
metabolites

H

OH

OH

Article

Plasma Metabolites Associate with All-Cause
Mortality in Individuals with Type 2 Diabetes

Filip Ottosson 1,* , Einar Smith 1, Céline Fernandez 1 and Olle Melander 1,2

1 Department of Clinical Sciences, Lund University, 214 28 Malmö, Sweden; einar.smith@med.lu.se (E.S.);
celine.fernandez@med.lu.se (C.F.); olle.melander@med.lu.se (O.M.)

2 Department of Internal Medicine, Skåne University Hospital, 214 28 Malmö, Sweden
* Correspondence: filip.ottosson@med.lu.se; Tel.: +46-40391221

Received: 1 July 2020; Accepted: 27 July 2020; Published: 31 July 2020
����������
�������

Abstract: Alterations in the human metabolome occur years before clinical manifestation of type
2 diabetes (T2DM). By contrast, there is little knowledge of how metabolite alterations in individuals
with diabetes relate to risk of diabetes complications and premature mortality. Metabolite profiling
was performed using liquid chromatography-mass spectrometry in 743 participants with T2DM
from the population-based prospective cohorts The Malmö Diet and Cancer-Cardiovascular Cohort
(MDC-CC) and The Malmö Preventive Project (MPP). During follow-up, a total of 175 new-onset cases
of cardiovascular disease (CVD) and 298 deaths occurred. Cox regressions were used to relate baseline
levels of plasma metabolites to incident CVD and all-cause mortality. A total of 11 metabolites were
significantly (false discovery rate (fdr) <0.05) associated with all-cause mortality. Acisoga, acylcarnitine
C10:3, dimethylguanidino valerate, homocitrulline, N2,N2-dimethylguanosine, 1-methyladenosine
and urobilin were associated with an increased risk, while hippurate, lysine, threonine and tryptophan
were associated with a decreased risk. Ten out of 11 metabolites remained significantly associated
after adjustments for cardiometabolic risk factors. The associations between metabolite levels and
incident CVD were not as strong as for all-cause mortality, although 11 metabolites were nominally
significant (p < 0.05). Further examination of the mortality-related metabolites may shed more light
on the pathophysiology linking diabetes to premature mortality.

Keywords: metabolomics; diabetes; mortality; cardiovascular disease; N2,N2-dimethylguanosine
and dimethylguanidino valerate

1. Introduction

The global epidemic of type 2 diabetes (T2DM) and its complications causes an enormous burden
on society. In 2017 the worldwide prevalence of T2DM was estimated at 451 million and these
numbers are projected to increase to almost 700 million by 2045 [1]. Individuals with T2DM develop
cardiovascular disease (CVD) on average 14.6 years earlier [2] and twice as often [3] compared to
individuals without T2DM. Moreover, diabetes is a major contributor to mortality, as it causes 5 million
deaths yearly [4]. With this in mind, T2DM and its complications will remain a major contributor to
morbidity and mortality in the coming decades. Despite these alarming numbers, the pathogenesis of
diabetes complications, other than poor control of blood glucose, remain largely unknown [5].

Changes in the metabolome occur years before clinical manifestation of T2DM and cardiovascular
disease (CVD), as several studies show that alterations of metabolites such as, branched-chain amino
acids (BCAA) [6], aromatic amino acids (AAA) [6], glutamate [7,8] and dimethylguanidino valerate
(DMGV) [9,10], associate with incidence of cardiometabolic disease (CMD). Moreover, non-targeted
metabolomic studies have suggested alterations in a broad range of metabolic pathways in the onset of
type T2DM [11,12]. Similarly, metabolite alterations in individuals with T2DM could help describing
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the pathogenesis of T2DM complications, but to our knowledge there is only one large prospective
study focusing on describing how metabolite alterations in individuals with T2DM are related to
future cardiovascular complications and mortality [13]. In that prospective cohort study by Welsh et al.
investigating plasma levels of eight amino acids in individuals with T2DM, it was shown that two
BCAA, leucine and valine, despite repeatedly being associated with increased risk of T2DM, were
inversely associated with all-cause mortality [13]. Moreover, another known predictor of T2DM [6] and
cardiovascular disease [14], tyrosine, was inversely associated with future microvascular complications
and unrelated to future macrovascular complications [13]. Although the study by Welsh et al. highlights
the potential of using metabolomics to find predictive biomarkers for diabetes complications, it suffers
from the drawback of only measuring eight amino acids.

