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Abstract

Leptospirosis is a re-emerging zoonosis with a global distribution. Surface-exposed outer

membrane proteins (SE-OMPs) are crucial for bacterial–host interactions. SE-OMPs locate

and expose their epitope on cell surface where is easily accessed by host molecules. This

study aimed to screen for surface-exposed proteins and their abundance profile of patho-

genic Leptospira interrogans serovar Pomona. Two complementary approaches, surface

biotinylation and surface proteolytic shaving, followed by liquid chromatography tandem-

mass spectrometry (LC-MS/MS) were employed to identify SE-OMPs of intact leptospires.

For quantitative comparison, in-depth label-free analysis of SE-OMPs obtained from each

method was performed using MaxQuant. The total number of proteins identified was 1,001

and 238 for surface biotinylation and proteinase K shaving, respectively. Among these, 39

were previously known SE-OMPs and 68 were predicted to be localized on the leptospiral

surface. Based on MaxQuant analysis for relative quantification, six known SE-OMPs

including EF- Tu, LipL21, LipL41, LipL46, Loa22, and OmpL36, and one predicted SE-

OMPs, LipL71 were found in the 20 most abundant proteins, in which LipL41 was the high-

est abundant SE-OMP. Moreover, uncharacterized LIC14011 protein (LIP3228 ortholog in

serovar Pomona) was identified as a novel predicted surface βb-OMP. High-abundance lep-

tospiral SE-OMPs identified in this study may play roles in virulence and infection and are

potential targets for development of vaccine or diagnostic tests for leptospirosis.

Author summary

Surface-exposed outer membrane proteins (SE-OMPs) are important components of

pathogenic Leptospiramediating virulence and interacting with host cells and host
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environment. This study aimed to identify SE-OMPs of pathogenic L. interrogans serovar

Pomona using surface biotinylation and proteinase K (proK) shaving methods compre-

hensively. Surface-protein enriched fractions obtained from intact leptospires were subse-

quently subjected to liquid chromatography tandem-mass spectrometry (LC-MS/MS) and

their label-free quantitative profiles were analyzed by MaxQuant software. The surface

biotinylation and proK shaving yielded a total of 1,001 and 238 proteins, respectively, and

shared 220 proteins. Of these, 28 known SE-OMPs were identified by either method and

11 known SE-OMPs were overlapped. Moreover, 50 predicted SE-OMPs were detected in

individual sample group and 18 were common in both groups. In the 20 most abundant

proteins, there were six known SE-OMPs derived from both methods, including EF- Tu,

LipL21, LipL41, LipL46, Loa22, and OmpL36, and one predicted SE-OMP, LipL71.

McpA, OmpL1, OmpL32, OmpL36, SdhA, SppA, LIC10314, and LIC12615 were ranked

in the 50 most abundant proteins. Furthermore, LIC10411 (LIP3228 ortholog in serovar

Pomona) was predicted as a novel surface βb-OMP. The high-abundance SE-OMPs

should be further investigated as novel vaccine candidates or diagnostic biomarkers for

leptospirosis.

Introduction

Leptospirosis is a neglected zoonosis with high global prevalence, mainly in tropical and subtropi-

cal regions including Southeast Asia, Oceania, the Indian subcontinent, Caribbean, and Latin

America [1,2]. Leptospirosis causes approximately 1.03 million cases and 58,900 deaths annually

worldwide [3]. The severity of the disease ranges from asymptomatic infection to severe manifes-

tations with multi-organ dysfunction, such as renal and hepatic failure, pulmonary hemorrhage,

and myocarditis [2]. The major etiologic agent of the illness is pathogenic Leptospira spp., but

some cases are associated with intermediate species such as L. inadai and L. wolffii [4]. Most wild

and domestic animals can be reservoir hosts harboring the pathogens in their kidneys. Humans

are considered as accidental hosts by direct contact with leptospires shed in urine of infected ani-

mals or indirect exposure to water or soil contaminated with the urine [2].

Bacterial outer membrane proteins (OMPs) often play key roles in bacterial pathogenesis

such as adhesins, porins, targets for antibodies, and receptors for various host molecules.

OMPs are likely to be crucial for adaptation and response to host conditions and surrounding

environments [5]. Surface-exposed (SE) domains of OMPs on pathogenic leptospires are

important because of their location on a tip of cell surface where facilitates bacterial-host inter-

actions [6]. Identification of leptospiral SE-OMPs should be helpful not only for a better

understanding of Leptospira pathogenicity but also new targets for the development of vac-

cines and diagnostic tests [7]. A variety of surface protein assessment methods have been

established for isolation of bacterial surface-associated proteins [8,9]. Surface biotinylation

method using hydrophilic biotins with membrane impermeable properties can label surface

proteins on intact cells [10–12]. As a complementary approach, proteolytic shaving of surface

proteins under conditions that preserve cell integrity can harvest SE-OMPs [12–14]. Protein-

ase (proK) has broad cleavage sites resulting in coverage of most surface proteins [9]. Pinne and

Haake previously used surface biotinylation and surface shaving with proK to identify new 4

surface-exposed leptospiral OMPs [12]. The quantitative profile on peptides or proteins from

different biological samples and conditions become important for advanced medical research.

