cells) [138–140]. The level of local androgen aromatization is correlated with the degree of
malignancy of the liver tissue/cell line. Therefore, locally elevated estrogen formation affects the
development and progression of cancer tissues and cells (HCC, HepG2) by activating the rapid
signalling pathway mediated via amphiregulin (AREG; a member of the EGF family), a ligand of EGF-R
(epidermal growth factor receptor) [138,140]. Moreover, elevated expression of AREG corresponds
with ubiquitous expression of hERalpha46 (human variant of ERα) [138,139] and occasional expression
of the hERβ2/Cx (human variant of ERβ) [139]. Either none or a low expression of wild-type ERα
and ERβ is observed in liver cancer cells and malignant tissues, and the pattern of wtERα is inversely
related to aromatase expression [140]. Therefore, the elevated estrogen production induced to a higher
aromatase activity could induce liver tumor cell growth through a variant ERα-mediated mechanism.
Furthermore, the modification in activity of aromatase-estrogen-amphiregulin-EGF-R axis in issue
injury or inflammation could result in growth of tumours such as liver, breast or prostate and progress
of chronic diseases such as diabetes, obesity, Alzheimer’s and heart disease [140]. Other studies also
confirm that the change in ERα status (from wild type ERα66 to the ERα36 splice variant, but not
to the ERα46 splice variant) influences HCC development [141]. Probably, due to the existence of
numerous ER splicing variants with diverse action, many HCC patients have not responded properly
to anti-estrogen treatment. This was possibly caused by hERα66 which inhibits the activation of hERβ
in an estrogen-dependent and independent manner [142].

Both prognostic factors and survival rate after therapeutic HCC resection differed between sexes,
with female patients having a better overall survival rate than male patients (women had a less invasive
tumor phenotype), but this survival benefit was only observed in cases of tumor-node-metastasis stage
I diseases compared with males at the same stage; although female patients had a greater prevalence
of increased serum alpha-fetoprotein (AFP), AFP and tumor number had prognostic significance only
for males; vascular invasion and serum g-glutamyl transpeptidase (GGT) levels were independent risk
factors for early recurrence in female patients, whereas AFP and GGT level were independent risk
factors for late recurrence [143]. These authors suggest that because estrogens may have a protective
effect against early-, but not late-stage, HCC, more aggressive treatment should be attempted for
female patients with recurrent HCC [143]. The effective treatments for hepatocellular carcinoma are
hepatectomy and liver transplantation, although the risk of recurrence is still high, particularly in
patients with a large pool of circulating cancer cells (CTCs) positive for cancer stem cell/progenitor
cell mercers. In this area, the results of a study performed on two AR knockout mouse models
with spontaneous HCC, which showed a negative relation between HCC recurrence/progression
after hepatectomy expression of AR in CTCs, are very interesting and promising. AR-regulated
suppression of HCC is a solid sign that this receptor could act as a gatekeeper of HCC recrudescence
after surgery [144].

4. Other Pathological Conditions and HCC

It was also shown that cirrhosis, as a result of liver fibrosis in chronic liver disease (CLD), could
lead to neoplasia in hepatocellular carcinoma [145]. A cohort study of over 12,000 patients showed
that males with CLD were younger (52.9 vs. 58.7 yrs.) and additionally more frequently suffered from
alcoholic liver disease (11.4% vs. 6.9%) than women with CLD [146]. Researchers of this analysis
have highlighted significant gender differences in terms of the etiologic factors and the onset of
chronic liver disease. On this basis, it can be concluded that fibrosis as a consequence of CLD may
also be gender-dependent. According to Saginelli et al. [146] factors such as NF-κB, STAT3 and JNK
could be linkers with the onset of HCC in patients with cirrhosis. In an inflammatory mouse model
(mdr2−/− mice with cholangitis, chronic liver inflammation and finally HCC), the TNF-NF-κB axis
had a pro-carcinogenic effect on the liver. It was demonstrated that inhibition of NF-κB by doses
of anti-TNF-α stopped HCC progression [147]. In lymphotoxin (LT) transgenic mice models, the
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overexpression of LT is related with chronic inflammation and infiltration into the liver by T, B and
dendritic cells, with cytokine (IL-1β, IFN-γ, IL-6) over production reaching the highest concentration in
HCC. These mice also had elevated production of chemokines (CXCL1, CCL7, CXCL10) as a result of
NF-κB activation [148]. Activation of NF-κB is a frequent and early event of human HCC [149,150]. As it
had been described earlier [98,100], by reducing Myd 88-induced NF-κB or STAT3/JNK kinase-pathway,
estrogens may inhibit IL-6 or hepatocyte growth factor, and then this activity can suppress the
progression of liver fibrosis and chronic liver disease. It has also been noted that there are noncirrhotic
patients with HCC that have a better overall survival and disease-free survival than cirrhotic patients
with HCC [145].

