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Abstract
Background  More than half of Neuroblastoma (NB) patients presented with distant metastases and the relapse of metastatic 
patients was up to 90%. It is urgent to explore a biomarker that could facilitate the prediction of metastasis in NB patients.
Methods and results  In the present study, we systematically analyzed Gene Expression Omnibus datasets and focused on 
identifying the critical molecular networks and novel key hub genes implicated in NB metastasis. In total, 176 up-regulated 
and 19 down-regulated differentially expressed genes (DEGs) were identified. Based on these DEGs, a PPI network composed 
of 150 nodes and 452 interactions was established. Through PPI network identification combined with qRT-PCR, ELISA and 
IHC, S100A9 was screened as an outstanding gene. Furthermore, in vitro tumorigenesis assays demonstrated that S100A9 
overexpression enhanced the proliferation, migration and invasion of NB cells.
Conclusions  Taken together, our findings suggested that S100A9 could participate in NB tumorigenesis and progression. In 
addition, S100A9 has the potential to be used as a promising clinical biomarker in the prediction of NB metastasis.

Keywords  Neuroblastoma · Bioinformatics analysis · S100A9 · Metastasis · Biomarker

Introduction

Neuroblastoma (NB), the most aggressive form of solid 
tumor of infants, accounting for 15% of cancer deaths in 
children [1, 2]. Until now, the main preferred treatment 
choices still remain surgery, chemotherapy and radiotherapy, 
which inevitably lead to tremendous toxicity and drug resist-
ance. For high-risk NB patients, the recurrence and progres-
sion ratio are about 50% [3]. Thus, it is urgent for us to iden-
tify new effective biomarker for early diagnosis, metastasis 
prediction and ideal therapeutic target for NB patients.

S100A9, which is also called calgranulin B or migration 
inhibitory factor-related protein 14 (MRP-14), belongs to the 
low-molecular-weight calcium-binding S100 protein family 
[4]. Evidence has shown that S100A9 protein is elevated in 
metastatic melanoma and prostate cancer [5, 6]. In these 
tumors, increased expression of S100A9 was correlated with 
tumorigenesis and poor differentiation. Although S100A9 
have been studied in many types of cancers, the biologi-
cal function in malignancies was still remains contradictory 
and poorly understood. For example, elevated S100A9 in 
malignant tissues were associated with significantly shorter 
cancer survival, while downregulated S100A9 is correlated 
with tumor proliferation, inflammation invasion and angio-
genesis [7–13]. To our knowledge, this is the first research 
to investigate the effects of S100A9 in NB patients.

In the present study, bioinformatic analysis was per-
formed based on the GEO database [14]. After DEGs 
screening and functional analysis, PPI net-work of DEGs 
were further analyzed. And we found that the expression of 
S100A9 is pretty high in metastatic NB patients. In addi-
tion, we investigated the biological functions of S100A9 in 
NB cell line. These results may help us identify new effec-
tive biomarker for early diagnosis, metastasis prediction and 
ideal therapeutic target for NB patients, and provide valuable 
biological information for further investigation of NB.
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Materials and methods

Bioinformatic analysis

Data processing and analysis

The public microarray dataset GSE90121, which was 
obtained based on the Affymetrix GPL570 platform (Affy-
metrix Human Genome U133 Plus 2.0 Array), was down-
loaded from the Gene expression omnibus (GEO) database 
(http://​www.​ncbi.​nlm.​nih.​gov/​geo/) [14]. This dataset was 
deposited by David Kaplan et al., containing information 
from human NB SK-N-AS metastatic subpopulations iso-
lated after in vivo selection, aimed to identify genomic sig-
natures that regulate metastasis and candidate therapeutics 
for NB patients. A total of 16 samples, including 12 meta-
static samples and four primary samples, were enrolled in 
the current dataset. Robust multi-array average (RMA) affy 
package of Bioconductor was used to adjust the raw data. 
The processed gene expression data was then filtered to 
include those probe sets with annotations which reference 
the new version annotation files. To identify DEGs, we used 
the Linear Models (Microarray Data package in Bioconduc-
tor) to compare the expression levels of genes between the 
metastatic group and the localized tumor group [15]. An 
adjusted p-value of < 0.05 and a |log2FC (fold change) | 
of ≥ 2 was used as the threshold.