MaxQuant is one of the most widely used computational software to quantify protein from

mass spectral peak intensity to reveal protein abundance profiling [15]. This software is easy-
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to-use, and available for label-free quantification (LFQ) and analysis of data obtained from

most MS platforms.

In this study, a combination of surface biotinylation and surface shaving methods followed by

liquid chromatography tandem-mass spectrometry (LC-MS/MS) were used for high-throughput

identification of SE-OMPs on L. interrogans serovar Pomona. The results were subsequently ana-

lyzed by MaxQuant software for quantitative profiling of leptospiral SE-OMPs. Our findings

revealed known and putative SE-OMPs and the abundance profile of pathogenic Leptospira.

Materials and methods

Leptospira and culture

Leptospira interrogans serovar Pomona, kindly provided by Ben Adler, was originally from Lee

Smythe, World Health Organization/Food and Agricultural Organization/Office International

des Epizooties Collaborating Centre for Reference and Research on Leptospirosis, Queensland

Health Scientific Services, Australia. All experiments used low-passage leptospires, which was

directly isolated from infected hamsters [16] followed by less than five in vitro passages. Leptos-
pira was cultivated at 30˚C in Ellinghausen-McCullough-Johnson-Harris (EMJH) medium

(Difco, MD, USA) containing 10% bovine serum albumin (BSA) supplement solution [17]

until the log phase (~5×108 cells/ml) was reached.

Preparation of leptospiral surface proteins

The surface biotinylation and proteinase K shaving assays were performed following previ-

ously described protocols with some modifications [12]. Leptospires were harvested by low-

speed centrifugation at 2,000×g for 7 min at room temperature (RT). The leptospiral cell pel-

lets were gently washed twice with BSA-free EMJH base medium and approximately 1×1010

cells were prepared for each method as follows.

Cell surface biotinylation. The surface biotinylation was carried out using Pierce Cell

Surface Protein Biotinylation and Isolation Kit (Thermo Scientific) according to the manufac-

turer’s instruction. The cell pellets were resuspended with BupH Phosphate Buffered Saline

(BupH-PBS) containing Sulfo-NHS-SS-Biotin at various concentrations up to 1 mg/ml. After

incubation at RT for 30 min, the reaction was stopped with BupH-PBS containing 100mM gly-

cine and the inactivated biotin was removed by washing twice with BupH-PBS. The labeled

pellets were resuspended with BupH-PBS containing cOmplete protease inhibitors cocktail

(Roche) before sonication on ice for 30 min using Ultrasonic Processor (GE Healthcare, Buck-

inghamshire, UK) (pulse on for 15 sec, pulse off for 45 sec, 35% amplitude). The cell lysates

were centrifuged at 15,000×g for 5 min at 4˚C and biotin-labeled proteins in the supernatant

were purified using NeutrAvidin Agarose column according to the manufacturer’s instruction.

The eluted proteins were collected for LC-MS/MS.

Cell surface shaving with proteinase K. The cell pellets were resuspended with Protein-

ase K Solution (Promega, Madison, WI) at various concentrations up to 2 μg/ml. After incuba-

tion at 37˚C for 30 min, the reactions were stopped with cOmplete protease inhibitors cocktail

(Roche) solution. The cell lysates were centrifuged at 15,000×g at 4˚C for 5 min and the super-

natant containing cleaved surface proteins was collected for LC-MS/MS analysis. The remain-

ing cell pellets were subjected to SDS-PAGE and Western blotting.

Live/Dead fluorescence viability staining

Cell membrane integrity was determined using LIVE/DEAD BacLight Bacterial Viability Kit

(Thermo Scientific) according to the manufacturer’s instruction. Equal volumes of SYTO9
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and propidium iodide (PI) were mixed. The biotinylated cells and the remaining cell pellets

after proK shaving were incubated with dye mixture at a ratio of 1:1,000 in the dark at RT for

15 min. The stained cells were observed under a fluorescence microscope (Olympus) at 400×
magnification. Leptospiral cells treated with cold absolute methanol for 5 min on ice were

used as control cells with compromised membrane.

Sodium dodecyl sulphate–polyacrylamide gel electrophoresis

Protein samples were prepared following previously described protocols [18] except biotin-

labeled samples were mixed with 1× sample buffer without reducing agent. The samples were

characterized by 15% polyacrylamide gel and stained with Coomassie Brilliant Blue R-250

(Bio-Rad, Germany).

