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Prediction of drug–target binding 
affinity using similarity‑based 
convolutional neural network
Jooyong Shim1, Zhen‑Yu Hong2*, Insuk Sohn2* & Changha Hwang3*

Identifying novel drug–target interactions (DTIs) plays an important role in drug discovery. Most of 
the computational methods developed for predicting DTIs use binary classification, whose goal is to 
determine whether or not a drug–target (DT) pair interacts. However, it is more meaningful but also 
more challenging to predict the binding affinity that describes the strength of the interaction between 
a DT pair. If the binding affinity is not sufficiently large, such drug may not be useful. Therefore, the 
methods for predicting DT binding affinities are very valuable. The increase in novel public affinity data 
available in the DT-related databases enables advanced deep learning techniques to be used to predict 
binding affinities. In this paper, we propose a similarity-based model that applies 2-dimensional (2D) 
convolutional neural network (CNN) to the outer products between column vectors of two similarity 
matrices for the drugs and targets to predict DT binding affinities. To our best knowledge, this is the 
first application of 2D CNN in similarity-based DT binding affinity prediction. The validation results on 
multiple public datasets show that the proposed model is an effective approach for DT binding affinity 
prediction and can be quite helpful in drug development process.

Drug-target interactions (DTIs) characterize the binding of drug compounds to the protein targets. Drug screen-
ing and repurposing are two main applications associated with DTIs1. Therefore, identifying novel DTIs is 
a crucial step in drug discovery process. Most methods developed to predict DTIs have focused on binary 
classification2–9, which neglects DT binding affinity (DTA) reflecting how strongly the drug binds to its target. 
In fact, DTI depends on several factors such as the concentrations of the two molecules and their intermolecu-
lar interactions. Thus, DTA prediction problem is regarded as a regression task where the input is a pair of DT 
representations and the output is a continuous value reflecting DTA. Binding affinity is generally expressed in 
terms of dissociation constant ( Kd ), inhibition constant ( Ki ) or the half maximal inhibitory concentration ( IC50 ). 
The IC50 value depends on the concentration of the target and ligand10 and low IC50 values mean high binding 
affinity. Similarly, low Ki values mean high binding affinity. In general, Kd and Ki values are expressed in terms 
of pKd and pKi respectively, which stand for the negative logarithm of Kd and Ki.

DTA prediction has been the focus of DT scoring, which is used to estimate the binding strength and predict 
the effective DT binding after virtual screening and docking campaigns11. Machine learning (ML) regression 
methods such as the random forest (RF) and support vector regression (SVR) have been used as a successful 
alternative to scoring functions that depend on multiple parameters12–14. However, Gabel et al.15 demonstrated 
that the ML scoring functions failed in virtual screening and docking tests because they were overtrained on 
descriptors that do not depict DTIs but interaction-independent counts. Since then, deep learning has begun to 
become a popular architecture due to the increase in data and high performance computing machines.

Inspired by the remarkable advances in image processing16–18 and speech recognition19–21, deep learning 
methods were actively used in many other research areas, including genomics studies22,23 and quantitative-
structure activity relationship (QSAR) studies24. Deep learning methods were also used to predict DTI employ-
ing deep neural networks (DNNs)25–27, convolutional neural networks (CNNs)28,29, stacked autoencoders30 and 
deep belief networks31.

Machine learning approaches were recently applied to predict continuous DTA values. Pahikkala et al.32 intro-
duced the Kronecker regularized least squares (KronRLS) model which utilizes only compound similarity-based 
representations of the drugs and Smith–Waterman similarity33 representation of the targets. KronRLS model uti-
lizes conventional machine learning technique. Öztürk et al.34 proposed DeepDTA model with two 1-dimensional 
(1D) CNN blocks to learn from compound SMILES strings and protein sequences. The simple concatenation of 
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two feature representations from two CNN blocks is fed into one or more fully connected (FC) layers followed 
by the output layer. Zhao et al.35 proposed a semi-supervised generative adversarial networks36 (GANs)-based 
method to predict binding affinity, called GANsDTA for short. GANsDTA model can learn proteins and drugs 
features of both labeled and unlabeled data by utilizing two GANs. Abbas et al.37 proposed DeepCDA model 
which utilizes a combination of CNN and long-short-term memory (LSTM) to get a better representation of 
protein and compound. DeepCDA encodes the binding strength by utilizing a two-sided attention mechanism 
and tries to improve the generalization ability by utilizing a domain adaptation technique.