A not often noted and not well known progression is the development of hepatocellular carcinoma
in patients with primary biliary cirrhosis (PBC). An early study carried out on almost 400 patients with
PBC has shown that only 14 patients developed HCC; and the appearance rate was higher in patients
with advanced-stage PBC, with age at the time of diagnosis and male gender more associated with
the development of HCC [151]. In the decade following, there was the point of view that the disease
overwhelmingly affected females. In epidemiological studies, only 7–11% of documented PBC patients
were males, but with a higher risk of life-threatening complications such as gastrointestinal bleeding
and hepatoma [152]. In PBC, females demonstrated enhanced antibody production and cell-mediated
responses, in addition to an increased CD4 T cell number, probably because, normally T decreases IgG
and IgM production by plasmocytes in healthy males and females, or because of co-expression of ER
and AR on B cells, whereas CD8 T cells, monocytes, neutrophils and NK cells express only ER [152].

Obesity related to leptin secretion is also a significant predictor of HCC in humans. In the context
of sex steroid dimorphism, it is not known whether estrogens antagonize the action of leptin in women.
HCC line HepG2 cells cultured with leptin and E2, PPT, DPN (bis-hydroxy-phenyl-propionitrile, a ERβ
selective agonist) or G-1 (GPER selective agonist) were studied. The results of the experiment showed
that E2/ERs upset the oncogenic function of leptin in the HepG2 cells via preventing their division
and promoting their death; and these events were linked with regression of changes in SOCS3/STAT3
induced by leptin, up-regulation of p38/MAPK as a result of ERβ action, and up-regulation of ERK due
to the action of ERα and GPER. Additionally, it was shown that agonists of ERα, ERβ and GPER induced
cell apoptosis in the HepG2 line [153]. This further data demonstrates the protective role of estrogens
in the expansion of HCC, and that estrogen receptors could be a target in the prevention/treatment of
leptin-induced HCC.

5. Pathological Condition Associated with the Biliary Tree

The biliary tree (network of intra- and extra-hepatic bile ducts) is lined with a specific type of
epithelial cell known as cholangiocyte. They are a heterogeneous (biochemically and functionally)
highly dynamic population of cells that modify (via transcytotic transport of various ions like Cl−,
HCO3

−, Ca2+, Na+, K+, solutes, water and also glucose) hepatocyte-derived bile under the direction of
hormones, cytokines, growth factors and neurotransmitters [154]. Other functions of cholangiocytes
are proliferation, injury repair, fibrosis, angiogenesis and regulation of blood flow [155]. It was
documented that cholangiocytes can undergo damage or pathological proliferation during chronic
cholestatic liver diseases (cholangiopathies), primary biliary cirrhosis (PBC), primary sclerosing
cholangitis (PSC), polycystic liver disease (PCLD) and cholangiocarcinoma (CCA) [155]. During
biliary fibrosis, proliferating bile duct epithelial cells, along with hepatic stellate (Ito) cells, are the
dominant source of connective tissue growth factor (CTGF); additionally, in this pathological condition,
the elevated mRNA level of TGF-β1 that is produced not only by Ito cells but also by activated
cholangiocytes seemed to be the main source of this profibrogenic factor [156]. Within the hepatic
parenchyma are also oval cells (stem cells). These cells are heterogeneous and bipotent in terms of their
developmental maturity or their commitment to either the hepatocytic or biliary lineage. Studies in
rodents demonstrated that oval cells not only are associated with an increased risk of HCC in chronic
liver disease, but also can proliferate and form ductule-like structures during carcinogenesis and biliary
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obstruction, and have been also indicated to have the potential involvement of bile epithelium in
fibrosis associated with other chronic liver diseases [157].

Suggestions exist that hormones, especially the sex hormones, play a key role in the modulation
of cholangiocyte growth in a damaged liver [155]. For example, bile duct ligation (BDL) caused an
increase in ER-β expression in cholangiocytes in comparison to control animals [158]. Clinical studies
have shown that patients with late-stage PBC had markedly reduced ER expression in cholangiocytes.
ER modulators improve the serum parameters of cholestasis in PBC patients [159]. An in vitro
study documented that estrogens, by Src-Shc-ERK1/2 signalling mechanisms, modulate cholangiocyte
proliferation and secretion [160,161]. This was confirmed in an experiment on rats with bile duct
ligation after tamoxifen or ICI 182,780 9 (anti-estrogen) treatment; the BDL rats had significantly lower
weight of intrahepatic bile ducts (IBDM) compared to the control as a result of impaired proliferation
and increased apoptosis [155]. Another experimental cholestasis study showed that ovariectomised
(OVX) female rats after BDL had significantly reduced bile duct mass associated with a decreased
expression of ERβ. Exogenous E2 caused a normalization of bile duct mass, ERβ expression and
cholangiocyte proliferation in comparison to untreated BDL rats [162]. This is why it is highly likely
that estrogens might delay the progress of cholangiopathies into ductopaenia [163].