Western blotting

Proteins on polyacrylamide gel were transferred onto nitrocellulose membrane. After incubat-

ing with 1% BSA in PBS plus 0.05% Tween-20 (PBST) at RT for 1 h, the membrane was incu-

bated with polyclonal antibodies (kindly provided by David A. Haake, UCLA) against OmpL1

(1: 2,000) and FlaA1 (1: 2,000) at RT for 1 h. Afterwards, the membrane was incubated with

horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG (1: 5,000, KPL, MD, USA) at

RT for 1 h. For biotinylated proteins, the membrane was incubated with HRP -conjugated

streptavidin (1:5000; BD Pharmingen). After each incubation, the membrane was washed

three times for 5 min with PBST. The protein bands were detected with ECL chemilumines-

cent substrate (Amersham ECL Prime, GE Healthcare) under ChemiDoc XRS+ System (Bio-

Rad).

In-gel digestion

Protein samples were prepared for mass spectrometry using previously described protocols

[18,19] with some modifications. The entire sample lane on Coomassie Brilliant Blue R-250

stained polyacrylamide gel was diced into approximately 1 mm3 pieces and destained three

times for 10 min with 25 mM ammonium bicarbonate (Ambic) in 50% acetonitrile (ACN).

The gel pieces were dehydrated with 100% ACN for 5 min and completely dried by a speed

vacuum device (Thermo scientific). The samples were reduced with 10 mM DTT in 25 mM

Ambic at 56˚C for 45 min and alkylated with 55 mM iodoacetamide in 25 mM Ambic at RT

for 30 min in the dark. The gel pieces were dehydrated and completely dried before incubating

with Sequencing Grade Modified Trypsin (Promega) on ice for 60 min. The excess solution

was replaced with 25 mM Ambic and the protein samples were incubated at 37˚C overnight.

The digested peptides were extracted from the gel pieces with 50% ACN in 0.1% formic acid

(FA) and dried in vacuo. The dried samples were acidified with 0.1% FA and desalted with C-

18 spin columns (Thermo Scientific) according to the manufacturer’s instruction. The dried

peptides were finally resuspended in 0.1% FA before applying to LC-MS/MS.

Liquid chromatography tandem-mass spectrometry

Peptide analysis by LC-MS/MS was performed using an EASY-nLC1000 system (Thermo Sci-

entific) coupled to a Q-Exactive Orbitrap Plus mass spectrometer (Thermo Scientific)

equipped with a nano-electrospray ion source (Thermo Scientific). The peptides were eluted

in 5–20% acetonitrile in 0.1% FA for 40 min followed by 20–40% acetonitrile in 0.1% FA for

10 min and 40–98% acetonitrile in 0.1% FA for 10 min at a flow rate of 300 nl/min. The MS

methods included a full MS scan at a resolution of 70,000 followed by 10 data-dependent MS2
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scans at a resolution of 17,500. The normalized collision energy of HCD fragmentation was set

at 32%. An MS scan range of 350 to 1400 m/z was selected and precursor ions with unassigned

charge states, a charge state of +1, or a charge state of greater than +8 were excluded. A

dynamic exclusion of 30 s was used.

Protein identification and label-free quantification by MaxQuant

Protein identification and label-free quantitative analysis were performed using MaxQuant

software suite version 1.6.1.0 and its built-in Andromeda search engine. The mass spectra data

(raw file format) derived from LC-MS/MS was searched against the whole L. interrogans sero-

var Copenhageni Fiocruz L1-130 protein database available in Uniprot database (www.

uniprot.org, taxonomy = 267671). The data (three independent experiments) from each sur-

face protein assessment method were analyzed in separate MaxQuant run for protein identifi-

cation. In addition, three biological replicates from each method were assigned to different

experiments and analyzed in the same software run for quantitative proteomics. The default

parameters for LFQ were used with some additional settings as follows: Group specific param-

eters; Instrument = Orbitrap; Digestion = Specific with Trypsin/P; Label free

quantification = LFQ with LFQ min. ratio count = 2, Fast LFQ was selected, LFQ min. number

of neighbors = 3, LFQ average number of neighbors = 6. The MaxQuant output file (pro-

teinGroups.txt format) was further analyzed using Microsoft Excel. Any contaminants and

reverse identified proteins were removed from the total proteins list. The proteins repeatedly

identified by at least 2 out of 3 replicates were considered proteins that were truly yielded by

each method. The results of known leptospiral SE-OMPs retrieved from PubMed and Scopus

are shown in S1 Table.

Bioinformatics tools

The amino acid sequences of LIP3483, LIP3482, LIP3334, LIP3228, LIP3144, LIP1773,

LIP2297, LIP0991, and LIP3761 proteins in L interrogans serovar Pomona were retrieved from

the Victorian Bioinformatics Consortium (https://vicbioinformatics.com/) in fasta file format.

Subcellular localization was predicted using PSORTb v3.0.3 [20], CELLO v.2.5 [21], GNeg-

mPLoc v. 2.0 [22], and SOSUI-GramN [23]. Lipoprotein was predicted using LipoP v. 1.0 [24].

