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Abstract: Traumatic brain injuries (TBI) are a serious public-health problem. Furthermore, subse-
quent TBI events can compromise TBI patients’ quality of life. TBI is linked to a number of long- and
short-term complications such as cerebral atrophy and risk of developing dementia and Alzheimer’s
Disease (AD). Following direct TBI damage, oxidative stress and the inflammatory response lead
to tissue injury-associated neurodegenerative processes that are characteristic of TBI-induced sec-
ondary damage. Hidrox® showed positive effects in preclinical models of toxic oxidative stress and
neuroinflammation; thus, the aim of this study was to evaluate the effect of Hidrox® administration
on TBI-induced secondary injury and on the propagation of the AD-like neuropathology. Hidrox®

treatment reduced histological damage after controlled cortical impact. Form a molecular point
of view, hydroxytyrosol is able to preserve the cellular redox balance and protein homeostasis by
activating the Nrf2 pathway and increasing the expression of phase II detoxifying enzymes such as
HO-1, SOD, Catalase, and GSH, thus counteracting the neurodegenerative damage. Additionally,
Hidrox® showed anti-inflammatory effects by reducing the activation of the NFkB pathway and
related cytokines overexpression. From a behavioral point of view, Hidrox® treatment ameliorated
the cognitive dysfunction and memory impairment induced by TBI. Additionally, Hidrox® was asso-
ciated with a significant increased number of hippocampal neurons in the CA3 region, which were
reduced post-TBI. In particular, Hidrox® decreased AD-like phenotypic markers such as ß-amyloid
accumulation and APP and p-Tau overexpression. These findings indicate that Hidrox® could be a
valuable treatment for TBI-induced secondary injury and AD-like pathological features.

Keywords: oxidative stress; inflammation; neurodegeneration

1. Introduction

Traumatic brain injury (TBI) annually affects approximately 1.7 million people [1,2]. It
is defined as mechanical injury and/or structural disruption of brain function resulting
from rapid brain deceleration or acceleration or from striking the head with a hard object.
Causes of TBI are motor vehicle accidents, falls, and assaults [2]. It is an heterogeneous
disease with many different shades [3]. TBI can induce a host of emotional, physical,
behavioral, and cognitive changes, and outcomes can range from total recovery to death or
permanent disability [4]. It consists in a primary insult caused by biomechanical forces and
a secondary injury that has a key role in tissue molecular damage.
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TBI secondary injuries commonly include long-lasting neuropathologies such as
neurodegenerative diseases and dementia [5,6]. Nowadays, the TBI-associated secondary
insult is recognized as equally injurious as the primary damage because of the ensuring
morbidity. Several reports describe impaired calcium influx, glutamate accumulation,
elevated amyloid precursor protein (APP) expression, and neurotoxic inflammation [7,8].
These biochemical changes occur throughout the brain and induce neurodegeneration
coupled with cognitive and motor impairments [9,10]. These secondary outcomes double
the risk of developing Alzheimer’s disease (AD)-like symptoms [11]. AD is the most usual
cause of dementia in the elderly, affecting 11% of those over the age of 65 years and around
a third of those aged 85 and up [12]. Post-mortem brain tissues from AD patients showed
multifocal axonal swelling, exacerbate inflammation, accumulated APP and amyloid β

peptides [13]. Many in vivo studies show the development of AD pathology in the late
stage of TBI, supporting the hypothesis that abnormal APP protein expression can be a
hallmark of AD [14,15].

The TBI-induced pathological changes can shear axons, tear neurons, damage the
vasculature, and disrupt neuronal circuits, leading to necrotic cell loss and apoptosis of
surrounding cells [15].

The inflammatory cell response in the injured area involves the expression of many
pro-inflammatory mediators and the overproduction of free radicals [3,16]. Several papers
underline the role of oxidative stress in the damaged brain area [17]. Immediately after
TBI, the superoxide anion is the most common detected free radical that supports the
formation of other reactive nitrogen species/oxygen species (RNS/ROS) inducing lipid
peroxidation [18]. Several lines of evidence display the important role of the nuclear
factor–erythroid 2-related factor (Nrf2) in the injury induced by TBI. As a pleiotropic
transcription factor, it protects cells from oxidative/cytotoxic damage, inducing detoxifying
and antioxidant enzymes.

