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Abstract: The accurate segmentation of pancreatic subregions (head, body, and tail) in CT images
provides an opportunity to examine the local morphological and textural changes in the pancreas.
Quantifying such changes aids in understanding the spatial heterogeneity of the pancreas and
assists in the diagnosis and treatment planning of pancreatic cancer. Manual outlining of pancreatic
subregions is tedious, time-consuming, and prone to subjective inconsistency. This paper presents a
multistage anatomy-guided framework for accurate and automatic 3D segmentation of pancreatic
subregions in CT images. Using the delineated pancreas, two soft-label maps were estimated for
subregional segmentation—one by training a fully supervised naïve Bayes model that considers
the length and volumetric proportions of each subregional structure based on their anatomical
arrangement, and the other by using the conventional deep learning U-Net architecture for 3D
segmentation. The U-Net model then estimates the joint probability of the two maps and performs
optimal segmentation of subregions. Model performance was assessed using three datasets of
contrast-enhanced abdominal CT scans: one public NIH dataset of the healthy pancreas, and two
datasets D1 and D2 (one for each of pre-cancerous and cancerous pancreas). The model demonstrated
excellent performance during the multifold cross-validation using the NIH dataset, and external
validation using D1 and D2. To the best of our knowledge, this is the first automated model for the
segmentation of pancreatic subregions in CT images. A dataset consisting of reference anatomical
labels for subregions in all images of the NIH dataset is also established.

Keywords: pancreatic subregions segmentation; pancreas segmentation; CT abdominal scans

1. Introduction

The pancreas adopts several morphological changes during the development of pan-
creatic cancer (PC) due to the underlying biological mutations [1–4]. Identifying such
changes can efficiently assist in the early diagnosis, monitoring of disease progression,
and treatment planning of PC. However, such alterations are subtle and unique to each
pancreatic subregion, which includes the head (H), body (B), and tail (T), and thus require
analysis at the regional level. For instance, tumor histology differs across pancreatic subre-
gions [5,6] (e.g., H tumors are non-squamous, B/T tumors are squamous), causing spatial
heterogeneity in the pancreas. This key difference causes several diversities, including
tumor presentation (H: less aggressive, well-defined, B/T: more aggressive, poorly dif-
ferentiated), associated symptoms (H: weight loss, B: upper abdominal pain, T: lower
abdominal pain), drug response (H: more sensitive to Gemcitabine regimen, B/T: more
sensitive to Fluorouracil regimen, and vice versa), and variable rates for metastasis (H: 42%,
B: 68%, T: 84%), incidence (H: 71%, B: 13%, T: 16%), 2-year survival (H: 44%, B: 27%,
T: 27%), and resection (H: 17%, B: 4%, T: 7%) [5–10].
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Computed Tomography (CT) abdominal imaging is widely used for noninvasive
examination of the morphology and texture of the whole pancreas and subregions [11]
(the terms ‘pancreatic subregion’ and ‘subregion’ are used interchangeably). However, due
to the small size, complex location, and the irregular anatomy of the pancreas, manual
evaluation of CT scans does not fully appreciate valuable information and often leads to
misdiagnosing PC [12,13]. Furthermore, subregional alterations are usually assessed as
changes to the whole pancreas, which often results in statistical insignificance as the local
microlevel changes mostly remain obscured when appraised globally. Additionally, manual
outlining of subregions can be subjective, limiting the precise analysis of subregions.

The reliable and rigorous analysis of pancreatic morphology requires accurate and
automated delineation of the pancreas and subregions, as manual segmentation is highly
subjective, tedious, and prone to errors. Several automated methods [14–16] have been
proposed for whole pancreas segmentation using CT images in recent years, obtaining
satisfactory levels of accuracy. However, unfortunately, due to the lack of a clear need for
subregional analysis, rigid criteria to specify subregional boundaries, and unavailability of
ground truth labels, the subregional segmentation of pancreas in CT images has remained
un-attempted. In the case of Magnetic Resonance images, there is only one technique [17],
published recently, that attempted to segment pancreatic subregions using a delineated
pancreas. Thus, the high application of CT abdominal imaging to PC diagnosis and
management calls for automatic subregional segmentation in CT images to assist in a
reliable subsequent assessment of subregions.