The presence of signal peptides was predicted using SignalP v. 4.0 [25], Signal-CF [26], and

PrediSi [27]. Transmembrane α helix was predicted using TMHMM v. 2.0 [28], Phobius [29],

and CCTOP [30]. The β-barrel (βb) OMPs were predicted using HHomp [31], PRED-TMMB

[32], and TMBETADISC-RBF [33]. All predictions were performed with default settings of

Gram-negative bacteria and the criteria for identifying of SE-OMPs followed the previously

described criteria [34]. βb-OMP was defined as a protein containing a signal peptide, a trans-

membrane α-helix lower than 2, and a βb transmembrane domain. OM lipoprotein was

defined based on predicted location in the OM and containing a lipoprotein signal peptide.

Results

Optimization of cell surface biotinylation with Sulfo-NHS-SS-Biotin

Initially, the concentration of Sulfo-NHS-SS-Biotin was optimized for surface protein labeling.

SDS-PAGE showed approximately equal amounts of total protein used for each concentration of

biotin (Fig 1A). Band intensities of biotinylated proteins on the Western blot reached the highest

signal when the biotin was used at the final concentration of 0.4 mg/ml (Figs 1B and S1), there-

fore subsequent labeling was performed using 0.4 mg/ml biotin. Only minimal signals were seen

in the unlabeled control (0 mg/ml of biotin). The labeling process might disrupt the surface layer
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and potentially release proteins from interior compartments. The Live/Dead fluorescence viabil-

ity staining was performed to determine membrane integrity before and after surface biotinyla-

tion. Most leptospires were stained with SYTO9 (green), which indicated intact cells, before (Fig

2A) and after (Fig 2B) biotin labeling suggesting that the membrane integrity was mainly pre-

served after the labeling process. In contrast, all leptospires treated with methanol used as control

cells with damaged membrane were stained red with PI as expected (Fig 2C).

After surface labeling and purification through the avidin agarose column, the purity of sur-

face proteins in the eluted fraction was determined by immunoblotting using antisera against

OmpL1 and FlaA1, known leptospiral SE-OMP and periplasmic proteins, respectively (Fig 3).

OmpL1 but not FlaA1 was detected in the eluted fraction (S2 Fig), indicating that biotinylation

optimally occurred on the cell surface, and the purified proteins mainly contained OMPs. The

surface-exposed proteins were further analyzed by LC-MS/MS.

Optimization of cell surface shaving with proteinase K treatment

The optimal concentration of proK that cleaved only surface proteins and still maintained cell

membrane integrity was determined. After proK treatment, the presence of OmpL1 and FlaA1

Fig 1. Optimization of surface biotinylation of intact Leptospira. Intact leptospires (~1×1010 cells) were incubated with

Sulfo-NHS-SS-Biotin at a final concentration of 0, 0.2, 0.4, 0.6, 0.8 and 1 mg/ml. The biotinylated proteins from

approximately 108 cells were loaded per lane, separated by SDS-PAGE, and stained with Coomassie Brilliant Blue R-250 (A).

The biotinylated proteins were transferred to a nitrocellulose membrane, stained with 1:5,000 HRP-conjugated streptavidin,

and detected with ECL chemiluminescence detection system (B). The intact leptospires in PBS (0 mg/ml biotin) were used as

a negative control. The position of PageRuler Unstained Protein Ladder (Thermo Scientific) are indicated to the left (lane

MW).

https://doi.org/10.1371/journal.pntd.0009983.g001

Fig 2. Determination of cell membrane integrity after surface biotinylation. Membrane integrity of intact

leptospires was determined by Live/Dead (SYTO9/PI) fluorescence viability staining. The intact cells before (A) and

after (B) labeling with 0.4 mg/ml Sulfo-NHS-SS-Biotin, and methanol-treated cells used as non-intact cell control (C)

were stained with Live/Dead (SYTO9/PI) fluorescent dyes and visualized under a fluorescence microscope. The green

(SYTO9) and red (PI) colors indicate intact cells and membrane disrupted cells, respectively.

https://doi.org/10.1371/journal.pntd.0009983.g002
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in the cell pellets containing shaved cells was determined by immunoblotting. When a compa-

rable amount of each sample was used (Fig 4A), the band intensity of OmpL1 but not FlaA1

was reduced at 1 μg/ml proK treatment (Fig 4B) indicating that surface proteins were cleaved

with the least effect on periplasmic proteins. The cell viability staining with SYTO9/PI showed

that lytic cells increased as a dose-dependent manner (Fig 5). Most leptospiral cells remained

intact after treatment with 1 μg/ml proK. Therefore, proK treatment at a final concentration of

1 μg/ml was used to cleave SE-OMPs from remaining intact cells. The supernatant portion

obtained from treated cells was used to identify SE-OMPs by LC-MS/MS.