In unstressed conditions, the Kelch-like ECH-associated protein 1 (KEAP1) binds
Nrf2 via its binding domain and sequesters it in the cytoplasm. In injured conditions, the
increased ROS modify cysteines residues in KEAP1, thus modifying its conformation and
reducing its affinity for Nrf2, which translocates into the nucleus. Once translocated, it
combines with antioxidant response element (ARE) sequences, activates the Nrf2/ARE
pathway, and then the gene expression of phase II detoxifying enzymes and antioxidases,
such as heme oxygenase 1 (HO-1), SOD-1, and glutathione peroxidase 1 (GPx1), which
protect cells from oxidative stress and a broad range of other toxins [19–21].

When the production of ROS exceeds the scavenging capacity of antioxidant response
systems, extensive lipid peroxidation and protein oxidation occurs, causing oxidative dam-
age, cellular degeneration, and even functional decline [22]. ROS also interact with nuclear
factor κB (NFκB) that is known to be activated by the redox state of the cell in a number of
pathologies [23–25]. Such activation can be inhibited by the use of antioxidants [26].

NFkB is tightly regulated. In physiological conditions, it is sequestered in the cy-
toplasm bound to the inhibitory protein IkB-α. Once IkB-α is degraded in response to
oxidative and inflammatory stimuli, NFkB is free to translocate into the nucleus. NFkB ac-
tivation increases the transcription of proinflammatory cytokines, and they in turn activate
NFkB [27]. The positive feedback amplifies the inflammatory signals [28,29].

Thus, the development of anti-oxidative and anti-inflammatory strategies for the
management of primary and secondary insults induced by TBI is a subject of great scien-
tific interest.

Concerning this aspect, incoming studies report the positive effects of natural phy-
tocomponents as bioactive molecules against neurodegenerative disease [30–32]. The
Mediterranean Diet promotes a high intake of fruits and vegetables, leading to the reduc-
tion of saturated fats. In particular, one of the main components of the Mediterranean Diet
is olive oil, and the main phytochemical contained in it is hydroxytyrosol. This molecule
has been described as free-radical scavenger and an antioxidant with important antimi-
crobial, anticancer, anti-inflammatory, and neuroprotective activity [33–35]. Many in vivo
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studies show hydroxytyrosol beneficial effects in the brain: in a Huntington’s disease
model, hydroxytyrosol protects the brain from oxidative damage by reducing lipid peroxi-
dation and increasing glutathione (GSH) levels [36]; in a oligomeric acid Aβ1-42 + ibotenic
acid-induced neural behavioral dysfunction model, hydroxytyrosol ameliorated the work-
ing and visuo-spatial memories, thus restoring signaling mechanisms in hippocampal
neurons [37,38]. Recent data from our laboratory confirmed that Hidrox®, an aqueous ex-
tract of olive incorporating 40–50% of hydroxytyrosol, is a very effective anti-inflammatory
agent and a powerful antioxidant.

In particular, Hidrox® is a freeze–dried powder prepared from the aqueous portion of
olives extracted from defatted olive pulps, a derivative obtained during the processing of
Olea europaea L. for olive oil extraction [39]. A total of 12% of the Hidrox® extract consists
of polyphenols. Among these, the most abundant in HD is hydroxytyrosol, representing
40–50%, while oleuropein is present at 5–10%, tyrosol at 0.3%, and oleuropein aglycone
and gallic acid at about 20% [40]. Hidrox® counteracts the neurodegenerative processes
characteristic of Parkinson’s disease [41]. Starting from this evidence, we evaluated the
protective effects of Hidrox® on TBI second damage and the propagation of the AD-
like neuropathology.

2. Materials and Methods
2.1. Animals

Two-month-old Sprague-Dawley rats (Envigo, Milan, Italy) were used in this research.
The University of Messina Review Board for animal care (OPBA) approved the study.
All animal experiments agreed with the new Italian regulations (D.Lgs 2014/26), EU
regulations (EU Directive 2010/63), and the ARRIVE guidelines.

2.2. Experimental Protocol

Animals were anesthetized with 1–2% isoflurane and maintained with a gas mask. TBI
was performed as already described [15]. After scalp incision, craniectomy was performed,
and coordinates of +0.2 mm lateral and −0.2 mm anterior to the midline were employed
to impact the brain at the fronto-parietal cortex, reaching a depth of 1.0 mm below the
dura matter layer at a velocity of 6.0 m/s. After the impact, the skin incisions were
closed, and a 2% lidocaine jelly was applied to the lesion site. All animals were monitored
post-operatively and kept hydrated.

