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Abstract

Analyzing time-course expression data captured in microarray datasets is a complex undertaking as the vast and
complex data space is represented by a relatively low number of samples as compared to thousands of available
genes. Here, we developed the Interdependent Correlation Clustering (ICC) method to analyze relationships that
exist among genes conditioned on the expression of a specific target gene in microarray data. Based on Correlation
Clustering, the ICC method analyzes a large set of correlation values related to gene expression profiles extracted
from given microarray datasets. ICC can be applied to any microarray dataset and any target gene. We applied this
method to microarray data generated from wine fermentations and selected NSF1, which encodes a C,H, zinc finger-
type transcription factor, as the target gene. The validity of the method was verified by accurate identifications of the
previously known functional roles of NSF1. In addition, we identified and verified potential new functions for this gene;
specifically, NSF1 is a negative regulator for the expression of sulfur metabolism genes, the nuclear localization of
Nsf1 protein (Nsf1p) is controlled in a sulfur-dependent manner, and the transcription of NSF17 is regulated by Met4p,
an important transcriptional activator of sulfur metabolism genes. The inter-disciplinary approach adopted here
highlighted the accuracy and relevancy of the ICC method in mining for novel gene functions using complex
microarray datasets with a limited number of samples.
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Introduction

Microarray technology is commonly used to simultaneously
monitor genome-wide gene transcription levels in a given
organism. Large amounts of data generated by a few
microarrays with thousands of features (i.e. genes) are
complex to analyze. In time-course experiments each gene’s
expression profile is treated as a vector of expression values
(i.e. time series). Co-expressed genes are characterized by
common expression patterns and often either share common
biological function, participate in common biological pathways
and/or respond to the same environmental variables [1-3]. This
information can be used to predict and validate novel functional
roles for unknown or poorly characterized genes. The analysis
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of microarray datasets has been a focus of data mining,
statistical and systems biology research strategies, leading to
the development of an array of data analysis approaches,
including correlation clustering [4].

Our methodological extension to correlation clustering
applies graph theory to analyze data that could be converted to
an undirected graph (G), which typically consists of nodes (N)
connected by edges (E). Given G with positive (E*) and
negative (E") edges representing similarities and dissimilarities
among nodes, respectively (Figure 1), correlation clustering
seeks to partition nodes into clusters. The number of E* (i.e.
similarities) is maximized, and the number of E (i.e.
dissimilarities) is minimized within each cluster [4]. This type of
clustering, with some modifications, has been used
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Figure 1. lllustration of the Correlation Clustering using an example of the graph G with {+} and {-} edges colored in black
and red respectively. In graph G the gray circles refer to nodes (e.g. gene names) and connecting lines to edges (E) with {+} and

{-} values. Green and blue circles represent putative clusters.
doi: 10.1371/journal.pone.0077192.g001

successfully to cluster genes based on similarity and
dissimilarity of their respective expression profiles [4-6].
Compared to other partitioning clustering techniques, such as
the popular k-means, correlation clustering does not require a
priori specification of the number of clusters to partition the
given data. This makes correlation clustering particularly
attractive for the analysis of complex datasets where the data
structure is not necessarily known, as is the case for genome-
wide expression data.

The main aim of clustering is to compress and extract useful
information from vast amounts of data. All clustering
approaches therefore aim to partition data into arbitrary sub-
groups (i.e. clusters) based on a defined similarity or distance
measure. For example, genes sharing a similar biological
function can be grouped together into discrete sub-groups. To
assign a particular datum to a particular cluster, that datum
must be most similar to existing objects within the cluster and
least similar to other objects assigned to other clusters.