Functional enrichment analysis of DEGs

Database for annotation, visualization and integrated dis-
covery (DAVID) integrates a set of functional enrichment 
tools to distinguish functional genes underlying diseases 
processing (http://​david.​abcc.​ncifc​rf.​gov/) [16]. Gene ontol-
ogy (GO) function and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analyses of DEGs 
were performed based on DAVID. P value < 0.05 and 
count ≥ 2 was regarded as statistically significant differences.

Protein–protein interaction network construction 
by STRING

We used the Search Tool for the Retrieval of Interacting 
Genes (STRING), an online tool and biological database 
for prediction of interactions between proteins, to construct 
the PPI network [17]. According to our analysis based on 
STRING, score (median confidence) > 0.15 was the stand-
ard of PPIs for DEGs selections. The Cytoscape software 
was used to visualize the PPI network [18]. The proteins 
that have many interaction partners, were defined as the hub 
proteins, constituting the extremely important nodes in the 

PPI network. To identify such hub proteins in the PPI net-
work, we utilized six bioinformatic tools, namely Closeness, 
Degree, EPC, MNC, Radiality and Stress centrality. Sub-
network analysis was then conducted to help us discover the 
outstanding genes.

NB patients, tissue samples and cell lines

Primary tumor tissues were obtained from 9 NB patients 
with bone marrow metastasis and 10 NB patients without 
bone marrow metastasis who had undergone tumor resec-
tion surgery at the Affiliated Hospital of Qingdao Univer-
sity. None of the included patients was treated with chemo-
therapy, hormonal therapy or radiotherapy before the tumor 
resection surgery. Written informed consent was obtained 
from all the participants. The current research was con-
ducted with the permission of the Medical Ethical Commit-
tee of Affiliated Hospital of Qingdao University (Qingdao, 
China).

Human NB cell line SH-SY5Y was kindly provided by 
Professor Xiao from the Guizhou Medical University. The 
cells were cultured in Dulbecco’s modified Eagle’s medium 
(DMEM) contained 10% fetal bovine serum (FBS, Hyclone, 
USA) under the conditions of 37 °C, 5% CO2.

Quantitative real‑time PCR

The expression of TAC1, PTGS2 and FGF1was examined 
by quantitative real-time reverse transcription polymer-
ase chain reaction (qRT-PCR). The collected tissues were 
immediately frozen at − 80 °C after surgery. Total RNA was 
extracted from cancer tissues by TRIzol reagent (Invitrogen 
Life Technologies). Then the extracted RNA was transcribed 
into cDNA using random primers and analyzed with an ABI 
7000 Real-Time PCR System (Applied Biosystems). PCR 
primers were as following: TAC1 primers: (forward) 5′-TGA 
TCT GAA TTA CTG GTC CGA CT-3′ and (reverse) 5′-TCC 
GGC AGT TCC TCC TTG A-3′; PTGS2 primers: (forward) 
5′-TAA GTG CGA TTG TAC CCG GAC-3′ and (reverse) 
5′-TTT GTA GCC ATA GTC AGC ATT GT-3′; FGF1 prim-
ers: (forward) 5′-CTC CCG AAG GAT TAA ACG ACG-3′ 
and (reverse) 5′-GTC AGT GCT GCC TGA ATG CT-3′; 
GAPDH primers (forward) 5′-CAG CGA CAC CCA CTC 
CTC-3′ and (reverse) 5′-TGA GGT CCA CCA CCC TGT-3′.
Reactions were performed in triplicate using SYBR Green 
master mix (TaKaRa, Japan) and normalized to GAPDH 
mRNA level using the ΔΔCt method.

NB serum samples and ELISA

After blood samples centrifuged at 3000 × g for 10 min at 
4 °C, the serum samples were aliquoted and stored at− 80 °C 
until further processing. To quantify levels of S100A9 in 

http://www.ncbi.nlm.nih.gov/geo/
http://david.abcc.ncifcrf.gov/
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serum, ELISA was performed as previously described 
[19]. By using human S100A9 (JYM0539Hu, JYM, China) 
ELISA kits, S100A9 in serum of the NB patients were 
detected according to the manufacturer’s recommended 
procedure.