2.3. Experimental Groups

Rats were randomized and assigned to the following groups (n = 20):

(1) Vehicle group: Rats were subjected to TBI as described above, and vehicle (saline)
was administered by gavage for 4 weeks.

(2) Hidrox® group: Rats were subjected to experimental TBI as described above, and
Hidrox® (10 mg/Kg) was administered 1 h after TBI and daily by gavage for 4 weeks.

(3) Sham group: Rats were subjected to the surgical procedures (anesthesia, craniectomy,
and suturing), and vehicle (saline) was administered by gavage for 4 weeks.

The dose of Hidrox® was based on previous experiments [41].
In order to evaluate the secondary injury induced by TBI, rats were sacrificed at

4 weeks after TBI induction.
Four weeks after TBI induction, behavioral tests were performed, and rats were

sacrificed, collecting brain tissues for further analysis.

2.4. Morris Water Maze (MWM)

A circular blank water container (60 cm in height and 152 cm in diameter), filled with
water (23 ◦C) to a profundity of 30 cm and with an escape platform of 10 cm of diameter
was employed to perform the test. The platform, with the top 2 cm below the water surface,
was placed in a quadrant of the tank and remained fixed during the experiment. Above
the tank, a white curtain was drained around the pool, and four types of black paper with
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different forms were hung on the interior of the curtain. Each animal was subjected to a
daily trial session for four days. A probe trial was performed 24 h after the last training
session. The percentage of distance covered and the time spent in the target quadrant were
recorded [42].

2.5. Elevated Plus Maze Test

The elevated plus maze apparatus consisted of two closed arms (50× 10× 40 cm) and
two open arms (50 × 10 cm) connected by a central square (10 × 10 cm). The acquisition
of memory was tested on the 27th day after TBI (test session). Animals were placed
individually at one end of the open arm, facing towards the open end of the maze. The
time of travel of the animal from the open arm to the closed arm was recorded as initial
acquisition latency (IAL). The animal was allowed to explore the maze for 20 s after
recording the IAL and then returned to the home cage. If the animal did not enter the
enclosed arms within 90 s, it was pushed to one of the enclosed arms, and the IAL was
recorded as 90 s. Retention of memory was assessed by placing the rat in an open arm, and
the retention transfer latency (RTL) was noted on the 28th day after TBI (re-test session).

Based on the observed experience-dependent behavioral changes, the test and re-test
results can suggest modulation of memory-related processes [43,44].

2.6. Determination of Reduced Glutathione Levels

The levels of reduced glutathione (GSH) were determined in brain tissues to evaluate
the endogenous antioxidant defenses. Brain samples were homogenized with 0.2 M
phosphate buffer (pH 7.6). Then, a trichloroacetic acid solution was added, and the mixture
was centrifuged at 3900 g. 5,5′-dithiobis-(2-nitrobenzoic acid) was added, and samples
were incubated at room temperature for 5 min. GSH levels were determined using a
microplate reader at 412 nm [43].

2.7. Measurement of Superoxide Dismutase (SOD) Activity

Brain tissues were homogenized in Tris buffer (pH 8.2) and centrifuged at 13,000 rpm.
TritonX-100 was added, samples were incubated at 4–8 ◦C for 20 min and then centrifuged
at 10,000 rpm. Samples’ pyrogallol absorbance was measured for 10 min at 420 nm every
60 s [43].

2.8. Measurement of Catalase Activity

Brain tissues were homogenized in phosphate buffer at 1800 rpm, then hydrogen
peroxide was added, and absorbance measured for 0–10 min at 240 min [43].

2.9. Measurement of Lipid Peroxidation

Brain tissues were homogenized in Hank’s balanced salt solution at 3000 rpm. Pellets
were incubated in a solution containing sodium dodecyl sulfate, acetic acid, thiobarbituric
acid, and water for 1 h at 95 ◦C. After cooling, water, n-butanol, and pyridine were added,
and the mixture was centrifuged at 3000 rpm. The absorbance was measured at 532 nm [43].