Similarity is determined by using a well-defined measure. For
example, X = (X4,X; ... X,) and y = (yy, ¥, ... ¥,) are expression
instances of two genes in a given cluster with the similarity
s(x,y) existing between them (e.g. Euclidian distance).
However, to cluster x and y while assuming common, possibly
unknown, causation and interdependency, the more sensible
measure of similarity would be correlation r(x,y), which
assesses a common trend (increase or decrease) between x
and y instances rather than differences in absolute values. If
two expression instances x and y have similar shape and
similar absolute values, both s(x,y) and r(x,y) display a high
degree of similarity (Figure 2A). Nevertheless, common
similarity measures s(x,y) fail to recognize two expression
profiles (x and y) that have similar shapes, but different
absolute expression values (Figure 2B). In addition, if profiles x
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Figure 2. lllustration of expression profile of x and y
with following patterns: A) x and y have both high
similarity based on absolute difference and r(x,y); B) x and
y have low similarity based on absolute difference but high
r(x,y); C) x and y have very low similarity based on
absolute difference but high negative r(x,y).
doi: 10.1371/journal.pone.0077192.9002

and y are negatively correlated, they have inverse profiles with
very low relative similarity value s(x,y), but highly negative
r(x,y) value (e.g. r = -1) (Figure 2C).

Here, we applied our Interconnected Correlation Clustering
(ICC) method to two time-course microarray datasets to find
the largest interconnected gene cluster centered on a pre-
selected Saccharomyces cerevisiae target gene. The
microarray data were generated during the wine fermentation
process and the pre-selected gene was NSF1, a poorly
characterized gene previously identified to be activated during
fermentation [7]. NSF1 encodes a C,H, zinc finger transcription
factor (TF) that contains a typical ~30 amino acids DNA binding
domain with two cysteines and two histidines tetrahedrally
coordinated to a central Zn?* ion [8]. The Nsf1p DNA binding
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sequence was identified as 5-CCCCT-3' [9]. This motif
corresponds to stress response element sequences (STREs)
found in promoter regions of genes involved in the general
response of yeast to environmental stresses, such as the heat
shock protein (HSP) genes, trehalose biosynthetic genes, and
genes needed to combat oxidative stress [9]. To this end,
NSF1 was previously shown to be needed for the response of
yeast to high osmolarity and poor quality carbon sources [8].

Fermentation is a complex process that subjects yeast cells
to an array of environmental stresses including nutrient
deprivation, low pH, hyperosmotic stress, and ethanol toxicity
as the fermentation proceeds. The adaptation of wine yeast to
fermentations is complex and is characterized by significant
changes in gene expression [7,10]. Marks et al. identified 232
genes that were significantly induced (from 4 to 80 fold
compared to their basal expression) during the fermentation
process [7]. These genes were collectively termed the
Fermentation Stress Response (FSR) genes and included
NSF1 [7]. This result suggested NSF1 is involved in the FSR.
In addition to the known participation of NSF1 in carbon and
energy metabolism, nutrient adaptation, and response to
hyperosmotic stress [8], the ICC method proposed here
suggested the involvement of NSF7 in sulfur metabolism,
vesicle trafficking, cell cycle control, and regulation of protein
synthesis during fermentation. In particular, we provide
evidence that confirms the role of NSF1 as a negative regulator
of sulfur metabolism genes, thereby validating the ability of the
proposed ICC method to identify biologically relevant
predictions.