IHC staining

In brief, the formalin fixed, paraffin-embedded tissues sec-
tions were deparaffinized, rehydrated and boiled in 0.01 M 
citrate buffer for 10 min, then incubated with 0.3% H2O2 in 
methanol to block endogenous peroxidase activity. Then the 
sections were incubated with the anti-S100A9 antibody (Cell 
Signaling Technology, USA), followed by incubation with 
secondary antibody tagged with the peroxidase enzyme for 
30 min at room temperature, finally visualized with 0.05% 
DAB (3,3′-diaminobenzidine) until the desired brown reac-
tion product was obtained. All slides were observed under 
an OLYMPUS BX41 Microscope, and representative pho-
tographs were taken.

Construction of plasmids and establishment 
of stably transfected cells

SBI-piggyBac vector, GST-S100A9, were kindly provided 
by Professor T.C. He from the University of Chicago. To 
construct an S100A9 overexpression plasmid, the complete 
coding sequence of human S100A9 gene was subcloned into 
the SBI-piggyBac vector. For S100A9 silencing, siRNAs 
targeting human S100A9 with the sequences of 5′- GCA 
AGA CGA TGA CTT GCA A -3′ and 5′- TTG CAA GTC 
ATC GTC TTG C -3′ were synthesized and assembled into 
the SBI-piggyBac vector, resulting in SBI-siS100A9. After 
transfecting SH-SY-5Y NB cells with the constructed plas-
mids, the stably transfected cells were selected by incuba-
tion with puromycin for one week. The stable transfected 
cell lines, namely Control (SH-SY5Y transfected with SBI 
empty vector), S100A9 (SH-SY5Y transfected with SBI-
S100A9) and siS100A9 (SH-SY5Y transfected with SBI-
siS100A9) briefly.

Cell viability assay

The viability of SH-SY5Y cells was assessed by 
3-(4,5-dimethylthiazol-2-yl)-2, 5-diphe-nyltrazolium bro-
mide (MTT) assay. Briefly, stably transfected SH-SY5Y 
cells were seeded in 96-well plates (1000 cells/well). The 
cells were incubated in DMEM supplemented with 1% FBS 
for 24, 48, 72, 96 and 120 h, then incubated with MTT rea-
gent (Progema, Madison, WI, USA, 20 µL/well) for another 
4 h at 37 °C to allow the formation of formazan. After that, 
100 µL of dimethyl sulfoxide was added into the cell culture 
medium for another 10-min incubation at room temperature. 

At last, in every day of the next five days, a microplate reader 
(Bio-rad, iMark) was used to measure the absorbance at 
492 nm of each well. Each sample included three independ-
ent replicates.

Colony formation assay

Exponentially growing stably transfected SH-SY5Y cells 
were seeded at a low density (100 cells/well) in cell culture 
medium containing 1% FBS in 6-well plates. The cells were 
allowed to grow for about 10 days to form colonies. The 
culture medium was refreshed every 3–4 days. Crystal violet 
was used to stained the colonies. Colony numbers from 3 
wells were used to calculated the average colony number.

Scratch wound healing assay

The scratch wound healing assay was performed as described 
previously [20, 21]. Briefly, stably transfected SH-SY5Y 
cells were seeded in 6-well plates and grown to ~ 90% con-
fluency. Then, sterile micro-pipette tips were used to scratch 
the monolayer formed by SH-SY5Y cells to create a wound. 
After that, the medium (DMEM containing 1% FBS) was 
refreshed every day to remove the floating cells. Bright field 
microscopy was used to monitor the wound healing status 
at 24 h, 48 h, and 72 h after the wound was created. Each 
assay was repeated three times. ImageJ software was used 
to calculate the wound healing ratio.

Transwell invasion assay

A chamber coated with non-type I-collagen (Millipore, 
USA) was used for the transwell assay. The upper chamber 
coated with ECM gel (Sigma, USA) was filled with 400µLof 
serum-free DMEM and seeded with exponentially growing 
stably transfected SH-SY5Y cells (1 × 104 cells). The lower 
chamber was filled with 500µL of DMEM supplemented 
with 20% FBS, which served as a chemoattractant. After 
24 h of incubation, the cells migrated across the transwell 
membrane were dried, fixed with methanol, and then stained 
with hematoxylin–eosin (H and E). Cotton swabs were used 
to remove the cells on the upper surface of the transwell 
membrane. At last, an inverted microscope (× 100 magni-
fication) was used to count the number of cells migrated 
across the transwell membrane. Five randomly-selected 
fields were examined to obtain the mean value of the num-
ber of cells migrated across the transwell membrane. The 
experiment was repeated three times.