In the present study, we have used metabolomics to measure 112 metabolites in more than
700 individuals with T2DM, from two different Swedish population-based prospective cohorts,
The Malmö Diet and Cancer-Cardiovascular Cohort (MDC-CC) and the Malmö Preventive Project
(MPP). Fasting plasma levels of metabolites measured at baseline are related to the future risk of
all-cause mortality and cardiovascular disease.

2. Results

The baseline characteristics of the investigated cohorts MDC-CC and MPP can be found in Table 1.
The participants in MPP (70.5 years) were older than in MDC-CC (59.5 years). A large majority of
the participants in MPP were male (73.4%), as compared to MDC-CC were there only was a slightly
higher proportion of male participants (55.1%). There was also a higher baseline prevalence of CVD in
MPP (14.7%) compared to MDC-CC (4.5%), whereas there were only small differences in other CMD
risk factors.

Table 1. Characteristics of the participants in the Malmö Diet and Cancer-Cardiovascular Cohort
(MDC-CC) and Malmö Preventive Project (MPP).

Trait MDC-CC (n = 374) MPP (n = 336)

Age (years) 59.5 (±5.6) 70.5 (±5.9)
Sex (% female) 44.9 23.6

Body mass index (BMI) (kg/m2) 28.3 (±4.5) 28.8 (±4.4)
Fasting glucose (mmol/L) 7.9 (±3.1) 7.7 (±2.2)
LDL cholesterol (mmol/L) 4.2 (±1.0) 3.4 (±1.0)
HDL cholesterol (mmol/L) 1.2 (±0.3) 1.3 (±0.4)

Triglycerides (mmol/L) 1.8 (±0.8) 1.5 (±0.8)
Current Smokers (%) 23.5 19.0

Prevalent Cardiovascular Disease (%) 4.5 14.7

Numbers in parenthesis indicate the standard deviations.

The associations between plasma metabolite levels and all-cause mortality was investigated using
Cox regression models. In meta-analysis of MDC-CC and MPP, 11 metabolites were significantly
(false discovery rate (fdr) <0.05) associated with all-cause mortality (Figure 1) (Supplementary
Materials Table S2). Acisoga, acylcarnitine C10:3, DMGV, homocitrulline, N2,N2-dimethylguanosine,
1-methyladenosine and urobilin were associated with an increased risk for all-cause mortality,
while hippurate, lysine, threonine and tryptophan were associated with a decreased risk.
N2,N2-dimethylguanosine was the metabolite most strongly associated (hazard ratio (HR) = 1.45,
p = 1.93 × 10−5, confidence interval (CI) = 1.22–1.72).
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calculated separately in MDC-CC and MPP from cox regression models (adjusted for age and sex) 

and subsequently meta-analyzed using inverse variance-weighted meta-analysis, using fixed 

estimates. LogHR of all-cause mortality is expressed per standard deviation increment of each 

metabolite. Associations were considered significant at a false-discovery rate <0.05. −logp= −10log of 

the p-value. 

Furthermore, the association between baseline levels of plasma metabolites and incident CVD 

was investigated in both MPP and MDC-CC using Cox regression models. In meta-analyses of MDC-

CC and MPP, there were no metabolites with significant associations with incident CVD when using 

a fdr cut-off at 5%. Using a nominal p-value threshold (p < 0.05), there were 11 significantly associated 

metabolites. Glycerophosphocholine (HR = 0.77, CI = 0.66–0.90, p = 9.1× 10-4) was the metabolite most 

strongly associated with a lower risk of CVD and the two BCAA valine (HR = 1.23, C.I = 1.05–1.44, p 

= 0.01) and isoleucine (HR = 1.20, C.I = 1.02–1.41, p = 0.02) were associated with an increased risk 

(Figure 2) (Supplementary Materials Table S3).  