Methods

Genome-wide expression datasets used

The ICC method was applied to two microarray datasets;
both sets were generated by the fermentation of Riesling grape
juice with two different wine yeast strains. The first dataset,
designated the M2 Fermentation Dataset (MFD), was obtained
in this study by using the industrial M2 S. cerevisiae strain to
ferment 2 L Riesling grape must, in biological duplicate, in
flasks capped with air locks without shaking for 15 days at 18
°C. The progress of the fermentations were monitored by
measuring the concentrations of D-glucose using the
Megazyme® D-Glucose HK kit (Xygen Diagnostics) according
to the manufacturer's specifications and by measuring the
amount of weight loss during fermentation due to CO,
production. Samples were collected at three time points; 24 h
post-inoculation, and when 20% and 85% sugars were
fermented. Figure 3A shows the fermentation profile. Sampling
points correspond to three stages of fermentation: the initial
stage (24h ~5% sugars fermented), exponential or active stage
(20% sugars fermented), and the final stage (85% sugars
fermented). Thus, monitoring the percentage sugars consumed
by the vyeast allows for the monitoring of fermentation
progression. The yeast cells were harvested, washed and total
RNA was isolated [7] and cleaned using Qiagen™ RNeasy
columns for microarray analysis. Thus, the MFD dataset was
generated specifically for this study and was not published
before. Gene expression data were obtained with Affymetrix
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Yeast 2.0 arrays using previously described methods [7]. The
raw data were first normalized using the Robust Multi-array
Analysis (RMA) algorithm. In addition, the S. pombe and other
non-informative service probes were masked. The filtered data
contained expression data corresponding to 5667 genes.

The second microarray dataset was generated and
published by Marks et al. (2008) as an investigation into the
adaptation of the Vin13 wine yeast strain to fermentation
conditions [7]. The VFD dataset was obtained via Gene
Expression Omnibus database (Reference #: GSE8536). It
represents the adaptation of the global transcriptome profile of
Vin13 S. cerevisiae wine yeast strain generated during a 15
day fermentation in Riesling grape must. For the sake of
simplicity we designated this dataset the Vin13 Fermentation
Dataset (VFD). This expression data consisted of a total of 21
microarrays; 3 microarrays at 7 time points. The time points
corresponded to 1, 12, 48, 60, 120 and 340 h (corresponding to
0%, 0.5%, 18%, 32%, 64%, 100% total sugars fermented) after
inoculation of the Riesling grape must. Global gene expression
was measured using Affymetrix™ Yeast Genome S98 chips
with 9335 probes, but only 6300 probes were mapped to the
verified Open Reading Frames in the Saccharomyces Genome
Database (SGD).

To identify differentially expressed genes (DEGs) dependent
on NSF1 in the MFD dataset, the M2 nsf1::KanMX/
nsf1::KanMX homozygous mutant (M2 nsf1A) was used for
parallel fermentations along with the M2 strain as outlined
above. Samples were collected at 85% sugars fermented
(Figure 3A). The DEGs at this time point were identified using
two-sample, two tailed unpaired t-test at 95% confidence level
assuming unequal variances between M2 and M2 nsf1A
sample groups.

The M2 Fermentation Dataset (MFD) expression data are
available at ArrayExpress (Accession #: E-GEOD-34117) or
GeneOmnibus (Accession #: GSE34117) repositories. The
Vin13 Fermentation Dataset (VFD) [7] raw expression data can
be accessed through GeneOmnibus (Accession #: GSE8536).

The ICC Method and the formation of the largest
interconnected correlated gene cluster

The proposed ICC method uses both correlation clustering to
represent data as a weighted undirected graph (G) and the
Born-Kerbosch heuristic algorithm [11] to search for the largest
maximally interconnected correlated gene cluster (ICGC)
representing a tight cluster of co-expressed genes conditioned
on the target gene NSF1 (Figure 4). Importantly, this method
emphasizes properties of edges (i.e. similarity between
expression profiles) summarized by the Pearson’s correlation
coefficient (PCC or r) rather than the functional properties of
nodes (e.g. gene family, gene function, etc).

Our ICC method is outlined by the following steps:

Step 1: Compare each individual gene expression profile to
the target gene (e.g. NSF1) represented by the PCCy, et gene
statistic.