In this paper, we propose a similarity-based model to predict DTA values using 2D CNN approach on the 
outer product of column vectors of Tanimoto similarity matrix and Smith–Waterman similarity matrix for the 
drugs and targets, respectively32,38. This model is called SimCNN-DTA for short. Figure 1 explains the entire 
workflow of the proposed SimCNN-DTA for the prediction of DTA values. Our method consists of two stages. 
First, Tanimoto similarity matrix of the drugs and Smith–Waterman similarity matrix for the targets are calcu-
lated and then the outer products between column vectors of these two matrices are calculated. Second, a 2D 
CNN model is adopted to extract deep features from the outer products and to predict DTA values.

Our SimCNN-DTA is verified via mean squared error (MSE), concordance index (CI), modified squared 
correlation coefficient r2m and the area under precision recall (AUPR) score on the Davis kinase binding affinity 
dataset38 and the large-scale kinase inhibitors bioactivity (KIBA) dataset38,40. Our SimCNN-DTA is also verified 
via a case study using actual USFDA-approved drugs targeting a specific protein, epidermal growth factor recep-
tor (EGFR). We also compare our model with the KronRLS33 and deepDTA34 algorithm. Our research results 
might be helpful for users to predict DTA values.

Results and discussion
Experimental datasets.  In the paper we use the Davis dataset and the KIBA dataset for the evaluation of 
DTA predictions32,34,39. Both datasets are large scale biochemical selectivity assays of the kinase inhibitors. The 
Davis dataset includes binding affinities observed for all pairs of 68 drugs and 442 targets, measured by Kd value. 
On the other hand, the KIBA dataset integrates kinase inhibitor bioactivities from different sources such as Kd , 
Ki , and IC50 into KIBA score which represents the binding affinity. The lower KIBA score indicates a higher bind-
ing affinity between a DT pair. The KIBA dataset originally comprises 52,498 drugs and 467 targets, including 
246,088 observations. However, it results in a dataset of 2,116 drugs and 229 targets with a density of 24.4%, by 
removing all drugs and targets with less than 10 interactions. Table 1 describes these two datasets in the forms 
they are actually used in the experiment. Pahikkala et al.32 directly used the Kd values in the Davis dataset as the 
binding affinity values. However, we here use the values transformed into logspace, pKd , similar to Öztürk et al.34 
and He et al.39, explained as follows:

The left panel of Fig. 2a shows the distribution of the binding affinity values in pKd form. The higher the pKd 
value, the higher the binding affinity. We observe a strong peak at pKd value 5 for the Davis dataset, since weak 
binding affinities are often reported as Kd ≥ 10, 000 or pKd ≤ 5 . The right panel of Fig. 2a shows the distribu-
tion of the KIBA scores. In the KIBA dataset, the lower the KIBA score, the higher the binding affinity. Tang 
et al.39 suggests a threshold of KIBA score ≤ 3.0 to binarize the dataset. Similar to Öztürk et al.34 and He et al.38, 

(1)pKd = −log10

(

Kd

1e9

)

Figure 1.   A workflow of the proposed SimCNN-DTA for predicting DTA values. Given an outer product of 
drug similarity vector and target similarity vector as input, 2D CNN is used to learn features. The architecture 
of CNN consists of 2 convolutional layers, 2 max-pooling layers, 1 flatten layer, 1 dropout layer and 2 fully 
connected (FC) layers.

Table 1.   The statistics of two datasets.

Dataset Drugs Targets Interactions Density (%)

Davis 68 442 30,056 100

KIBA 2111 229 118,254 24.4
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we transform the KIBA scores as follows: (1) for each KIBA score, its negative is taken, (2) the minimum value 
among the negatives is chosen and (3) the absolute value of the minimum is added to all scores. Thus, the original 
KIBA threshold of 3.0 becomes 12.1 in the transformed dataset.

Figure 2b shows the distribution of the lengths of the SMILES strings of the drugs in the Davis (left) and KIBA 
(right) datasets. For the drugs of the Davis dataset, the maximum of SMILES lengths is 103 and the average is 
64. For the drugs of KIBA dataset, the maximum of SMILES length is 590 and the average is 58. For the Davis 
dataset, the SMILES strings were extracted from the PubChem compound database utilizing their PubChem 
CIDs40. For the KIBA dataset, the ChEMBL IDs were first converted into PubChem CIDs and then the SMILES 
strings were extract utilizing the corresponding CIDs.