Figure 1. Associations between plasma levels of 112 metabolites and all-cause mortality in participants
with diabetes from the Malmö Diet and Cancer-Cardiovascular Cohort (MDC-CC) (n = 374) and the
Malmö Preventive project (MPP) (n = 369). The 10log hazard ratios (logHR) were calculated separately
in MDC-CC and MPP from cox regression models (adjusted for age and sex) and subsequently
meta-analyzed using inverse variance-weighted meta-analysis, using fixed estimates. LogHR of
all-cause mortality is expressed per standard deviation increment of each metabolite. Associations
were considered significant at a false-discovery rate <0.05. −logp= −10log of the p-value.

Furthermore, the association between baseline levels of plasma metabolites and incident CVD was
investigated in both MPP and MDC-CC using Cox regression models. In meta-analyses of MDC-CC
and MPP, there were no metabolites with significant associations with incident CVD when using a
fdr cut-off at 5%. Using a nominal p-value threshold (p < 0.05), there were 11 significantly associated
metabolites. Glycerophosphocholine (HR = 0.77, CI = 0.66–0.90, p = 9.1 × 10-4) was the metabolite most
strongly associated with a lower risk of CVD and the two BCAA valine (HR = 1.23, C.I = 1.05–1.44,
p = 0.01) and isoleucine (HR = 1.20, C.I = 1.02–1.41, p = 0.02) were associated with an increased risk
(Figure 2) (Supplementary Materials Table S3).
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Figure 2. Associations between plasma levels of 112 metabolites and incident cardiovascular disease
(CVD) in participants with diabetes from the Malmö Diet and Cancer-Cardiovascular Cohort (MDC-CC)
(n = 357) and the Malmö Preventive project (MPP) (n = 315). The 10log hazard ratios (logHR) were
calculated separately in MDC-CC and MPP from cox regression models (adjusted for age and sex) and
subsequently meta-analyzed using inverse variance-weighted meta-analysis, using fixed estimates.
LogHR of all-cause mortality is expressed per standard deviation increment of each metabolite.
Associations were considered significant at a false-discovery rate <0.05. −logp= −10log of the p-value.

All metabolites that were significantly (fdr <5%) associated with mortality were investigated
further by examining their correlation with traditional CMD risk factors in both MDC-CC (Figure 3)
and MPP (Figure 4). The correlations between mortality-related metabolites and fasting glucose levels
were weak. Lysine was the only metabolite which levels correlated with fasting glucose in both
MDC-CC and MPP. Interestingly, lysine was positively correlated with fasting glucose levels despite
being associated with decreased risk of all-cause mortality. N2,N2-dimethylguanosine was positively
correlated with body mass index (BMI) and inversely correlated with high-density lipoprotein (HDL)
cholesterol in both MDC-CC and MPP. Particularly strong correlations were seen between levels of
DMGV and several CMD risk factors, including positive correlations with BMI and triglycerides and
inverse correlations with HDL cholesterol. Moreover, in MDC-CC, glycosylated hemoglobin (Hba1c)
and fasting insulin levels were measured and insulin resistance was estimated using homeostatic
model assessment (HOMA-IR). DMGV levels were strongly correlated with HOMA-IR (rho = 0.40,
p < 0.001) but were uncorrelated with fasting Hba1c. Lysine (rho = 0.18, p < 0.001) and C10:3-carnitine
(rho = 0.14, p=9.0 × 10−3) showed significant positive correlations with Hba1c, while threonine
(rho = −0.17, p < 0.001) was inversely correlated. All correlations with Hba1c and HOMA-IR are found
in Supplementary Materials Table S4.
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Figure 3. Correlations between plasma levels of 11 plasma metabolites and BMI, smoking status
(Smoker), systolic blood pressure (SBP), anti-hypertensive treatment (AHT) and fasting levels of
high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), triglycerides
(TG) and glucose in the Malmö Diet and Cancer-Cardiovascular Cohort (n = 374). Correlation
coefficients are either partial Spearman’s correlation coefficients (BMI, glucose, HDL, LDL, TG, SBP) or
partial Pearson’s correlation coefficients (Smoker and AHT), adjusted for age and sex.
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Figure 4. Correlations between plasma levels of 11 plasma metabolites and BMI, smoking status
(Smoker), systolic blood pressure (SBP), anti-hypertensive treatment (AHT) and fasting levels of HDL
cholesterol (HDL), LDL cholesterol (LDL), triglycerides (TG) and glucose in the Malmö Preventive
Project (n = 369). Correlation coefficients are either partial Spearman’s correlation coefficients (BMI,
glucose, HDL, LDL, TG, SBP) or partial Pearson’s correlation coefficients (Smoker and AHT), adjusted
for age and sex.