Step 2: Select genes highly positively and negatively
correlated to the target gene passing the threshold r<-0.95 or r
>0.95. Store the selected genes in the select_array.
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Figure 3. Fermentation profile and the impact of NSF1 on the controlled expression of sulfur pathway genes during
Riesling fermentation. A) Fermentation profile of the M2 and M2 nsf1A in Riesling grape must measured by the amount of culture
weight lost due CO, production. The arrow shows the datum after 85% sugar fermentation, the time at which DEGs were
determined. Error bars represent standard deviation (SD). B) The heatmap of the sulfur related genes from the MFD dataset
microarray expression data corresponding to fermentation of 85% of the sugars. The expression values were normalized for each
gene by converting them into z-scores (absolute expression value — mean expression across all samples / SD across all samples) in
order to ensure median expression value of zero for each gene across all samples. M2 ftriplicate samples are represented in

columns A-C and those for M2 nsf1A in columns D-F.
doi: 10.1371/journal.pone.0077192.g003

Step 3: Build a weighted graph (G). Assign E*=1 if the PCC
value between corresponding vertices meets the threshold of
r<-0.95 or r >0.95; otherwise assign £ = 0.

Step 4: Find the maximally interconnected sub-group of
nodes, the ICGC, in G using the Born-Kerbosch heuristic
algorithm.

The pseudo-code in the Supplementary Information (Figure
S1) describes the ICC method in greater detail where X[gene]
and X[targef] represent a gene expression profile of jith and
target genes across t time points.

The resulting ICGC represents co-expressed genes that are
conditioned on NSF1, all sharing very similar expression
profiles defined as E* edges with positive and negative PCC
values that fall within the r < -0.95 or r > 0.95 threshold. Thus,
the resulting ICGC has none of the E- edges that have PCC
values outside the aforementioned threshold. Since Pearson’s r
values (PCC) are not normally distributed, it was necessary to
convert these values to a statistic with approximately normal
distribution, such as z scores, to select a statistically significant
threshold. All r values calculated from step 1 of the ICC method
were converted to their corresponding z-scores according to
the standard r to z Fisher’s transformation using the following
formula:

1+r
1-r

z=0.5*log

The population of z-scores with a variance (o,) of 1.89 was
plotted (Figure 5). The distribution of the z-scores was
assumed to be approximately normal as seen from the shape
of the histogram and probability distribution function (PDF). To
confirm, we calculated the skew to be only -0.07084+ 0.0637
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indicating a slight shift to the left. Given that skew values falling
within the range of -0.5 to 0.5 are considered to be reflective of
approximately normal distributions, the previous assumptions
are correct [12]. To further analyze the distribution, we
calculated kurtosis obtaining a negative value of -0.93 which
indicates that z-distribution has flatness and “light tails” with
relatively lower than normal number of observations at its
extremes. This means that the number of extreme values was
rather limited. In addition, the calculated Shapiro-Wilk (SW)
normality test statistic W = 0.9806 at p-value = 0.087 and
Kolmogorov-Smirnov (KS) two-sided test statistic at D = 0.120
at p-value = 0.048 indicated that distribution could be
considered as approximately normal although at the limit of
normality at a=0.05. The obtained 0.95<p<0.05 according to
the empirical PDF corresponded to z-scores of -2.15 and
+2.15, translating to r of -0.97 and +0.97. According to our
empirical z-distribution, the r=0.98 corresponds to p=0.034
while =0.95 to p=0.093. Due to the relatively small size of the
dataset (12 samples), the limited number of time points, and
the possibility of having false negatives at r<-0.98 or r>0.98,
and z-scores distribution with relatively “light tails” based on
kurtosis value, the correlation threshold was lowered to r<-0.95
or r>0.95 which is slightly outside of the classical statistical two-
tailed a=0.10 threshold. While being aware of the risk of getting
a higher number of false positive hits at lower threshold, our
goal is to get some true positives in presence of false positives.
In addition, the obtained ICGCs for NSF1 at -0.95 >r>0.95 and
-0.98>r>0.98 had 77.3% overlap in gene composition. This
shows a low threshold impact on the final results with the ICGC
preserving the initial core. Thus, selection of the threshold is
mainly based on the desired size of the ICGC and biological
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Figure 4. The overall ICC method workflow culminating with formation of the largest Interconnected Correlation Gene

Cluster (ICGC).
doi: 10.1371/journal.pone.0077192.g004

context. We recommend calculating the percent overlap
between ICGCs under different thresholds to judge its impact
on reliability and robustness of the final results. We
recommend selection of the threshold between -0.95 >r>0.95
and -0.98>r>0.98.