Figure 2c shows the distribution of the lengths of the sequences of the proteins in the Davis (left) and KIBA 
(right) datasets. For the proteins of the Davis dataset, the maximum of sequence lengths is 2549 and the average 
is 788. For the proteins of the KIBA dataset, the maximum of sequence lengths is 4128 and the average is 728. The 

Figure 2.   Summary of the Davis dataset (left panel) and KIBA (right panel) dataset. (a) Distribution of binding 
affinity values. (b) Distribution of the lengths of the SMILES strings. (c) Distribution of the lengths of the 
protein sequences.
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protein sequences of the Davis dataset were extracted from the UniProt protein database utilizing gene names/
RefSeq accession numbers41. The protein sequences of the KIBA dataset were extracted utilizing the UniProt IDs.

We also use actual USFDA-approved drugs targeting a specific protein EGFR. This protein is chosen to be the 
target since this is known as one of the famous genes associated with many cancer types. We will predict the bind-
ing affinities between the EGFR and the 1,018 drugs, of which 11 drugs are known to be EGFR targeting drugs.

Input and output representations.  In our SimCNN-DTA, drug-drug and target-target similarity matri-
ces for the Davis, KIBA and EGFR datasets are used. These matrices are denoted K1 and K2 , respectively. The 
input of SimCNN-DTA for each DT pair is the outer product k1i ⊗ k

2
j  of k1i  and k2j  , where k1i =

(

k1i1, k
1
i2, . . . , k

1
im

)t 
is the i th column of similarity matrix K1 , k2j =

(

k2j1, k
2
j2, . . . , k

2
jn

)t
 is the j th column of similarity matrix K2 and 

⊗ stands for the outer product. The superscript t  represents the transpose of vector. The outer product k1i ⊗ k
2
j  is 

actually defined as follows:

This outer product produces two sets of information: the bimodal interactions and the raw unimodal repre-
sentations of the individual modalities, since k1ii = 1 and k2jj = 1 . Therefore, k1i ⊗ k

2
j  contains the full combinations 

of information of k1i  and k2j  . This implies that k1i ⊗ k
2
j  could be the better input than the simple concatenation of 

k
1
i  and k2j  for prediction of the binding affinity of i th drug and j th protein.

The drug-drug similarity is computed using the Tanimoto coefficient T , which is the most popular similar-
ity measure for comparing chemical structures represented by means of fingerprints. In the paper, we use the 
topological fingerprint of the RDKit. On the other hand, the target-target similarity is computed based on the 
protein sequences, using the normalized Smith-Waterman score as explained in the Eq. (3). This guarantees to 
calculate the optimal score between any two protein sequences.

The output for each DT pair is the corresponding binding affinity value yij.

Performance evaluation metrics.  Since KronRLS and DeepDTA are typical computational non-struc-
ture-based methods devised for predicting DTAs, we consider them the baseline methods. In the paper, we 
compare the performance of KronRLS, DeepDTA and SimCNN-DTA, using the aforementioned datasets for 
evaluation. We perform threefold and fivefold cross validation (CV) experiments on the Davis and KIBA data-
sets. To ensure that no target is used only for training or only for testing, we build the folds in a way such that 
every target has an observation in at least two and four folds, respectively. We use four metrics such as MSE, CI, 
r2m and AUPR for the evaluation of the performance in these regression-based models.

The MSE is a commonly used metric for the error in continuous prediction. Since we work on a regression 
task, we use the MSE as the metric commonly used for the error in continuous prediction, in which yi is the 
actual output and ŷi corresponds to the prediction. n indicates the number of samples.

As suggested in Pahikkala et al.32, the CI can be used as an evaluation metric for the prediction accuracy. The 
intuition behind the CI is as follows: the CI over a set of paired data is the probability that the predictions for 
two randomly drawn DT pairs with different label values are in the correct order, meaning that the prediction 
ŷi for the larger affinity yi is larger than the prediction ŷj for the smaller affinity value yj:

where Z is a normalization constant and h(x) is the step function32:

The CI ranges between 0.5 and 1.0, where 0.5 corresponds to a random predictor and 1.0 corresponds to 
perfect prediction accuracy.