Since several metabolites were correlated with CMD risk factors, Cox regression models on
all-cause mortality were further adjusted for fasting glucose, BMI, HDL cholesterol, LDL cholesterol,
triglycerides, systolic blood pressure, anti-hypertensive treatment and smoking status. All metabolites
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except acisoga (HR = 1.11, CI = 0.98–1.25, p = 0.11) remained significantly (p < 0.05) associated after
full adjustments for CMD risk factors (Table 2).

Table 2. Associations between plasma metabolites and all-cause mortality in participants with diabetes
from the Malmö Diet and Cancer-Cardiovascular Cohort (MDC-CC) and the Malmö Preventive
Project (MPP).

Metabolites HR p

N2,N2-dimethylguanosine 1.45 (1.22–1.72) 1.9 × 10−5

DMGV 1.31 (1.14–1.51) 2.0 × 10−4

Lysine 0.80 (0.71–0.90) 2.0 × 10−4

Homoctirulline 1.34 (1.13–1.58) 7.6 × 10−4

Hippurate 0.78 (0.66–0.92) 3.4 × 10−3

1-methyladenosine 1.18 (1.04–1.35) 9.4 × 10−3

Acylcarnitine C10:3 1.19 (1.04–1.36) 0.012
Tryptophan 0.85 (0.75–0.97) 0.013

Urobilin 1.15 (1.02–1.30) 0.023
Threonine 0.86 (0.75–0.99) 0.039

Acisoga 1.11 (0.98–1.25) 0.11

Associations between plasma levels metabolites and all-cause mortality in participants with diabetes from the
Malmö Diet and Cancer-Cardiovascular Cohort (MDC-CC) (n = 374) and the Malmö Preventive project (MPP)
(n = 369). The hazard ratios (HR) were calculated separately in MDC-CC and MPP from cox regression models
(adjusted for age, sex, BMI, Systolic blood pressure, antihypertensive treatment, smoking status and fasting levels
of glucose, HDL cholesterol, LDL cholesterol and triglycerides) and subsequently meta-analyzed using inverse
variance-weighted meta-analysis, using fixed estimates. The HR of all-cause mortality is expressed per standard
deviation increment of each metabolite. Numbers in parenthesis indicate 95% confidence intervals.

3. Discussion

The key findings of the present study is that plasma levels of 10 metabolites, including
N2,N2-dimethylguanoisine and DMGV, associate with all-cause mortality in individuals with diabetes,
independently of CMD risk factors. These metabolites highlight novel potential pathophysiological
links between diabetes and premature mortality.

Metabolomics has been used to find alterations in the metabolism that are associated with future
onset of diabetes [6,7]. These alterations that are present years before clinical manifestation might
help in assessing an individual’s risk of developing T2DM but are not necessarily related to health
outcomes in individuals with overt diabetes. We recently reported that N2,N2-dimethylguanosine [11]
was associated with an increased risk of future T2DM and DMGV with an increased risk of both
T2DM and coronary artery disease [10] in individuals free from baseline cardiometabolic disease in
the MDC-CC and MPP, independent of traditional risk factors. Moreover, N2,N2-dimethylguanosine
has also been associated with an increased risk of all-cause mortality in postmenopausal women [15].
We now extend these findings by showing that levels of N2,N2-dimethylguanosine and DMGV also are
associated with increased risk of all-cause mortality in individuals with diabetes. Both DMGV [10,16]
and N2,N2-dimethylguanosine [11,17] have previously been shown to correlate strongly with CMD
risk factors, such as obesity and dyslipidemia in healthy individuals. Furthermore, we showed that
DMGV is very strongly correlated with HOMA-IR in individuals with diabetes. These findings indicate
that DMGV and N2,N2-dimethylguanosine could be considered as markers for metabolic health, not
only in the diabetes-free population, but that these correlations persist in diabetes. Despite these
strong correlations with markers of metabolic health, their associations with all-cause mortality were
independent of such risk factors.