The key challenge for naïve segmentation models is the lack of distinct boundaries and
edge information between any two adjacent subregions. Deep learning networks have been
used for the zonal segmentation of several anatomical structures [18–20]. The performance
of these techniques largely depends on the segmentation approach adopted. The 2D
approaches usually have more slices to train the network and are less computationally
expensive. However, for the current problem, the 2D approach would suffer challenges
as the three subregions do not appear together in most of the 2D CT abdominal slices
which limits the usefulness of that contextual information. On the contrary, 3D approaches
consider the spatial and volumetric information of the substructure and are thus more stable
and robust. However, 3D approaches require huge training data. Unfortunately, public CT
datasets for the pancreas are rare and small, with no subregional labels. A more efficient
approach is the systematic integration of anatomical and contextual information of the
substructures to the base 3D model to perform a more enhanced and guided segmentation,
even with a small dataset. Many models followed this approach and achieved desirable
levels of performance, including [21].

This paper presents a fully automated method for the 3D segmentation of pancreatic
subregions using outlined pancreas in CT images. A multistage anatomy-guided frame-
work is proposed that generates a probability map for subregional segmentation using the
Naïve Bayes model which makes use of length and volumetric proportions of subregions,
based on their adjacency arrangement, followed by the incorporation of the probability
map to the conventional 3D U-Net segmentation model [22] that performs enhanced
segmentation. Model evaluation was performed on three datasets of contrast-enhanced
abdominal CT scans, including the NIH public dataset [23] of the healthy pancreas, and two
in-house datasets (one for each of the pre-cancerous and cancerous pancreas). Experimental
results show a significant overlap between the predicted segmentation and reference labels
with the mean overall Dice Sørensen Coefficient (DSC) reaching 94.5%, 95.6%, and 89.9%
for the NIH, precancerous, and cancerous datasets, respectively. Compared to the results
obtained using the U-Net model without integrating the map generated by the Bayes model,
an average 8% DSC improvement is observed for all three sets, indicating the substantial
gain achieved by incorporating the anatomical information. Also, a new dataset has been
established that consist of subregional reference labels for the NIH image dataset.

To the best of our knowledge, this is the first model proposed for the automated
segmentation of pancreatic subregions in CT images. The originality of the work consists
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in applying the anatomical information of subregional structures into the model. The
reference labels dataset will be made publicly available or can be requested from authors.

2. Materials and Methods
2.1. Datasets

Model training and the validation of the proposed methodology were performed
using the NIH dataset containing 82 contrast-enhanced abdominal CT scans, acquired from
subjects with a healthy pancreas. Each scan has a resolution of 512 × 512 pixels on the
x/y axis, while the number of sampling slices on the z-axis varies between 181 and 466,
with the slice thickness varying between 0.5 and 1.0 mm. The dataset also comes with gold
reference labels outlining the pancreas in all scans and has been used in many studies for
the automatic segmentation of the pancreas.

Two additional in-house datasets (D1, D2) were obtained from the repository of the
CSMC that consist of CT scans of same subjects with pre-cancerous and the cancerous
pancreas respectively. Each dataset consists of 15 contrast-enhanced, multi-phase (predom-
inantly portal venous phase), CT abdominal scans with identical x/y resolution to NIH
scans and variable z-axis slices.

To generate reference labels for subregions in all scans of three datasets, two trained
radiologists, with over 12 years of experience at the Department of Radiology, Cedars-Sinai
Medical Center (CSMC), manually specified subregional boundaries. A three-step process
was conducted to perform labeling and to ensure labeling consensus. First, both graders
independently labelled subregions within the outlined boundary of pancreas in all scans.
Approximately 84% labelling overlap was observed in both label sets. Second, both graders
shared their labels with each other so the graders could review and update their original
labels, resulting in 96% overall labelling consistency. Lastly, the remaining 4% of labels
were finalized with mutual agreement of both graders.