2.10. Measurement of Nitrite Levels

Brain tissues were homogenized in phosphate buffer (pH 7.6). Griess reagent was
added, and the mixture was incubated for 30 min. The absorbance was measured at
548 nm [43].

2.11. Enzyme-Linked Immunosorbent Assay

IL6, TNF-α, IL-1β, and Aβ levels were determined using an ELISA kit (Diaclone
Research, Biosource Europe, USCN life Sciences) [45,46].
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2.12. Histological Examination

For histopathological investigations, brain tissues were fixed at room temperature in a
buffered formaldehyde solution (10% in PBS) [47,48]. Coronal sections of 5 µm thickness
were obtained from the perilesional brain area of each animal and were evaluated by an
experienced histopathologist. Histological sections were stained with H&E and evaluated
using a Leica DM6 microscope (Leica Microsystems SpA, Milan, Italy) equipped with a
motorized stage and associated with Leica LAS X Navigator software (Leica Microsystems
SpA, Milan, Italy). Histopathologic scores of the damaged cortical area were evaluated
as described previously: 0, no lesion observed; 1, gray matter contained one to five
eosinophilic neurons; 2, gray matter contained five to 10 eosinophilic neurons; 3, gray
matter contained more than 10 eosinophilic neurons; 4, small infarction (less than one-third
of the gray matter area); 5, moderate infarction (one-third to one-half of the gray matter
area); 6, large infarction (more than half of the gray matter area) [49]. In addition, neurons
stained with H&E were also analyzed to reveal cell death in the hippocampal CA3 area.
Cells presenting with nuclear and cytoplasmic staining were manually counted in the
CA3 neurons. CA3 cell counting spanned the whole CA3 area, starting from the end of
hilarneurons to the beginning of the curvature of the CA2 [15]. Neurons have euchromatin
in the nucleus, a clearly visible nucleolus with surrounding cytoplasm. Neurons in the
hippocampus have a characteristic pyramidal morphology. The scores from all the sections
of each brain were averaged to obtain a final score for each mouse. All the histological
studies were performed in a blinded fashion.

2.13. Western Blot Analysis

Western blots were performed on whole brain and hippocampus as already de-
scribed [50,51]. Specific primary antibodies, i.e., anti-ikb-α (Santa Cruz Biotech, sc-1643),
or anti-NFkB (Santa Cruz Biotechnology, sc-8008), or anti-Nrf2 (Santa Cruz Biotechnology,
sc-36594), or anti-HO-1 (Santa Cruz Biotechnology, sc-136970), or anti-p-Tau (Santa Cruz
Biotechnology, sc-32275). or anti-APP (Santa Cruz Biotechnology, sc-32277) were mixed in a
5% w/v nonfat dried milk solution and were incubated at 4 ◦C, overnight. Afterwards, blots
were incubated with a peroxidase-conjugated bovine anti-mouse IgG secondary antibody
or a peroxidase-conjugated goat antirabbit IgG (Jackson Immuno Research) for 1 h at room
temperature [52,53]. To verify the amounts of protein were equal, membranes were also
incubated with an antibody against β-actin (Santa Cruz Biotechnology). Signals were
detected with an enhanced chemiluminescence detection system reagent (Super-Signal
West Pico Chemiluminescent Substrate, Pierce) [54,55]. The relative expression of the
protein bands was quantified by densitometry with Bio-Rad ChemiDoc XRS software and
standardized to β-actin levels [56]. Images of blot signals were imported to an analysis
software (Image Quant TL, v2003).

2.14. Statistical Evaluation

All values are expressed as mean ± standard error of the mean (SEM) of N observa-
tions. For in vivo studies, N represents the number of animals used. Results were analyzed
by one-way ANOVA followed by a Bonferroni post-hoc test for multiple comparisons. A
p-value of less than 0.05 was considered significant. * p < 0.05 vs. sham, # p < 0.05 vs.
vehicle, ** p < 0.01 vs. sham, ## p < 0.01 vs. vehicle, *** p < 0.001 vs. sham, ### p < 0.001
vs. vehicle.