Identification of proteins from surface biotinylation and proteinase K

shaving by LC-MS/MS

Surface biotinylation and proK shaving of intact L. interrogans serovar Pomona were subse-

quently performed according to the optimized protocols. Due to unavailable protein database

of serovar Pomona, the mass spectrum data were searched against the Uniprot database of L.

interrogans serovar Copenhageni Fiocruz L1-130 containing a total of 3,655 proteins. After

MaxQuant analysis, the biological replicates were normalized and averaged the data (mean of

two or three data) to obtain a single data set of LFQ intensity from each method (S1 Appen-

dix). The analysis demonstrated that surface biotinylation yielded a total of 1,001 proteins,

proK shaving yielded a total of 238 proteins, and both methods identified a total of 1,019 pro-

teins (Fig 6A). The biotinylation and proK shaving identified unique 781 and 18 proteins,

respectively, while 220 proteins overlapped between the two methods. Previously reported 39

SE-OMPs were identified by at least one method (S1 Table). The number of known SE-OMPs

identified by biotinylation and proK surface shaving were 38 and 12, respectively. Of these, 11

known SE-OMPs were shared by both sample groups (Fig 6B).

According to the previous studies on reverse vaccinology, two bioinformatics approaches

predicted a total of 272 leptospiral SE-OMPs [34,35], of which 23 proteins were known

SE-OMPs but 2 proteins were currently missing from the database. Of 247 remaining proteins,

there were 68 predicted SE-OMPs identified by at least one method (S2 Table). The predicted

64 and 22 SE-OMPs were detected in biotinylated and proK-shaved samples, respectively (Fig

6C). The number of predicted SE-OMPs overlapped in both sample groups was 18. Based on

this information, total known and predicted SE-OMPs obtained from both techniques

Fig 3. Purity of surface proteins after biotinylation and purification. Intact leptospires (~1×1010 cells) were

incubated with Sulfo-NHS-SS-Biotin at a final concentration of 0.4 mg/ml. The biotinylated proteins from intact

Leptospira cells (IC) were loaded onto an avidin agarose column for purification. Non-biotinylated proteins were

discarded to flow-through fraction (F). The column was washed 3 times (W1-W3) and the purified proteins were

finally eluted (E). Each fraction at equal volume was separated by SDS-PAGE and stained with Coomassie Brilliant

Blue R-250 (A) or transferred to nitrocellulose membranes and detected with polyclonal rabbit antisera against OmpL1

(~31kDa) and FlaA1 (~35kDa), known SE-OMP and periplasmic proteins, respectively (B). The biotinylated lysate

cells (LC) were used as a positive control. The expected sizes of OmpL1 and FlaA1 are indicated on the right, and the

position of PageRuler Unstained Protein Ladder (Thermo Scientific) is indicated on the left (lane MW).

https://doi.org/10.1371/journal.pntd.0009983.g003
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accounted for 10.50% (107/1,019) of all identified proteins. Of these, 29 known and predicted

SE-OMPs represented 13.19% (29/220) of total identified proteins shared by both methods

(Fig 6D).

Quantitative surface proteomics of pathogenic Leptospira
The quantitative profiling of protein abundance was presented as the abundance ranking of

LFQ intensity of all identified proteins obtained from each method. The quantitative abun-

dance profiling of known SE-OMPs and predicted SE-OMPs are shown in S1 and S2 Tables,

respectively, while the 20 most abundant proteins of each method are shown in Tables 1 and 2.

Fig 4. Optimization of leptospiral cell surface shaving with proteinase K. Approximately 1×1010 cells of intact leptospires (IC) were incubated with proK at a

final concentration of 0, 0.0625, 0.125, 0.25, 0.5, 1, and 2 μg/ml. Equivalents of proK-treated 108 leptospires per lane were separated by SDS-PAGE and Coomassie

Brilliant Blue staining (A), or transferred to a nitrocellulose membrane and probed with polyclonal rabbit antisera against OmpL1 (~31kDa) and FlaA1 (~35kDa),

known SE-OMP and periplasmic protein, respectively. The expected sizes of OmpL1 and FlaA1 are indicated on the right and the position of PageRuler Unstained

Protein Ladder (Thermo Scientific) is indicated on the left (lane MW).

https://doi.org/10.1371/journal.pntd.0009983.g004

Fig 5. Determination of membrane integrity after cell surface shaving. Membrane integrity of intact leptospires was

determined by Live/Dead (SYTO9/PI) fluorescence staining. The intact cells before and after treatment with proK at

various concentrations of 0, 0.0625, 0.125, 0.25, 0.5, 1, and 2 μg/ml, and methanol-treated cells used as non-intact cell

control were stained with Live/Dead (SYTO9/PI) fluorescent dyes and visualized under a fluorescence microscope.