2.2. Anatomy-Guided Subregional Segmentation
2.2.1. Anatomy of the Pancreatic Subregions

Pancreatic subregions follow certain anatomical constraints that help specify the
general spatial location of each subregion and the area it covers. Effectively utilizing the
anatomical and geometrical dimensions of the pancreas can reduce segmentation errors.

The pancreas is an accessory gland of the digestive system, situated across the posterior
abdominal wall behind the stomach in the epigastric region, with both exocrine and
endocrine functions [24]. In its complete form, it appears as a J-shaped (hockey stick-
like) structure that is generally divided into three anatomical parts: head, body, and tail.
The head is the expanded medial part that lies in the curve of the duodenum. The body
continues and connects to a tapered tail, which is the last part of the pancreas. On the
CT axial view, the head, body, and tail appear in the order of left to right. The pancreas
anteroposterior diameter is observed as 1–3 cm, and length as 12–15 cm with head, body,
and tail [25] covering 40%, 33%, 26% of its length, respectively. Figure 1a illustrates the
anatomical structure of the three subregions.

2.2.2. Bayesian Model for Soft Labels

Useful anatomical information assisting the segmentation process includes (a) the
adjacency arrangement of the subregions, (b) the length proportion of each subregion to
the whole pancreas and (c) the volumetric proportion of a subregion to the whole pancreas.
The naïve Bayes model was trained to systematically integrate the latter two features (b, c),
based on information from the former feature (a), and generate a probability map (soft
label) for a CT abdominal image, specifying the likelihoods of each pancreas voxel to be
associated to the head, body, and tail. Let xi represent a pixel in the pancreas region, then
Ps

i (s|x) is the probability for xi to be the part of the subregion s, where s is the subregional
index (H, B, T), and i is the pixel index. The expression Ps

i (s|x) is the joint probability and
is calculated as Ps

i (s|x) ∝ Ps
i (s|α) · Ps

i (s
∣∣β) .
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Figure 1. (a): Pancreas structure with head, neck, body, and tail region in a 3D mesh. (b): Length of 
the pancreas is shown as the shortest Euclidian distance (in red) between 𝑦𝑦𝑓𝑓 (in green) and the pixel 
farthest from it (in blue). (c): three examples of pixel 𝑥𝑥𝑖𝑖  (in black). For each 𝑥𝑥𝑖𝑖, the 𝛼𝛼 is the Euclidian 
distance between 𝑦𝑦𝑓𝑓 and 𝑥𝑥𝑖𝑖. (d–f): Examples of 𝑥𝑥𝑖𝑖 considered at three different locations. For each 
𝑥𝑥𝑖𝑖, the 𝛽𝛽 is the area (in red) between 𝑦𝑦𝑓𝑓 and 𝑥𝑥𝑖𝑖 in 3D space. 
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Figure 1. (a): Pancreas structure with head, neck, body, and tail region in a 3D mesh. (b): Length of
the pancreas is shown as the shortest Euclidian distance (in red) between y f (in green) and the pixel
farthest from it (in blue). (c): three examples of pixel xi (in black). For each xi, the α is the Euclidian
distance between y f and xi. (d–f): Examples of xi considered at three different locations. For each xi,
the β is the area (in red) between y f and xi in 3D space.