3. Results

3.1. Effect of Hidrox®—Histological Analysis after TBI

Histological analysis of the perilesional area showed significant edema and tissue
damage in samples from vehicle-treated rats (Figure 1B,D) compared to the sham sam-
ples (Figure 1A,D). Hidrox® treatment reduced tissue injury in the perilesional area
(Figure 1C,D) and the lesion volume (Figure 1E).
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Figure 1. Hidrox® administration reduced TBI-induced histological lesions. Histological analysis: Sham (A), Vehicle
(B), Hidrox® (C), Histopathological score (D), Lesion Volume % (E). For the analyses, n = 5 animals in each group were
employed. (C) Results were analyzed by one-way ANOVA followed by a Bonferroni post-hoc test for multiple comparisons.
Histopathological score (D): F(2,12) = 110.8, Lesion Volume % (E): F(2,12) = 139.6. A p-value of less than 0.05 was considered
significant. # p < 0.05 vs. vehicle, *** p < 0.001 vs. sham, ### p < 0.001 vs. vehicle.

3.2. Effect of Hidrox® Treatment on Oxidative Hippocampal Alterations

In order to evaluate the antioxidant properties of Hidrox®, Western Blot analyses were
conducted to assess the activation of the Nrf2 pathway. Samples from Hidrox®-treated
animals showed increased Nrf2 nuclear expression compared to tissues harvested from
vehicle-treated rats (Figure 2A). Well in line with this result, HO-1 expression as increased
by Hidrox® administration as compared to the vehicle-treated group. Additionally, the
levels of SOD, catalase, and GSH were determined. Vehicle-treated rats showed a significant
decrease in SOD, Catalase, and GSH compared to the sham animals. Treatment with
Hidrox® resulted in a significant reduction of SOD (Figure 2C), Catalase (Figure 2D), and
GSH (Figure 2E) levels. Moreover, Hidrox® administration reduced lipid peroxidation
(Figure 2F) and nitrite levels (Figure 2G) compared to the vehicle-treated rats.
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Figure 2. Hidrox® administration reduced prooxidative alterations. Western blot analysis in whole brain of Nrf2 (A), HO-1
(B), SOD levels (C), Catalase levels (D), Reduced glutathione (E), Malondialdehyde (MDA) levels (F), Nitrite levels (G).
For the analyses, n = 5 animals in each group were employed. Results were analyzed by one-way ANOVA followed by
a Bonferroni post-hoc test for multiple comparisons. Densitometric analysis of a representative western blot analysis of
Nrf2 expression (A): F (2,6) = 112.2, Densitometric analysis of a representative western blot analysis of HO-1 expression
(B): F (2,6) = 24.07, SOD levels (C): F (2,12) = 40.68, Catalase levels (D): F(2,12) = 90.28, Reduced glutathione (E): F(2,12) = 27.57,
Malondialdehyde (MDA) levels (F): F (2,12) = 177.8, Nitrite levels (G): F(2,12) = 50.31. A p-value of less than 0.05 was
considered significant. # p < 0.05 vs. vehicle, ## p < 0.01 vs. vehicle, *** p < 0.001 vs. sham, ### p < 0.001 vs. vehicle.

3.3. Effect of Hidrox® Treatment on Cytokine Expression and NFkB Pathway

To test the anti-inflammatory properties of Hidrox®, Western Blot analyses were
conducted on IkB-α and NFkB expression in the cytosol and nucleus, respectively. TBI in
vehicle-treated rats decreased IkB-α expression in the cytosol compared to the expression
in the sham rats. In line with this result, in the vehicle-treated group, the expression of
NFkB was increased in the nuclear compartment compared to the sham group. Hidrox®

treatment significantly increased IkB-α levels in the cytosol (Figure 3A) and reduced NFkB
expression in the nucleus (Figure 3B). Next, we estimated the anti-neuroinflammatory effect
of Hidrox® administration by evaluating cytokine expression. TBI induced an increase of
IL-1β (Figure 3C), TNF-α (Figure 3D), and IL6 (Figure 3E) levels in the vehicle-treated group
as compared to the sham rats. Hidrox® treatment significantly reduced pro-inflammatory
cytokines expression.
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Figure 3. Hidrox® administration reduced the levels of cytokines. Western blot analysis in whole brain of IkB-α (A) and
NFkB (B) expressions, IL-1β levels (C), TNF-α levels (D), IL6 levels (E). For the analyses, n = 5 animals in each group were
employed. Results were analyzed by one-way ANOVA followed by a Bonferroni post-hoc test for multiple comparisons.
Densitometric analysis of a representative western blot analysis of IkB-α expression (A): F (2,6) = 7.896, Densitometric
analysis of a representative western blot analysis of NFkB expression (B): F (2,6) = 63.78, IL-1β levels (C): F(2,12) = 14.83,
TNF-α levels (D): F (2,12) = 92.69, IL6 levels (E): F(2,12) = 12.05. A p-value of less than 0.05 was considered significant.
* p < 0.05 vs. sham, # p < 0.05 vs. vehicle, ## p < 0.01 vs. vehicle, *** p < 0.001 vs. sham, ### p < 0.001 vs. vehicle.