PLOS ONE | www.plosone.org

To test the relative performance and reliability of the
proposed ICC method, two microarray datasets were used to
find novel NSF1 gene roles under fermentation conditions.
NSF1 was previously found to be a regulator of gene
expression when the yeast uses poor carbon sources and to
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Figure 5. Distribution of the z-scores corresponding to all genes (a total of 5667 genes) with the empirical probability
density function plotted as a red line. The probability (p) corresponds to probability density function of finding a particular z-score
at a particular value. The calculated z-scores were derived from r values. These values were obtained from a comparison of the
NSF1 expression profile to that of every other gene in the dataset (r). The blue bars correspond to critical regions at 0.95<p<0.05
(a=0.10) based on the empirical distribution of z-values (critical z-score value 0073: -2.15, 2.15). The skewness of the z-scores was
found to be -0.07084+ 0.0637 confirming approximately symmetric distribution; the standard error of skewness (SES) was found to

be 0.03253.
doi: 10.1371/journal.pone.0077192.g005

participate in adaptation responses to hyperosmotic and
nutrient stresses [8]. These functions were used as qualitative
performance measures of the ICC method. The complete list of
ICGCs genes generated for two datasets, MFD and VFD, are
listed in Tables S1 and S2, respectively.

Functional Enrichment Analysis by GO terms

Genes identified using ICC were analyzed for functional
enrichment using the Gene Ontology (GO) database and
hypergeometric probability distribution function (PDF) to
additionally confirm previous functional results. The GO
database is a hierarchical acyclic graph composed of GO terms
as vertices where the top levels contain general GO terms and
the very bottom levels contain the more specific terms [13,14].
Thus, each gene could contain more than one associated GO
term. In this study, we selected the GO database related to
‘biological processes’.

To test enrichment of the GO terms while accounting for the
GO graph structure we used the elim algorithm based on
Fisher's exact test. The algorithm is implemented as a topGO
library for R [15]. Briefly, each GO term is being annotated
using two gene sets (genes part of ICGC and entire genome).
Thus, each gene is being categorized based on two criteria: a)
occurrence in the ICGC and genome-wide lists; b) ability to
map or not to a given GO term. The GO tree is traversed from
the lowest level (leafs) to the highest (root) calculating Fisher's
exact test only on the remaining genes that were not eliminated
from the previous steps. Thus, the elim method is superior to
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traditional Fisher’'s exact tests performed on 2 by 2 contingency
tables in that it performs multiple-testing corrections while
accounting for the GO structure. The node (GO term) is kept if
its resulting p-value < 0.01 after Bonferroni correction which
was performed by multiplying the obtained raw p-value by the
total number of nodes in the graph mapping to at least one
annotated gene [15]. The parameters for the elim algorithm
were as follows: 1) minimum 20 genes should map to a given
GO term for it to be kept in the GO graph; 2) Fisher’'s exact test
is calculated for each GO term; 3) entire GO graph is
considered from the lowest to the highest level (bottom up); 4)
cut off p-value is fixed at 0.01 for each GO term considering the
Bonferroni correction as per [15]. Those GO terms with an
adjusted p-value < 0.05 were considered to be statistically
significant and occur non-randomly in the ICGC. The complete
tables of top 300 GO terms output by functions of the topGO
library [15] are shown in Tables S3 and S4 corresponding to
the MFD and VFD datasets, respectively.

While it is important and statistically sound to correct p-
values for multiple testing effects to reduce false positive hits
(Type | error), current multiple-testing correction techniques are
not optimal. Specifically, classical multiple-testing correction
techniques (e.g. Bonferroni correction) are very restrictive, they
do not adequately account for the GO graph structure and
some GO terms are not associated with any genes. Thus,
classical multiple-testing correction techniques often produce
overly conservative adjusted p-values that can lead to the loss
of biologically relevant information. Thus, it can still be
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informative to consider GO terms with adjusted p-values >
0.05.