The term Ps
i (s|α) is the conditional probability such that α (the length feature) is the

pixel-wise shortest-possible Euclidian distance in the 3D pancreas region between pixels
xi and y f , whereas y f is the farthest pixel of the head from the pixels of the body and tail
subregions. The feature α is expressed as percent proportion to avoid length variation of
pancreas across different subjects and is given by α = α/l, whereas l is the total length of
the pancreas and is the pixel-wise shortest-possible Euclidian distance in the 3D pancreas
between y f and z f (the pixel farthest from y f ). Figure 1b provides the illustration. A
high α value indicates that xi likely belongs to the tail, a moderate value suggests xi
belongs to the body, whereas a small value shows that xi belongs to the head, illustrated
in Figure 1c. Through a fully supervised learning process, the distribution parameters
(µs

α, σs
α) for α obtained from pixels of all three subregions (s) in the training images, implies

as Ps
i (s|α) = Ps

i (µ
s
α, σs

α|s) · P(sα). The quantity P(sα) is the prior probability which is set to
0.33 to give an equal opportunity for xi to be associated to any subregion.

The term Ps
i (s

∣∣β) is the conditional probability such that β (the volumetric feature) is
the total number of pixels that lie between xi and y f on all three axes within the 3D pancreas
region. The feature β expresses how far (area-wise) the xi is from y f (the start of the head)
in 3D space. A high β value indicates that xi is likely in the tail area, a moderate value
suggests that xi is lying in the body area, whereas a small value shows that xi likely falls in
the head area. Since the size of the pancreas differs across different subjects, the feature,
β, is not used as an absolute value but expressed as a percentage to avoid the impact of
variations and is calculated by β = β/A, whereas A is the total area (number of pixels) in
the 3D pancreas region. Figure 1d–f provide the illustration. Through a fully supervised
learning process, the distribution parameters (µs

β, σs
β) for β were obtained from pixels of all

three subregions (s) in the training images. This implies to Ps
i (s|β)=Ps

i

(
µs

β, σs
β

∣∣∣s) · P(sβ

)
.

The prior probability P
(
sβ

)
is set to 0.33 for any subregion.

2.2.3. U-Net Model for Segmentation

The U-Net is based on commonly used region-based CNN (Convolutional Neural
Network) for fast and precise segmentation of images, particularly when training data is
limited or has a great deal of variability. The high efficiency and performance of the U-Net
for the segmentation of several small and variable organs in medical images, including the
pancreas, has been observed in previous studies [26].

In current work, the conventional 3D U-Net architecture [23] is used as a base model
for the 3D segmentation of pancreatic subregions in CT images. The soft label obtained
from the Bayes model is incorporated into the U-Net model for each corresponding image.
The U-Net model estimates the joint probability map of two soft labels (generated by U-Net
and Bayes) in each epoch iteration during training and finds the optimal segmentation
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based on the integrated probability map. Similarly for testing, the Bayes model generates
soft labels for all testing images, and the U-Net incorporates these soft labels to U-Net-based
soft labels, before performing the final segmentation.

3. Experimental Setup and Implementation
3.1. Data Preparation and Evaluation Criteria

All images in the three datasets were cropped down to remove non-pancreatic regions
using the outlined pancreas in reference labels, resulting in a limited fixed image resolution
of 218 × 239 × 288 in the x-, y-, and z-axes. The cropping did not remove any of the
pancreas pixels in any image. All non-pancreas pixels within the cropped region were set
to 0 intensity, whereas the intensities of pancreas pixels in each image were normalized to
unity (i.e., 0–1) using linear scaling. No other preprocessing was undertaken on the data.

The NIH dataset was split into 4 roughly equally sized subsets, where 3 unique subsets
(~60 scans) were used for model training, and the remaining ~20 scans for testing, in each
of 4 folds. The DSC was calculated for performance evaluation in each fold. The DSC is a
similarity metric between the prediction pixels set and the gold reference label set, with the
mathematical form of DSC = 2TP/(2TP + FP + FN). For instance, to calculate the DSC for a
subregion (e.g., head), all pixels from the head would be considered in the Positive (P) class,
whereas all the pixels of the other two subregions (i.e., body, tail) would be considered
from Negative (N) class.