3.4. Effect of Hidrox® Treatment on Behavioral Alterations

MWM was employed for evaluating spatial learning. In the training period
(Figure 4A), all groups showed a decreasing trend in the escape latency on day 4 as
compared to day 1. In the probe trial, Hidrox® treatment significantly increased the time
spent in the target quadrant, indicating the degree of memory consolidation after learning,
which was decreased by TBI (Figure 4B). In the elevated plus maze test, we evaluated
memory-related processes. In both IAL and RTL, vehicle-treated rats showed increased
transfer latency compared to the sham animals. Hidrox® administration reduced the time
of transfer latency in IAL and RTL (Figure 4C). An increase in RTL demonstrates that
TBI induced a marked impairment in learning and memory. In contrast, treatment with
Hidrox® led to a significant decrease in transfer latency as compared to vehicle-treated
group, indicating an improvement in the retention of memory.
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Figure 4. Hidrox® administration reduced TBI-induced behavioral alterations. Morris Water Maze Test: Training (A),
Probe Trial (B); Elevated Plus Maze Test (C), Histological analysis of the hippocampal CA3 area: Sham (D), Vehicle (E),
Hidrox® (F), Total number of neurons (G). For the analyses, n = 5 animals in each group were employed. Results were
analyzed by two-way ANOVA followed by a Bonferroni post-hoc test for multiple comparisons. Morris Water Maze Test:
Training (A): F (6,48) = 8.675. The results were analyzed by one-way ANOVA followed by a Bonferroni post-hoc test for
multiple comparisons. Probe Trial (B): F (2,12) = 71.14; Elevated Plus Maze Test (C): F(5,24) = 57.90, Total number of neurons
(G): F(2,12) = 22.10. A p-value of less than 0.05 was considered significant. ** p < 0.01 vs. sham, ## p < 0.01 vs. vehicle,
*** p < 0.001 vs. sham, ### p < 0.001 vs. vehicle.

During the behavioral analysis, we checked the confounding factors that would
interfere with the results of the analysis. In regard to motor impairment, we did not find
any difference in motor function between the three groups and, in particular, between
the sham group and the animals subjected to TBI. Our results are well in line with the
literature [55]. In regard to anxiety, measured in the elevated plus maze test, the time spent
in the open and closed arms recorded for 5 min is usually employed to evaluate anxiety-like
behavior [56]. Our elevated plus maze test was performed for a maximum time of 90 sec.
No significant difference between the three groups and, in particular, between the sham
group and the animals subjected to TBI, was detected in the time spent in the two arms.

Histological analysis of the hippocampal CA3 area showed a reduced number of
neurons in samples from vehicle-treated rats (Figure 4E,G) compared to samples from the
sham group (Figure 4D,G). The animals treated with Hidrox® showed an increased number
of neurons in the hippocampal CA3 area (Figure 4F,G).

3.5. Effect of the Hidrox® Treatment on AD-Like Neuropathology

Western blot analysis showed increased hippocampal p-Tau (Figure 5A) and APP
(Figure 5B) expression in tissues harvested from vehicle-treated rats compared to those
from the sham group. Hidrox® significantly reduced the expression of both markers in
the hippocampus (Figure 5A,B). Vehicle-treated rats showed increased β-amyloid accu-
mulation compared to the sham animals. The Hidrox® treatment significantly reduced
β-amyloid accumulation (Figure 5C).
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Figure 5. Hidrox® administration reduced AD markers. Western blot analysis of hippocampus p-Tau (A) and APP
(B) expression and β-amyloid levels (C). For the analyses, n = 5 animals in each group were employed. The results were
analyzed by one-way ANOVA followed by a Bonferroni post-hoc test for multiple comparisons. Densitometric analysis of
representative western blot analysis of APP expression (A): F (2,6) = 62.56, Densitometric analysis of representative western
blot analysis of p-Tau expression (B): F (2,6) = 20.40, β-amyloid levels (C): F (2,12) = 16.43. A p-value of less than 0.05 was
considered significant. # p < 0.05 vs. vehicle, ** p < 0.01 vs. sham, *** p < 0.001 vs. sham, ### p < 0.001 vs. vehicle.