Levels of lysine [18], threonine [18] and tryptophan [15] have previously been associated with
longevity and are here shown to be inversely associated with all-cause mortality. Interestingly, lysine
has also been associated with hyperglycemia, obesity and future risk of T2DM [7]. We show here that
among individuals with diabetes, lysine levels are positively correlated with fasting glucose levels and
Hba1c, but simultaneously associated with a decreased risk of all-cause mortality.
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Although the associations between plasma metabolite levels and incident CVD were weaker
than what could be observed for all-cause mortality, 11 metabolites showed associations that were
nominally significant. Interestingly, two BCAA that previously have been shown to associate with
incident T2DM [6] and CVD [19,20], valine and isoleucine, were associated with an increased risk of
CVD in individuals with T2DM. This indicates that the BCCA not only can predict future diabetes,
but also can be indicative of CVD risk in individuals with overt diabetes. Three metabolites that
previously have been shown to be markers of fruit intake, N-methylproline [21], proline betaine and
hippurate [22] were associated with a lower risk of incident CVD. Moreover, hippurate was associated
with lower risk of all-cause mortality, even when adjusting for traditional risk factors. N-methylproline
was recently shown to associate with healthy eating, to be decreased after following the Dietary
Approaches to Stop Hypertension (DASH) diet [23] and to associate with decreased risk of CAD and
all-cause mortality in individuals free from CMD [24]. In concert with these previous findings, our
study indicates that healthy eating, particularly intake of citrus fruit, is beneficial in individuals with
diabetes. We speculate that these effects can be partially driven by health-promoting metabolites, such
as hippurate, N-methylproline and proline betaine.

The present study has several limitations. The relatively small sample size of the present
study encourages further studies to replicate the findings. Furthermore, although investigating over
100 annotated plasma metabolites, it is possible that clinically important metabolites could be found by
increasing the metabolite coverage, most importantly by measuring lipids, which are not measured
in the present study. Lastly, given the important role of diet in type 2 diabetes, including dietary
assessment in future studies could help elucidate the relationship between plasma metabolites, dietary
intake, diabetes complications and survival.

4. Materials and Methods

4.1. Study Samples

Plasma metabolite levels were measured in a total of 743 participants from two different Swedish
population-based prospective cohorts, MPP and MDC-CC.

MPP is a population based prospective cohort of 33,346 individuals, enrolled between 1974 and
1992. Between 2002 and 2006, 18,240 individuals (65–80 years old) were re-examined for cardiometabolic
risk factors and overnight-fasting EDTA plasma was collected and stored at −80 ◦C for later analyses.
A sub-cohort was created from a random sample of 5386 individuals from the re-examination that was
selected for more detailed phenotyping. Metabolomic analysis was performed on the blood plasma
samples from all 369 individuals in this sub-cohort who were either diagnosed with diabetes prior to
or at the baseline examination. Among participants with diabetes at baseline, 54 participants had a
history of cardiovascular disease (CVD) and 57 developed CVD within an average follow-up time of
5.4 years. A total of 118 deaths occurred within the average follow-up time of 7.7 years.

MDC-CC is a population-based cohort, designed to study the epidemiology of carotid artery
disease with participants being enrolled between 1991 and 1996. Among the 5405 participants who
fasted, citrate plasma was available for 3799 participants. A total of 374 participants were either
diagnosed with diabetes prior to or during the baseline examination. Among these participants, 17 had
a history of prior CVD and 118 developed CVD within an average follow-up time of 17.5 years. During
an average follow-up time of 18.3 years, a total of 180 deaths occurred.

The ethics committee of Lund University approved the study protocols for MPP and MDC (DNR
2009/633), and all participants provided written informed consent.