Statistical analysis

All data are presented as means ± standard deviations. T test 
was performed in the GraphPad Prism software to determine 
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the statistical significance of differences between groups. 
A P value of less than 0.05 was considered statistically 
significant.

Results

Enrichment analyses of DEGs

In general, 176 up-regulated DEGs and 19 down-regu-
lated DEGs were identified based on the cut-off criteria 
(p-value < 0.05 and count ≥ 2), which were used to generate 
a heatmap for the NB patients with and without metasta-
sis (Fig. 1A). Functional enrichment analysis revealed that 
the top 18 mostly enriched GO terms and top two mostly 
enriched KEGG pathways were associated with regulation of 
nucleosome assembly, innate immune response in mucosa, 
extracellular matrix organization, angiogenesis and innate 
immune response, etc. (Table 1). In addition, volcano plot 
was able to quick identify the expression changes within 
the gene sets by combination of statistical tests (adjusted 
p-value) and magnitude of change (Fig. 1B).

PPI network analysis

To identify the potential biomarkers that predict metastasis 
in NB patients, the DEGs were delineated to construct a 
PPI network. A DEG with a combined score (median con-
fidence) > 0.15 was regarded as a significantly differentially 
expressed gene. The Cystoscope software was used to visu-
alize the PPI network. As shown in Fig. 2A, the PPI network 
constructed by STRING is composed of 150 nodes and 452 
interactions. The top 10 hub proteins in the PPI network 
determined by Closeness, Degree, EPC, MNC, Radiality and 
Stress centrality are listed in Table 2. The results showed 
that TAC1, PTGS2 and FGF1were the most outstanding 
genes and maybe play an important role in the NB metas-
tasis. Sub-network analysis suggested that S100A9 was the 
outstanding hub protein (Fig. 2B). 

Validation the outstanding genes in NB patients

To verify the expression of TAC1, PTGS2 and FGF1 in 
microarray data, qPCR was performed to detect the expres-
sion of those three genes. The qRT-PCR results showed that 
the expression of three genes were no significant differences 

Fig. 1   A Heat map for the differentially expressed genes (DEGs).  B Volcano plots reflecting number, significance and reliability of differentially 
expressed mRNA in NB. The red dots indicate dysregulated mRNAs
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between the 9 NB patients with bone marrow metastasis and 
10 NB patients without bone marrow metastasis (Fig. 3A). 
Next, ELISA and IHC were performed to detect the protein 
levels of S100A9 in NB patients (9 NB patients with bone 
marrow metastasis and 10 NB patients without bone mar-
row metastasis).The serum levels of S100A9 were higher 
from NB patients with bone marrow metastasis than without 
bone marrow metastasis (Fig. 3B). Further, IHC staining was 
also used to examined the expression of S100A9 from NB 
patients’ tissues with and without bone marrow metastasis 
(Fig. 3C). The results showed that the expression levels of 
S100A9 were significantly higher in NB patients with bone 
marrow metastasis than NB patients without bone marrow 
metastasis.

S100A9 overexpression promoted the proliferation, 
migration and invasion of NB cells

To investigate the effects of S100A9 on the proliferation 
of NB cells, the coding sequence of human S100A9 gene 
expressed in GST-S100A9 vector was subcloned into the 
SBI-piggyBac plasmid to overexpress S100A9 in SH-SY5Y 
cells. According to the MTT assay results, the SH-SY5Y 
cells overexpressing S100A9 (defined as the S100A9 group) 
exhibited higher proliferation ability than the SH-SY5Y cells 
transfected with empty vector (defined as the control group) 

at days 3, 4, and 5 (p < 0.05). The S100A9-knockdown SH-
SY5Y cells (defined as the siS100A9 group) exhibited 
significantly slower proliferation when compared with the 
control group at days 3, 4, and 5 (p < 0.001) (Fig. 4A). Col-
ony formation assay showed that the S100A9 group formed 
more colonies compared with the control group. Quantita-
tively, the number of colonies formed in the S100A9 group 
was approximately double than that of the control group 
(Fig. 4B). These results indicated that S100A9 overexpres-
sion accelerated the proliferation of SH-SY5Y cells. In addi-
tion, as revealed by wound healing and transwell assays, 
the results exhibited that the migration and invasion of SH-
SY5Y cells were significantly active by S100A9 (Fig. 4A 
and B).