To heuristically assess the extent of the functional
enrichment of a given functional category of the ICGC genes
shown in Tables 1 and 2, we performed separate GO functional
enrichment analyses for each category using the elim algorithm
with exactly the same settings as used for the GO enrichment
analysis of the largest MFD and VFD ICGC. The average p-
value for each category was determined by calculating the
mean of the GO terms p-values. Only GO terms mapped to
category genes with minimal p-value (each gene can be
annotated to several GO terms) were selected for calculation of
the final average category p-value. Thus each category gene
was represented by one GO term with lowest possible p-value.

Subsequent sections analyze collectively each predicted
functional category under common biological context of the
datasets (i.e. fermentation conditions) in order to qualitatively
validate the ICC method.

Validation of NSF17 involvement in sulfur metabolism

Yeast strains and media composition. All the yeast
strains used in this work are isogenic to the wine yeast strain
M2 (Lallemand) and listed in Table S5. Mutant strains were
generated by integrative transformation as previously
described [36]. Primers to generate the integration cassettes
are listed in Table S6. Each contained 70 nucleotides
homologous to the native genomic DNA sequence flanking the
targeted site of integration to facilitate homologous
recombination. pFA6-natNT2 was used as template for
generating the MET4 disruption cassette [16]. Correct
integration events were confirmed by PCR. All cell growths
were performed at 30 °C with constant agitation unless
otherwise stated.

RNA extraction for qRT-PCR analysis. The cells were
grown in sulfur limited (S-) or sulfur rich (S+) medium detailed
in Boer et al. [17] (Table S7). Briefly, over-night cultures of M2,
M2 nsf1A, M2 met4A, M2 met4Ansf1A and strains were grown
in Yeast Nitrogen Base (YNB) complemented with 2 mM
methionine to account for the methionine auxotrophy of met4A
strains. The cells were harvested, washed with dH20 and used
to inoculate S- media; cultures were grown at 30 °C for 24 h.
Total RNA was subsequently isolated using the previously
described standard phenol-based RNA extraction method [18].
Total RNA was treated with DNAse | (Qiagen™DNAsel kit) and
purified with Qiagen™ RNeasy spin columns as per the
manufacturer’s instructions prior to qRT-PCR analysis.

Transcriptional analysis by qRT-PCR. The primers used
for gRT-PCR are listed in Table S8. Primers with efficiencies of
at least 75% were used. The obtained ACt values for five
biological replicates were analyzed using the Pfaffl method
[19]. The statistically significant changes in gene expression
across two conditions were identified using the one-sample t-
test with population mean of 1.0. The ratio of 1.0 between
expression values originating from two different conditions
highlights no change in gene expression. Thus, the expression
ratio greater or lower than 1.0 between two strains refer to up-
regulation or down-regulation of a given gene, respectively.
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Table 1. Selected genes from the largest ICGC by category
from the MFD dataset.

Average p-
Functional Category Representative Genes value
ATP1, VMA1, CIT2, HAL1, PCK1, STM1,
stress response SLX4, HMF1, APJ1, AIM14, YVC1, GSH2, 0.0235

GSH1, MIG3, SSC1, FRT1, HKR1,/1ZH13
Figure 1, KEL2, MPS1, RAD24, VHS1,
BAR1, SPO22, SSP2, SSP1, SPO11, HOP2, 0.013
CDC28
QCRS8, VMAS5, MTH1, KGD2, ISA1, CPS1,
metabolism/energy ~ PDE1, MLS1, ATP18, ATP19, VMA11, YIA6, 0.014
metabolism RIB1