Generally, there is little data that described the influence of androgen on biliary epithelium.
For example, Yang et al. [164] showed the expression of AR in cholangiocytes and that testosterone
stimulated biliary growth and secretion during cholestasis. The cAMP level in cholangiocytes from BDL
rats was higher than cAMP levels from normal cholangiocytes [165,166]. Castration of the BDL rats
inhibited the stimulatory effects of secretin on cAMP levels in cholangiocytes, and bile and bicarbonate
secretion in bile fistula rats; and exogenous testosterone restored the functional secretory activity
(secretin stimuli bile and bicarbonate secretion) of cholangiocytes in the castrated BDL rats [164].
Reduced serum testosterone levels as a result of castration or anti-testosterone treatment led to a
decrease of IBDM in normal and BDL rats in comparison to the non-castrated rats; and then endogenous
testosterone partly compensated for the castration-induced loss of IBDM. Moreover, in the bile duct
of BDL castrated rats and BDL rats treated by anti-testosterone, there was an increase in apoptosis
compared with BDL rats [164].

On the basis of the above mentioned studies, it was proposed that not only estrogens [155] but also
testosterone is important in sustaining biliary proliferation and ductal secretory activity in pathological
conditions like functional damage of the biliary epithelium [164].
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ACACA acetyl-CoA carboxylase alpha
ACC acetyl-CoA carboxylase
AFP alpha-fetoprotein
ALIOS American lifestyle-induced obesity syndrome
ALP alkaline phosphatase
ALT alanine aminotransferase
AMPK AMP-activated protein kinase
AOX fatty acyl-CoA oxidase
AR androgen receptor
AR−/y AR knockout male mice
ARE androgen response element
AREG amphiregulin
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ARKO AR konockout
ArKO aromatase-knockout
AST aspartate aminotransferase
ATP5J ATPase coupling factor 6
BDL bile duct ligation
CCA cholangiocarcinoma
CCRKs cell cycle-related kinases
CLD chronic liver disease
CTCs circulating tumor cells
CTGF connective tissue growth factor
DEN diethylnitrosamine
DGAT1/2 diacylglycerol O-acyltransferase 1/2
DHT dihydrotestosterone
DPN bis-hydroxy-phenyl-propionitryle
E2 estradiol
EGF-R epidermal growth factor receptor
ER estrogen receptor
ERα/ERβ estrogen receptor alpha/estrogen receptor beta
ERαKO/ERβKO ERα knockout/ERβ knockout
ESRRG estrogen-related receptor gamma
FA fatty acid
FASN fatty acid synthase
Foxa forkhead box protein A
GGT γ-glutamyltransferase
GLUT glucose transporter
GLR glucagon receptor
GPER G protein-coupled estrogen receptor, known as Gpr30
Gpr30 orphan G protein-coupled receptor 30
H-AR−/y hepatic AR knockout male mice
H-AR−/− hepatic AR knockout female mice
HBsAg HBV surface antigen
HBV hepatitis B
HBx HBV X protein
HCC hepatocellular carcinoma
HCV hepatitis C
HDL-C high-density lipoprotein
HepG2 human liver cell line
HFD high-fat diet
HFHC high-fat and high-cholesterol diet
HRT hormone replacement therapy
IBDM intrahepatic bile duct mass
IFN-γ interferon γ

IL-1β interleukin 1β
IL-6 interleukin 6
IL-12A interleukin 12A
JNK c-Jun N-terminal kinase
KCNN4 Ca2+-activated K+ channel
L-AR−/y liver AR knockout male mice
LDL-C low-density lipoprotein
LKO liver ERα-knockout
lncRNA long non-coding RNAs
LT lymphotoxin
MetS metabolic syndrome
miR microRNA
MMP9 matrix metalloproteinase 9
MOER ERα at the plasma membrane
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MTA1 metastasis-associated protein 1
MyD88 myeloid differentiation primary response 88
NAFLD non-alcoholic fatty liver disease
NASH non-alcoholic steatohepatitis
NF-Kb nuclear factor kappa B
NK natural killer
ORX orchidectomized
OVX ovariectomized
PBC primary biliary cirrhosis
PCLD polycystic liver disease
PCOS polycystic ovary syndrome
PEPCK phosphoenolpyruvate carboxykinase
PI3K phosphoinositide 3-kinase
PPAR-α proliferator-activated receptor-alpha
PPAR-δ peroxisome proliferation activator receptor-delta
PPAR-γ peroxisome proliferator activator receptor-gamma
PPT propyl-pyrazole-triol or trisphenol
PR progesterone receptor
PSC primary sclerosing cholangitis
PTP1B protein-tyrosine phosphatase 1B
SCD1 stearoyl-CoA desaturase-1
SGLT Na+-coupled glucose transporters
siRNA small interfering RNA
SREBP-1c sterol-regulatory element-binding protein 1c
STAT3 signal transducer and activator of transcription 3
T testosterone
T2D type 2 diabetes
TCF T cell factor
Tfm testicular feminized male mice
TG triglycerides
TGF-β1 transforming growth factor beta 1
TNFα tumor necrosis factor alpha
vER variant estrogen receptor
VLACS very long fatty acyl-CoA synthetase
WT wild type
wtER wild type estrogen receptor
XIAP X-linked inhibitor of apoptosis protein
5αR 5α-reductase
5αR1/5αR2 5α-reductase type1/5α-reductase type 2
5αR1−/−/5αR2−/− 5α-reductase type1/5α-reductase type 2 knockout
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