For better predictive potential of the model, a modified squared correlation coefficient r2m was introduced by 
Roy and Roy43 as follows:
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where r2 and r20 are the squared correlation coefficients with and without intercept, respectively. It is known that 
the model with r2m > 0.5 for the test dataset is determined as an acceptable model.

The AUPR score is widely utilized by many studies on binary prediction. In order to compute AUPR, we 
convert the Davis and KIBA datasets into their binary forms through selecting appropriate binding affinity 
thresholds. For Davis dataset we use pKd value of 7.0 as threshold as in Pahikkala et al.32. For KIBA dataset we 
use KIBA value of 12.1 as the suggested threshold32,34,36.

Learning and evaluation.  We now illustrate the prediction performance of the proposed SimCNN-DTA 
for predicting DTA. We evaluate the performance of the proposed model on two benchmark datasets similar to 
Öztürk et al.34 and He et al.39. As mentioned before, we perform nested threefold and fivefold CVs on the Davis 
and KIBA datasets. Table 2 illustrates the performance results for five models via nested threefold and fivefold 
CVs on the Davis dataset, respectively. Table 3 illustrates the performance results for five models via nested 
threefold and fivefold CVs on the KIBA dataset, respectively. Boldfaced values indicate best performance result. 
Standard errors are given in parenthesis.

To statistically evaluate the significant improvement of our method, we utilize the one sided t-test. We basically 
compare the model with the best performance result to other models. Thus, the null hypotheses associated with 
Table 2 are given as H0 : MSE(other model) ≤ MSE(SimCNN− DTA) , H0 : CI(KronRLS) ≤ CI(other model) , 
H0 : r

2
m(SimCNN− DTA) ≤ r2m(other model) , H0 : AUPR(SimCNN− DTA) ≤ AUPR(other model) . The null 

hypotheses associated with Table 3 are the same as the null hypotheses associated with Table 2 except the second 
hypothesis, H0 : CI(SimCNN− DTA) ≤ CI(other model) . The relevant p-values less than 0.1 are given + , p
-values less than 0.05 are given one asterisk, p-values less than 0.01 are given two asterisks, p-values less than 
0.001 are given three asterisks, and p-values less than 0.0001 are given four asterisks.

For all evaluation metrics, the value for the best-performing model is highlighted in bold font. As seen from 
Table 2, our approach significantly outperforms the other models for all three metrics except CI for Davis dataset. 
As seen from Table 3, our approach significantly outperforms the other models for all four metrics for KIBA 
dataset. As seen from both tables, the similarity-based models, KronRLS and SimCNN-DTA tend to perform 
better than deepDTA, GANsDTA and deepCDA learned from drug SMILES strings and protein sequences. 
SimCNN-DTA overall performs better than KronRLS. SimCNN-DTA is most acceptable model, since it obtains 
significantly bigger r2m > 0.5 than the other models for threefold and fivefold CVs on the Davis and KIBA data-
sets. It is noteworthy that SimCNN-DTA only use nonmissing DTA values for training, whereas KronRLS uses 

(7)r2m = r2
(

1−

√

r2 − r20

)

Table 2.   Comparison of five prediction models via threefold and fivefold cross validations on the Davis 
dataset.

Model

Threefold CV Fivefold CV

MSE CI r
2
m AUPR MSE CI r

2
m AUPR

KronRLS 0.3614*** (0.0023) 0.8669 (0.0027) 0.4751*** (0.0007) 0.5902*** (0.0019) 0.3923**** 
(0.0073) 0.8767 (0.0024) 0.5120*** (0.0043) 0.6080*** (0.0074)

DeepDTA 0.4126*** (0.0106) 0.8313**** 
(0.0019) 0.4923** (0.0072) 0.5823*** (0.0020) 0.3856** (0.0196) 0.8460*** (0.0026) 0.5331* (0.0213) 0.6059** (0.0121)

GANsDTA 0.5018**** 
(0.0044)

0.7958**** 
(0.0030) 0.3620*** (0.0160) 0.4927**** 

(0.0034)
0.4895**** 
(0.0071)

0.7984**** 
(0.0026)

0.3704**** 
(0.0110)

0.5109**** 
(0.0052)

DeepCDA 0.4590** (0.0317) 0.8396*** (0.0020) 0.5029** (0.0056) 0.5797*** (0.0060) 0.3884**** 
(0.0124) 0.8528** (0.0044) 0.5512* (0.0164) 0.5983*** (0.0054)

SimCNN-DTA 0.3190 (0.0041) 0.8501*** (0.0011) 0.5655 (0.0077) 0.6511 (0.0077) 0.3059 (0.0022) 0.8552** (0.0027) 0.5952 (0.0138) 0.6572 (0.0076)

Table 3.   Comparison of five prediction models via threefold and fivefold cross validations on the KIBA 
dataset.