3.2. Model Training

The Naïve Bayes probability model was implemented for a three-class problem in
MATLAB (version 2021b). During each iteration of the training in four folds, the two
features α and β from all the training ~60 scans were extracted for three subregions, and
their distribution parameters were learned. Using the learned distribution parameters,
a probability map Xn

j (soft label) was generated for all training images, where j was the
training image index and n was the training fold index. The soft label Xn

j is a map indi-
cating three-class likelihoods (normalized probabilities), one for each of three subregions,
associated with each pancreas pixel i in the j image.

The standard U-Net architecture was implemented using MONAI 0.7 with the backend
of PyTorch 1.8.0 as a network with three down-sampling and three up-sampling steps.
The architecture took the 3D volume of the pancreas (cropped image) as the input, with
normalized voxel intensities concatenated with the subregional labels as the second channel
for training. The loss function was the mean Dice loss generated for each subregion and the
focal loss at a 1:1 ratio. The network optimization was realized with an Adam mini-batch
gradient descent, whereas the learning rate was 1 × 10−4 with a batch size of 2. In each
epoch iteration, the probability map Yn

j , generated by the U-Net model for the j training

image, is updated to Ŷn
j by finding the joint probability map as Ŷn

j = Yn
j ∗ Xn

j before
the system performs segmentation. For example, for a pancreas pixel i, the normalized
probabilities of being part of the head from both models in Xj and Yj were multiplied. This
new joint probability map Ŷn

j was then normalized so the sum of all three probabilities
for each pixel was exactly 1. The maximum epoch number was set to 500 to obtain the
best model performance on the training data, although the algorithm generally converged
around 200 epochs and optimized the training DSC for three subregions. The training time
on 60 training 3D images took around 8 h on an NVIDIA GeForce GTX 2080Ti 10GB GPU.
The architectural diagram of the overall methodology is provided in the Figure 2.
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Figure 2. The architectural diagram of the proposed methodology. The probability map for segmen-
tation Yn

j obtained from the U-Net is updated to Ŷn
j by finding the joint probability with soft labels

Xn
j obtained through Bayes probability using α and β.

3.3. Model Testing

The model performed validation on ~20 unique testing scans in each of 4 testing
folds. In each testing fold, the Bayes model estimated the probability map Xn

j for all testing
images by using the distribution parameters learned in the nth training fold. The U-Net
model also estimated Yn

j for all testing images, updated to Ŷn
j by integrating it with Xn

j ,
and performed segmentation. In addition, the model was also tested on D1 and D2 datasets
to perform external validation. No training was performed using any image of D1 and
D2. However, all images of the NIH dataset were grouped as training data to get the best
parameters for the model before testing on D1 and D2.

4. Results and Discussion

The mean overall DSC achieved by the proposed segmentation model in the fourfold
cross-validation on the NIH dataset was found as 94.5%. Figure 3 shows the outcome of the
model with the best, moderate, and low performances. The integration of anatomy-based
soft labels into the model improved the overall segmentation DSC by 8% on average. This
was observed in the segmentation obtained using the U-Net model separately without
integration with the Bayes. As the literature does not offer any automated technique for
subregional segmentation of the pancreas on CT images, the model performance was
assessed by only comparing the predicted segmentation with the benchmark labels.
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Testing on D1 and D2 resulted in a mean overall DSC of 95.6% and 89.9%, respectively.
A slightly low DSC in the case of D2 indicates that the U-Net model was challenged by the
variation in the texture and morphology of subregions (occurred due to the presence of the
tumor or tumor signs). Nevertheless, the performance of the Bayes model was least affected
by these changes as the average improvement in the DSC on D1 and D2 after integration
was comparable to those observed on the NIH dataset (i.e., ~8%). This shows reasonable
applicability of the anatomy-based soft labels, the replicability of the model to any phase
of CT scan, and that it is not limited to portal venous phase only. Table 1 provides the
split of the results and insight into how the proposed integration strategy improved the
performance of the overall system.

Table 1. All values represent percentage DSC. ‘Proposed’ refers to the integration of the U-Net with
the Bayesian model. Best performance across all datasets is shown in bold.