Discussion

High-throughput genome sequencing technologies have 
been widely used nowadays. Using these technologies, 
several research groups have identified genetic variations 
in human NB patients [22]. Among the identified genetic 
variations, MYCN amplification (32.1%), 11q loss (47.5%) 
and 17q gain (80.4%) were the most frequently observed 
ones (around 90% in total) in individuals with a high 
risk of developing NB [23]. Furthermore, two research 

Fig. 2   A Protein-protein interaction network constructed with the dysregulated differentially expressed genes. B PPI network was visualized by 
Cystoscope software
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groups found that recurrent genomic rearrangements 
affecting genomic regions close to the telomerase reverse 
transcriptase (TERT) gene locus led to significant tran-
scriptional upregulation of TERT [24, 25]. However, even 
though great progresses have been made in understanding 
the genetic basis of NB tumor occurrence and develop-
ment, effective biomarkers for prediction of metastasis in 
NB patients are still lacking.

In the current study, the GSE90121 dataset which 
was deposited by David Kaplan were downloaded and 
analyzed by bioinformatics method to identify poten-
tial crucial genes associated with NB metastasis. A total 
of 195 genes including 19 down-regulated and 176 up-
regulated genes were obtained. Besides, the significantly 
enriched GO terms were mainly focused in regulation of 
cell growth, inflammatory response, positive regulation 
of cell migration. Hub genes of the regulatory network 
were then selected and conducted with PPI network mod-
ule. Dysregulated TAC1, PTGS2 and FGF1 were the top 
three outstanding genes based on both six methods (Close-
ness, Degree, EPC, MNC, Radiality, and Stress centrality) 
evaluation. The expression levels of TAC1, PTGS2 and 
FGF1 in resected specimen of NB patients with or without 
metastasis were then validated by qRT-PCR. Although the 
expression of TAC1, PTGS2 and FGF1 were related with 
many kinds of tumorigenesis, such as non-small cell lung 
cancer, pancreatic ductal cancer, colorectal cancer, squa-
mous cell carcinoma, gastric cancer and clear cell renal 
cell carcinoma[26–33], but these genes expression did not 
exhibit significant change as expected as the microarray 
results, indicating that these three genes may not the piv-
otal gene that participate in the metastasis of NB.

After go through the differentially expressed genes list 
and reviewing the relevant literatures, we found that S100A9 
exhibits a broad range of biological functions involving 
in various cancer progression [34–36]. Characterized by 
calcium-binding EF hand motifs, S100 family comprise of 
more than 20 homologous proteins. Studies have revealed 
that S100A9 induced activation of NF-kB which participate 
in a broad range of intracellular and extracellular functions 
by regulating angiogenesis, tumor migration, wound heal-
ing, cell apoptosis, proliferation, differentiation, and inflam-
mation [9, 37–42]. In addition, it has become increasingly 
evident that S100A9 acts as a potent amplifier of inflamma-
tion in tumor. S100A9 have been reported to be as Damage-
associated molecular patterns (DAMPs) and involved in 
almost all aspects of cancer biology, such as proliferation, 
tumorigenesis, apoptosis, invasion, metastasis and angio-
genesis. To our knowledge, fewer researches investigated 
the expression and biological function of S100A9 in NB. In 
the present study, the promoted expression levels of S100A9 
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were verified to be consistent with the microarray results. 
To further validate these results, our results suggested that 

Fig. 3   A qRT-PCR analysis for the expression of hub genes. B 
ELISA analysis for serum levels of S100A9 in metastatic (n=9) and 
non-metastatic NB (n=10) patients. C Representative IHC staining 
for S100A9 in tissue sections from metastatic and non-metastatic NB 

patients. **p < 0.01. D MTT analysis for Blank/Control/S100A9/
siS100A9 SH-SY-5Y cells for sequential 5 days. *p<0.05, **p < 
0.01.

elevated S100A9 promoted the proliferation and migration 
of NB cancer cells.
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Conclusions

In conclusion, the current observations indicate that 
S100A9 may be an important carcinogenic factor in the 
occurrence and progression of NB and may serve as a 
promising biomarker for metastasis prediction of NB 
patients. Nevertheless, well designed and multi-ethnics 
clinical researches with large sample will be necessary 
to verify and strengthen the metastatic role of S100A9 in 
NB patients.
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