4.2. Endpoint Definitions and Biochemical Measurements

CVD was defined as fatal or non-fatal stroke, fatal or non-fatal myocardial infarction or death due
to ischemic heart disease. The study subjects were followed for incident CVD through record-linkage
using the Swedish personal identification number with the previously validated Swedish Hospital
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Discharge Register, the Swedish Cause of Death Register and the Swedish Coronary Angiography and
Angioplasty Registry (SCAAR) [25]. T2DM was defined as a fasting plasma glucose of >7.0 mmol/L or
a history of physician diagnosis of T2DM or being on antidiabetic medication or having been registered
in local or national Swedish diabetes registries [26]. International Classification of Diseases (ICD) codes
and details about biochemical measurements are found in Supplementary Materials Table S1.

4.3. Analytical Procedure

Profiling of plasma metabolites was performed using a UPLC-QTOF-MS System (Agilent
Technologies 1290 LC, 6550 MS, Santa Clara, CA, USA) and has previously been described in
detail [27]. Briefly, plasma samples stored at −80 ◦C were thawed and extracted by addition of six
volumes of extraction solution. The extraction solution consisted of 80:20 methanol/water containing
isotope labeled internal standards for 33 metabolites (Supplementary Materials Table S1). Extracted
samples were separated on an Acquity UPLC BEH Amide column (1.7 µm, 2.1 mm × 100mm; Waters
Corporation, Milford, MA, USA) before being analyzed in positive ion mode. Samples were analyzed in
batches of 180 samples, where quality control samples were run in the beginning of each batch and every
eight analytical sample, in order to condition the column and to capture analytical drift, respectively.
Metabolites were annotated using synthetic standards or by matching MS/MS fragmentation with
The Human Metabolome Database (HMDB) [28] and METLIN [29] or by matching fragment ions
to putative molecule fragments. In total, 112 Identified and putatively annotated metabolites were
measured. A list of reported metabolites can be found in Supplementary Materials Table S1, including
corresponding mass, chromatographic retention time, molecular formula, HMDB identifier, annotation
confidence [30] and analytical coefficient of variation.

4.4. Data Processing

Metabolite peak areas were integrated using Agilent Profinder B.06.00 (Agilent Technologies, Santa
Clara, CA, USA). The allowed ion adducts included (M+H)+ and (M+NH4)+. Quality control samples
were injected every eight analytical samples, in order to ensure high analytical repeatability. A total of
33 metabolites were normalized to the heavy-isotope labeled internal standards and the remaining
metabolites were normalized using measurements in the quality control samples using low-order
nonlinear locally estimated smoothing functions (supplementary material 2) [31]. Information about
which normalization method that was used for each measured metabolite is presented in Supplementary
Materials Table S1.

4.5. Statistical Analysis

In MDC-CC and MPP, the association between baseline levels of circulating metabolites and
incident CVD and all-cause mortality were analyzed using Cox proportional hazards models.
In regression analyses of incident CVD, all participants with a history of prevalent CVD were
excluded. In model 1, regression models were adjusted for age and sex. Inverse-variance weighted
meta-analyses (fixed intercepts) of Cox proportional hazard estimates from MDC-CC and MPP were
performed for all metabolites using model 1. All metabolites that were significant (false-discovery
rate < 0.05) in meta-analysis were subsequently analyzed using model 2, which was further adjusted
for systolic blood pressure, smoking status, anti-hypertensive treatment, BMI and fasting levels of
HDL and LDL cholesterol, triglycerides and glucose. The correlation between metabolites that were
significantly associated with either incident CVD or all-cause mortality and traditional CMD risk
factors were performed using partial Spearman’s correlation tests, adjusted for age and sex. Due to
skewed distributions, metabolite data was log transformed prior to regression analyses. All statistical
analyses were performed using R 3.6.0. Meta-analyses were performed in R package meta [32] and
partial Spearman’s correlations using R package ppcor [33].
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5. Conclusions

This is the first study exploring the relationship between a broad range of metabolites and
CVD morbidity and mortality in individuals with diabetes. We identify strong associations between
10 plasma metabolites and all-cause mortality highlighting measurable derangement of both central
metabolic pathways and nutritional intake several years before pre-mature mortality occurs in patients
with diabetes. Our findings should stimulate further studies examining whether these metabolites’
relationship with premature mortality is causal, and thus can contribute to novel therapies prolonging
life in diabetes.
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