4. Discussion

Our study demonstrated the protective effects of Hidrox® administration on the prop-
agation of secondary damage in brain areas proximal and remote to the primary region of
the injury in the late phase of TBI, characterized by AD-like features. Among the issues
leading to TBI outcomes, the biochemical mechanisms causing oxidative stress are the
well studied [3]. The increased ROS production following TBI has been shown to cause
oxidative damage to cellular proteins, lipids, and cell membrane polyunsaturated fatty
acids [18]. In particular, the role of Nrf2 in the defense against TBI-induced neuroinflam-
mation is of particular interest [57–60]. Many pieces of evidence confirm the role of the
Nrf2 pathway in modulating both oxidative stress and inflammation [61–67]. Hidrox®

is known to influence the promotion of the transcription of genes downstream of Nrf2
activation [41]. Nrf2 is an important genomic homeostatic regulator and a pleiotropic
transcription factor that coordinates detoxification and anti-oxidative processes [19,68].
Hidrox® administration upregulated the Nrf2 transcriptional system, inducing the activa-
tion of phase II detoxifying enzymes [19], such as HO-1, SOD, Catalase, and GSH, thus
counteracting the neurodegenerative damage.

Well in line with the literature, the Hidrox® treatment reduced lipid peroxidation and
nitrite levels increased by TBI [60].

Oxidative stress damage aggravates neuronal injury promoting the inflammatory
reaction and stimulating cytokine overexpression [69,70]. In particular, NFkB binding sites
have been identified in the promoter region of the Nrf2 gene, which suggests a cross-talk
between these two mechanisms in the inflammatory process [69]. In this paper, we showed
Hidrox® ability to increase IkB-α cytosolic expression and, in turn, to reduce NFkB nuclear
expression [71–76]. Hidrox® administration significantly reduced IL-1β, TNF-α, and IL6
levels, which are significantly enhanced following brain damage.

Finally, laboratory results from acute and chronic studies displayed that TBI can
lead to progressive pathological alterations reflected in both behavior and brain structure,
characterized by tissue atrophy, progressive hippocampal cell loss, and compromised
neurotransmission combined with cognitive decline, which increase in the chronic stage
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of injury [77]. TBI has been associated with chronic neurodegenerative disorders. Several
cognitive deficits have been described in TBI patients with AD-like symptoms [78–81].

The literature reports that this neurodegenerative process involves aberrant APP
and phosphorylated-Tau overexpression accompanied by β-amyloid accumulation and
persistent neuron loss in the hippocampal CA3 area [10,15]. Moreover, increased APP
expression, in tandem with reduced neurogenesis in the hippocampus, results in impaired
hippocampal-mediated cognitive activity [82,83]. Notably, robust hippocampal plasticity is
thought to play a role in learning and memory consolidation, which is an important aspect
of cognitive function [84–86]. This hippocampal neurodegeneration, which is responsible
for many types of cognitive impairment typical of AD, is equally present in TBI and
may support the evolution of memory and learning deficits in TBI. In particular, various
studies indicate that progressive amyloidosis and APP overexpression, neurons loss in
the hippocampal CA3 area, and related cognitive impairment are not transitory, but a
permanent sequela of TBI [87–91].

Our data, well in line with the literature, showed a significantly decreased number of
hippocampal neurons in the CA3 region post-TBI, while Hidrox® treatment was associated
with a significantly reduced damage in the CA3 area. In particular, Hidrox® decreased
AD-like phenotypic markers such as β-amyloid accumulation and APP and p-Tau overex-
pression. From a behavioral point of view, Hidrox® treatment ameliorated TBI-induced
cognitive dysfunction and memory impairment.

5. Conclusions

This study suggests that treatment with the antioxidant and anti-inflammatory Hidrox®

could be promising to reduce inflammation and AD-like diseases resulting from neuroin-
flammatory responses induced by primary and secondary injuries.
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