The green (SYTO9) and red (PI) colors indicate intact cells and membrane disrupted cells, respectively.

https://doi.org/10.1371/journal.pntd.0009983.g005
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The highest abundant SE-OMP was LipL41, whatever the method used. Known SE-OMPs

including EF-Tu, LipL21, LipL46, Loa22, and OmpL36, and predicted SE-OMP, LipL71 were

shown in the top 20 high abundance, in which EF-Tu, LipL46, and OmpL36 were overlapping

proteins. Moreover, there were 9 known SE-OMPs and 5 predicted SE-OMPs ranked in the

top 50 high abundance (S3 Table). Of these, 8 proteins including EF-Tu, LipL21, LipL41,

LipL46, LipL71, McpA, OmpL1, and OmpL36 were common in both sample groups while

Loa22, OmpL32, SdhA, SppA, LIC10314, and LIC12615 were specific in each group. However,

outer membrane proteins (LipL31, LipL32, and LipL45), periplasmic proteins such as flagellin

(FlaA-1 and FlaA-2), cytoplasmic proteins such as global regulator (Rpo family and elongation

factor), metabolic enzymes, chaperone proteins (GroEL and DnaK), and proteins with

unknown functions were also presented in high quantity.

Fig 6. The number of identified proteins obtained by surface biotinylation and surface shaving. The number of

total identified proteins (A), known SE-OMPs (B), predicted SE-OMPs (C), and total SE-OMPs obtained by surface

biotinylation and surface shaving. The protein samples were prepared by surface biotinylation and proK shaving

before identification by LC-MS/MS. The mass spectrum data were analyzed by MaxQuant software and its built-in

Andromeda search engine. The data were searched against the whole protein database of Leptospira interrogans
serovar Copenhageni Fiocruz L1-130. Any contaminants and reverse identified proteins were removed from the total

identified proteins list. The relevant articles in leptospiral SE-OMPs were retrieved from PubMed and Scopus (S1 and

S2 Tables).

https://doi.org/10.1371/journal.pntd.0009983.g006
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Subcellular localization prediction of high-abundance unknown proteins

The uncharacterized proteins; LIC10175, LIC10176, LIC10314, LIC10411, LIC10483,

LIC11182, LIC11848, LIC12621, LIC13432, were ranked in the top 50 high abundance pro-

teins (S3 Table). They were further predicted to be SE-OMPs using web-based bioinformatics

tools following previously described criteria [34]. The amino acid sequences of those unchar-

acterized proteins in serovar Pomona were used for predictions. The prediction demonstrated

that LIP3228 (an orthologous protein of LIC10411) contained a signal peptide and a βb struc-

ture but lacked a transmembrane α-helix (S4 Table). Therefore, LIP3228 was finally predicted

to be a βb-OMP. However, the remaining 8 uncharacterized proteins were not predicted as

SE-OMPs based on those criteria.

Discussion

The location on the exterior of cell surface enables SE-OMPs of pathogens to promptly interact

with host molecules and surrounding environments. SE-OMPs of pathogenic leptospires play

roles in virulence, including adherence, invasion, colonization, and interaction with the host

environment, including the immune system [6].

Several methods were previously used to identify leptospiral SE-OMPs, such as cell surface

labeling [10–12], surface proteolysis shaving [12–14], surface immunofluorescence [12,36],

surface immunoprecipitation [37], and in silico analysis [12,34,35]. Of these, surface labeling

with biotin and surface shaving with proteinase K can be used as high-throughput screening to

identify SE-OMPs. Both methods are practical and reliable for identification of surface pro-

teins of leptospires [10–14] and other bacterial pathogens [38–41]. In this study, we used two

Table 1. The 20 most abundant proteins identified by surface biotinylation.

Abundance rankinga Gene ID Gene names Protein IDs Protein names

1 LIC11335 groEL P61438 GroEL

2 LIC11352 lipL32 Q72SM7 LipL32

3 LIC12966 lipL41 Q72N71 LipL41

4 LIC12407 glnA Q72PR0 Putative glutamine synthetase protein

5 LIC13432 lic13432 Q72LW1 Uncharacterized protein

6 LIC10403 ribH P61724 6,7-dimethyl-8-ribityllumazine synthase

7 LIC10191 loa22 Q72VV5 Loa22

8 LIC13166 ompL36 Q72MM7 OmpL36

9 LIC12233 lic12233 Q72Q79 Fructose-bisphosphate aldolase

10 LIC11687 lic11687 Q72RQ7 Endonuclease

11 LIC11652 tal Q72RT8 Probable transaldolase

12 LIC11890 lic11890 Q72R58 Flagellin

13 LIC11456 lipL31 Q72SC8 LipL31

14 LIC12875 tuf Q72NF9 Elongation factor Tu (EF-Tu)

15 LIC11885 lipL46 Q72R63 LipL46

16 LIC11194 lic11194 Q72T27 Putative citrate lyase

17 LIC10483 lic10483 Q72V20 Uncharacterized protein

18 LIC10874 lic10874 Q72TZ0 Molybdopterin oxidoreductase

19 LIC11243 atpD Q72SX9 ATP synthase subunit beta

20 LIC11643 lic11643 Q72RU5 LipL45

a The ranking was calculated throughout all identified proteins of surface biotinylation.