Model

Threefold CV Fivefold CV

MSE CI r
2
m AUPR MSE CI r

2
m AUPR

KronRLS 0.2806* (0.0021) 0.7948**** 
(0.0004) 0.5438** (0.0020) 0.7001+ (0.0014) 0.2616+ (0.0015) 0.8060*** (0.0007) 0.5667* (0.0010) 0.7129** (0.0007)

DeepDTA 0.5285* (0.0723) 0.7666**** 
(0.0019)

0.4746**** 
(0.0054)

0.6304**** 
(0.0012) 0.4715* (0.0766) 0.7824**** 

(0.0025) 0.5209** (0.0112) 0.6540**** 
(0.0034)

GANsDTA 0.3816**** 
(0.0045)

0.7619**** 
(0.0012)

0.4449**** 
(0.0047)

0.6003**** 
(0.0014)

0.3878**** 
(0.0037)

0.7592**** 
(0.0026)

0.4391**** 
(0.0043)

0.5972**** 
(0.0042)

DeepCDA 0.4980+ (0.1177) 0.7773**** 
(0.0004)

0.5051**** 
(0.0034)

0.6259**** 
(0.0040) 0.6763* (0.1279) 0.7789**** 

(0.0021) 0.5165** (0.0072) 0.6311*** (0.0081)

SimCNN-DTA 0.2740 (0.0019) 0.8141 (0.0011) 0.5618 (0.0026) 0.7047 (0.0019) 0.2576 (0.0018) 0.8216 (0.0011) 0.5734 (0.0034) 0.7213 (0.0018)
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both missing and nonmissing DTA values. The missing affinity of a drug is imputed with the weighted average 
of nonmissing affinities, where the weights are the normalized Smith–Waterman similarities between the protein 
corresponding to the missing affinity and proteins corresponding to the nonmissing affinities.

Figure 3 shows the scatter plots of the predicted DTA values of SimCNN-DTA versus the measured DTA 
values on Davis and KIBA datasets. A perfect regression model is expected to be a ŷ = y line where predictions 
( ̂y ) are equal to the measured ( y ) values. For better illustration of KIBA dataset we set the range of scatter plot 
to [8,∞] , since only 13 out of 118,254 nonmissing values in KIBA dataset have scores less than 8. We notice that 
the density is high around the ŷ = y line particularly for KIBA dataset.

We now illustrate a case study using actual USFDA-approved drugs targeting the specific protein EGFR. 
We predict the affinities between EGFR and the 1,018 drugs, of which 11 drugs are known to be EGFR target-
ing drugs. We train KronRLS, DeepDTA and SimCNN-DTA using the Davis dataset as training dataset. The 
predicted affinities between 11 drugs and EGFR are sorted in descending order and summarized in Table 4. The 
results indicate that SimCNN-DTA successfully identifies known EGFR targeting drugs and other chemical 
compounds for which no association with EGFR was reported.

Conclusion
In this paper we proposed the novel method SimCNN-DTA for the problem of predicting continuous DTAs. 
As discussed above, continuous values provide more information about the actual strength of DT binding. 
To the best of our knowledge, SimCNN-DTA is the first nonlinear method that applies 2D CNN approach to 
the outer products between column vectors of Tanimoto similarity matrix of the drugs and column vectors of 
Smith–Waterman similarity matrix of the targets for continuous DTA prediction.

Experimental results show that SimCNN-DTA outperforms other existing methods-KronRLS and DeepDTA 
in prediction performance on the Davis and KIBA datasets. Moreover, case study of finding drug candidates 
targeting EGFR shows that SimCNN-DTA successfully includes all existing EGFR drugs as 100 top-ranked 
candidates among 1,018 candidates.

Figure 3.   Scatter plots of predictions of SimCNN-DTA versus measured binding affinity values for Davis ( pKd ) 
and KIBA (KIBA score) datasets.

Table 4.   Compound ranking based on the predicted affinities of SimCNN-DTA when the target is EGFR.