Data Model Head Body Tail Overall

NIH
U-Net 88.8 ± 0.5 86.9 ± 1.4 86.5 ± 1.3 87.5

Proposed 96.1 ± 1.1 93.8 ± 1.0 92.9 ± 1.1 94.5

D1
U-Net 86.9 ± 0.6 86.5 ± 0.8 88.5 ± 0.4 87.2

Proposed 97.0 ± 0.8 95.0 ± 1.2 94.3 ± 0.2 95.6

D2
U-Net 80.8 ± 1.2 81.3 ± 1.1 82.5 ± 1.0 81.6

Proposed 89.3 ± 1.5 90.1 ± 0.3 90.6 ± 0.4 89.9

It was observed that the model performance for all three datasets was unaffected by the
size variation of the pancreas as the model mostly relies on the percentage proportions of
the subregions. Moreover, the overall system during all experiments remained conformed
to expectations, as no outlier segmentation was noticed. For example, no single head
pixel was incorrectly classified as a tail in the testing images, and vice versa, implying
that the approach is stable and robust. Furthermore, failure analysis for all three datasets
was performed both quantitatively and qualitatively. Most of the misclassified pixels
were found on the border separating body and tail (~67% of overall segmentation failure),
typically where most radiologists struggle with delineation. A partial reason for this failure
is that there is a relatively less abrupt shape-shift at the body/tail border as compared to the
head/body, as shown in Figure 3c. In general, the cases with most segmentation failures
have irregular pancreatic morphology, mostly following a U-shape structure.

Furthermore, note that the voxel-size may not always be constant across different CT
images. This may raise class-imbalance and affect the performance of the model as the
pancreases in different scans would consist of a variable number of slices. However, since
our model works on the pre-delineated pancreas, where the number of slices the pancreas
is covering in a scan is already known to the model, the impact of variable voxel sizes on
the performance is close to none.

Furthermore, the Dice loss is known to be good at handling class imbalance between
the foreground and background. For subregional pancreatic segmentation, the actual
volume of the pancreas is much smaller than the overall imaging volume, necessitating the
use of Dice loss to address the class imbalance problem. Also, the other loss functions, such
as the Tversky Loss, can be useful to focus on segmentation in difficult cases. However,
since the pancreas’ subregional boundaries do not have large variations across different
cases, a less imbalance on the level of training difficulties is expected, which waives the
need to apply Tversky Loss. However, it would be an interesting future direction to explore
how Tversky Loss performs on regional segmentation of the pancreas.

Limitation and Future Work

The major limitation of the model is the assumption about the presence of the whole
pancreas. The model might get deviated when the pancreas has a history of surgical
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interventions, such as a Pancreatectomy [27] or Whipple procedure [28] (partial removal of
the pancreas). This would also include cases when the size of the subregions varies due to
underlying disorders, such as pancreatic inflammation. Note that the segmentation of the
whole pancreas is out of the scope of this paper as literature offers several techniques to
delineate the whole pancreas in the CT images.

The future work includes extending the model to magnetic resonance (MR) images,
which is the second most common imaging modality for PC management after CT [29].
Finally, it would be worth training the model on a larger dataset with high textural vari-
ations in the pancreas associated with common pre-conditions, such as pancreatitis and
pancreatic cysts.

5. Conclusions

This paper presents the first model for the automated 3D segmentation of the delin-
eated pancreas into the head, body, and tail in contrast-enhanced CT images. Using a
simple, yet effective, approach, the anatomical constraints of the pancreatic substructures
were incorporated in the naïve Bayesian model to generate a probability map that assisted
in the prediction of subregional segmentation within the conventional U-Net segmentation
model. Three datasets were used in the study; the proposed model was trained on CT scans
of the healthy pancreas and tested on CT scans of the healthy, precancerous, and cancerous
pancreas. The results are promising but require further training and validation in larger
data sets. The accurate segmentation of pancreatic subregions aids reliable analysis and
quantification of local morphological changes in the pancreas and can assist in the early
diagnosis and treatment planning of PC.
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