Bold fonts imply overlapping proteins.

https://doi.org/10.1371/journal.pntd.0009983.t001
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complementary methods, surface biotinylation, and proK shaving previously used to charac-

terize novel leptospiral SE-OMPs [12], to identify proteins localized on the surface of L. inter-
rogans serovar Pomona, thereby providing stronger evidence for surface localization and

enhancing the efficacy of total protein coverage compared to the use of only a single method.

In addition, to reduce contamination of cytoplasmic and periplasmic proteins, we optimized

the concentration of biotin and proK to minimize leptospiral membrane disruption during

biotin labeling and proteolytic shaving process.

The Sulfo-NHS-SS-Biotin used in this study is a hydrophilic and cell membrane-imperme-

able reagent containing sulfonate group on the N-hydroxysuccinimide ring that reacts with

primary amines (-NH2) on surface proteins of intact cells. After labeling and purification,

Western blot revealed that surface proteins were mainly obtained in the biotinylated protein

samples (Fig 3). In parallel, the proK shaving was performed to digest the surface-exposed por-

tion of OMPs at the optimal concentration of proK to prevent cell lysis. The proK was used

because it is potent, active at a wide pH range, and low peptide bond specificity adjacent to the

carboxyl group of aliphatic and aromatic amino acids resulting in a broad range of surface pro-

teins in the cleaved fraction [9]. The immunoblotting revealed that the surface proteins were

predominantly released into the supernatant fraction (Fig 4). The outer membrane of lepto-

spires are fragile and easily disrupted [42], therefore leptospiral cells were handled as gently as

possible during protein preparations to minimize membrane degradation. However, a certain

degree of cell lysis was observed by fluorescence viability staining after the experimental pro-

cess (Figs 3 and 5).

The conventional proteomics approach using two-dimensional gel electrophoresis (2DE)

coupled with matrix assisted laser desorption ionization-time of flight mass spectrometry

Table 2. The 20 most abundant proteins identified by proteinase K shaving.

Abundance rankinga Gene ID Gene names Protein IDs Protein names

1 LIC13328 lic13328 Q72M63 Isocitrate dehydrogenase

2 LIC11335 groEL P61438 GroEL protein

3 LIC12082 cysK Q72QN1 Cysteine synthase

4 LIC12966 lipL41 Q72N71 LipL41

5 LIC11352 lipL32 Q72SM7 LipL32

6 LIC10175 lic10175 Q72VX0 Uncharacterized protein

7 LIC11003 lipL71 Q72TL5 LipL71

8 LIC11517 accA2 Q72S69 Acetyl-CoA carboxylase alpha subunit

9 LIC11359 maoC Q72SM0 MaoC

10 LIC10754 rpoC Q72UA7 DNA-directed RNA polymerase subunit beta

11 LIC12875 tuf Q72NF9 Elongation factor Tu (EF-Tu)

12 LIC11781 mdh P61975 Malate dehydrogenase

13 LIC10011 lipL21 Q72WC6 LipL21

14 LIC13470 lic13470 Q72LT0 Ferredoxin—NADP reductase

15 LIC10753 rpoB Q72UA8 DNA-directed RNA polymerase subunit beta

16 LIC11602 lic11602 Q72RY6 GSDH domain-containing protein

17 LIC10524 dnaK P61442 Chaperone protein DnaK

18 LIC13166 ompL36 Q72MM7 OmpL36

19 LIC11885 lipL46 Q72R63 LipL46

20 LIC10002 dnaN Q72WD5 Beta sliding clamp

a The ranking was calculated throughout all identified proteins of surface proK shaving.

Bold fonts imply overlapping proteins.

https://doi.org/10.1371/journal.pntd.0009983.t002
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(MALDI-TOF MS) [10,43], mainly identifies abundant proteins but inefficiently identifies

highly hydrophobic or membrane proteins. In more recent studies, LC-MS/MS, a high-

throughput and high-resolution method, was used to identify leptospiral membrane proteins

from the samples of subcellular fractionation using Triton X-114 [44,45]. Moreover, LC-MS/

MS-based studies and isotope labeling couple revealed protein abundance of leptospires [46].

In this study, LC-MS/MS-based surface proteomics and label-free quantification with Max-

Quant was used to identify SE-OMPs and calculate their abundance profiles. Surface biotinyla-

tion and proK shaving identified a total of 1,001 proteins and 238 proteins, respectively (Fig 6).