PubChem ID KronRLS ranking DeepDTA ranking GANsDTA ranking DeepCDA ranking SimCNN-DTA ranking

DB11963 2 459 393 425 1

DB08916 1 306 33 306 2

DB00317 3 351 148 445 3

DB11828 4 461 927 472 4

DB00530 5 664 61 474 5

DB01259 7 285 516 506 6

DB05294 6 455 423 492 7

DB12010 9 122 162 68 8

DB12267 13 517 863 225 10

DB09330 18 370 966 453 30

DB00281 667 933 337 875 90
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SimCNN-DTA can be further improved by adjusting the architecture of CNN according to the data structure. 
To the best of our knowledge, we believe that SimCNN-DTA is an effective approach for DTA prediction and 
can be quite helpful in drug development process.

Material and methods
Baseline models.  For the baseline models, one similarity-based model and three deep learning-based 
models are taken into consideration. The similarity-based model is KronRLS32, which aims to minimize a stand-
ard squared error loss function with a specific regularization term. The regularization term is given as a norm 
of the prediction function, which is related with a kernel function. Deep learning models such as DeepDTA34, 
GANsDTA35 and DeepCDA37 are the state-of-the-art methods in predicting DTAs, which are 1D CNN-based 
prediction models using integer/label encoded SMILES strings and protein sequences. DeepDTA34 consists of 
two separate CNN blocks, each aiming to learn representations from compound SMILES strings and protein 
sequences, composed of three consecutive 1D convolutional layers followed by a max-pooling layer. At the end 
of CNN blocks, two outputs are concatenated into a vector, which is fed into three FC layers. Then this model 
predicts affinity scores from the model. GANsDTA35 is the 1D CNN-based prediction model using the com-
bined features extracted from integer/label encoded SMILES strings and protein sequences by GANs as the 
inputs, where 1D CNN consists of three consecutive 1D convolutional layers with kernels of size 4. DeepCDA37 
consists of three steps. In the first step, a combination of CNN and LSTM is proposed to obtain a better repre-
sentation of protein and compound. Also, a two-sided attention mechanism is proposed to encode the interac-
tion strength between each compound substructure and protein substructure pair. In the second step, a feature 
encoder network is learned to improve the generalizability of the model by utilizing an adversarial domain 
adaptation technique. In the third step, the learned test encoder network is applied to new compound–protein 
pairs to predict their binding affinity.

SimCNN.  The proposed SimCNN model is the 2D CNN-based prediction model that uses the outer product 
of drug similarity vector and protein similarity vector as input. For the input of our SimCNN model, we first cal-
culate nd × nd drug-drug similarity matrix K1 based on Tanimoto coefficient and nt × nt target-target similarity 
matrix K2 based on the normalized Smith-Waterman score for datasets. The topological fingerprint of the RDKit 
is used to calculate Tanimoto coefficient. The normalized Smith-Waterman score guarantees to calculate the 
optimal score between any two target sequences. Here, nd and np are the number of drugs and targets in training 
dataset, respectively. Then, we calculate the outer product k1i ⊗ k

2
j  of nd × 1 drug similarity vector k1i  and np × 1 

protein similarity vector k2j  for all DT pairs, where k1i  and k2j  are the i th column and the j th column of similarity 
matrices K1 and K2 , respectively. That is to say, k1i  consists of Tanimoto similarities between the i th drug and 
others including itself, and k2j  consists of normalized Smith-Waterman similarities between the j th target and 
others including itself.

The parameters associated with SimCNN are obtained using outer products as inputs and affinities as outputs. 
As seen in Fig. 4, our SimCNN-DTA consists of two 2D convolutional layers, each followed by a max-pooling, 1 
flatten layer, FC(128) and FC(1) layers. The numbers in parentheses indicate the number of nodes. FC(128) and 
FC(1) layers use the rectified linear unit (ReLU) and linear functions, respectively. We add dropout layer with 
rate 0.1 between the flatten layer and FC(128) layer to eliminate overfitting. The filter numbers for each convo-
lutional layer are 32 and 18, respectively. We use filters of kernel size of 5 × 5, 3 × 3 respectively for convolutional 
layers. We use max-pooling of size 2, stride 1. We set the batch size and number of epochs with the 32 and 20 
respectively for a learning algorithm. We use Adam optimizer with learning rate 0.001.
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