The difference of results obtained from these two methods was explained by the fact that proK

could not cleave all leptospiral surface proteins, especially those lacking proK cleavage sites

[12] and biotin might fail to label the proteins that their lysine residues are not exposed [10].

Therefore, the number of SE-OMPs was likely an approximate value.

The previous surface proteome of Leptospira revealed that LipL21, LipL32, and LipL41 were

abundant on the cell surface [10]. All three proteins were also identified and ranked in the top

20 abundance list in this study (Tables 1 and 2). However LipL32 was previously confirmed as

a subsurface lipoprotein [13], therefore LipL41 was the highest abundant SE-OMP followed by

EF-Tu, LipL21, LipL46, LipL71, Loa22, OmpL36. Moreover, we also identified McpA, OmpL1,

OmpL32, SdhA, SppA, LIC10314, and LIC12615 as high-abundance SE-OMPs since their

abundances were ranked in the top 50 abundance list (S3 Table). These proteins are conserved

among pathogenic leptospires, expressed during mammalian infection, and involved in lepto-

spiral pathogenesis [47–52]. For example, the leptospires mutant lacking Loa22 expression was

attenuated in animal models [50]. LipL46 and OmpL32 were detected in Leptospira residing in

tissues of infected animals [51,52]. OmpL36, LipL46, and EF-Tu were able to interact with sev-

eral host components [47–49]. Previous studies demonstrated the potential vaccine candidates

and target proteins for diagnostic tests of high abundance SE-OMPs. For example, LipL21,

LipL41, and OmpL1 have been tested as vaccine candidates and certain combinations con-

ferred synergistic effect on protection [53,54], supporting the rationale to use high-abundance

SE-OMPs in multi-subunit or chimeric vaccines. Recombinant LipL21, LipL41, and Loa22

specifically reacted with sera from leptospirosis patients and specific antibodies against these

abundance proteins could recognize their native forms on leptospiral cells [55,56], implying

the beneficial application of high-abundance SE-OMPs in diagnosis of leptospirosis.

Reverse vaccinology was previously used for screening leptospiral OMPs and SE-OMPs as

new vaccine candidates [34,35]. For example, reverse and three-dimensional structural vacci-

nology predicting conserved βb transmembrane proteins and OM lipoproteins was employed

to select the surface-related vaccine candidates [34]. βb-OMPs and OM lipoproteins are major

types of membrane proteins that contain SE-region on the cell surface of Gram-negative bacte-

ria [57,58]. Of all uncharacterized proteins listed in the top 50 abundance, only LIC10411

(LIP3228 ortholog in serovar Pomona) contained the predicted property of βb-OMP and

shared overlapping in both sample groups. Moreover, it is a conserved and abundance protein

in pathogenic serovars [59]. Therefore, it is a promising novel vaccine candidate. However,

other characteristics of good vaccine candidates such as in vivo expression, immunogenicity,

and role in pathogenesis should be further evaluated.

Although low-passage leptospires were used to avoid the loss of virulence or the change of

their protein expression after high-passage in vitro culture as previously reported [60,61], we

might not detect SE-OMPs that were not expressed or were extremely low abundant under in
vitro culture conditions. In addition, only the whole L. interrogans serovar Copenhageni Fio-

cruz L1-130 protein database was available for searching matched mass spectra of proteins,

unique proteins in our L. interrogans serovar Pomona might not be identified. Despite the pre-

cautions taken to avoid membrane disruption, a small degree of cell lysis was inevitable and
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known cytoplasmic proteins and known periplasmic proteins were detected in the surface pro-

tein-enriched fractions. In addition, some proteins were named by annotation that might mis-

lead as cytoplasmic proteins, for example, EF-Tu was already confirmed as a surface-exposed

outer membrane protein of Leptospira [49]. Due to the high sensitivity of LC-MS/MS, even

trace amount of proteins contaminated from undesired compartments might be detected, as

shown by detection of FlaA1 in the LC-MS/MS results but not on the Western blot. Moreover,

some proteins might have multiple subcellular localizations, for example, chaperone proteins

including GroEL, DnaK and ClpB [62].

In conclusion, our results demonstrated that the complementary strategy of surface biotiny-

lation and proteinase K shaving followed by LC-MS/MS with label-free quantification was use-

ful to expand the repertoire of surface proteins and the abundance profile of virulent L.

interrogans serovar Pomona. We identified several high-abundance SE-OMPs including

EF-Tu, LipL21, LipL41, LipL46, LipL71, Loa22, McpA, OmpL1, OmpL32, OmpL36, SdhA,

SppA, LIC10314, and LIC12615. Moreover, we reported the in silico-based characterization of

LIC10411(LIP3228 ortholog) to be a putative SE-OMP. However, its subcellular localization

should be confirmed. Leptospiral surface proteome obtained from this study is useful for fur-

ther investigation of novel virulence factors of pathogenic leptospires and serves as new targets

for vaccine development as well as diagnostic tests for leptospirosis.
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