RPS3, RPS13, RPL7A, RPS6B, RPS2,

RPS16B, RPS21B, RPS9B, RPS23B,
ribosome assembly/ RPS0B, RPS22B, RPS8A, RPS7A, RPS24B;
RPL43B, RPL2A, RRP5, RPL18A, PRES,
RPS17B, RPS5, RPL8A, RPS30A, RPL16A,
RPS18B, RPL26A
ACS1, DED81, PMT4, SPT2, HTS1, SES1,
ranscription / BURG6, URA4, PRO3, THS1, ARC1, TEF4,

CDC73, ADK1, TRP2, AROS8, IMD4, EGD1,

translation 0.022
TIF4631, GLN4, ILV2,CGI121, STP1, SLU7?,

cell cycle control

carbohydrate

0.040
protein synthesis

regulation
MMF1, ARO4, ARG4, PRP45, URA5, DDS1,
LYS2, POL5
PRE9, OLA1, VID24, DAS1, SAN1, UBA1,
protein degradation 0.030

YLR224W, PEX28, PIB1
VPH1, CHC1, SEC 23, VAC8, SAM50, FEN1,

vesicle trafficking EMP70, VPS75, TRX1,BET1, VPS1, ATG23, 0.0038
COG1

cell wall related

) ROT2, KRE5, SKG1, PMT6, GAS4 0.0074
proteins
cell nucleus NUP192, NUP188, NUP42, NUP133, NUP82, e
trafficking KAP104 ’
sulfur metabolism HOM2, MET4 0.0012

Note: ‘Bolded’ and ‘non-bolded’ genes are up-regulated (PCC > 0) and down-
regulated (PCC < 0), respectively, at the end of fermentation (85% sugars
fermented, which represents fermentation progression) with respect to the 24 h
time point. A complete list of MFD ICGC genes is provided in Table S1. The
average p-value corresponds to the average p-value of GO terms linked to the
category genes (see Methods).

doi: 10.1371/journal.pone.0077192.t001

Genes with expression values across two conditions with
p<0.05 were considered statistically significant.

Nsf1-GFP localization. The subcellular localization of Nsf1-
GFP was analyzed using the M2 NSF1/NSF1-GFP-KanMX
strain transformed with pNIC96-mCherry-hphMX. Nsf1-GFP
and Nic96-mCherry were detected with fluorescence
microscopy. Nic96 is a nucleopore complex protein and
therefore demarcates the nucleus. The strain was grown in
sulfur rich (YNB S+) medium complemented with MgSO,, or
sulfur limiting (YNB S-) medium devoid of MgSO, (Table S7).
Cells were grown overnight in YNB S+ or YNB S- medium and
shifted to corresponding fresh YNB S+ or YNB S- medium.
When these cultures reached exponential growth, they were
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Table 2. Representative genes found in the largest ICGC
from the VFD dataset.

Average p-
Functional Category Gene Symbol value
ERV41, SRP21, VPS8, ARL1, NTF2,
Vesicle trafficking 0.0053
ARF1, SEC 3, UFD1
Post-translational
PMT4, NAT5, SRP68 0.011
protein modification
Stress response RTC1, RIM15, RPN4, MEP1, GIP2 0.02
Sulfur Metabolism SES1, MET4, FSH3, ARC1, FOL 1 0.0152

RPL34B, RPL22B, RPS5, RPS25A,

PL17A, RPSOA, RPL13B, RPS13,

RPL27A, RPS24A, RPS23A ,RPS7A,  0.036

RPL3, IWR1, RPS1A, EGD2, DCD1,

GET1, RPP1A, RPL31A

Note: ‘bolded’ and ‘non-bolded’ genes are up-regulated and down-regulated at the

Ribosome Assembly /
Transcription /
Translation

end of fermentation (85% sugars fermented, which represents fermentation
progression) with respect to the 24 h time point. A complete list of VFD ICGC
genes is provided in Table S2. The average p-value corresponds to the average p-
value of GO terms linked to the category genes (see Methods).

doi: 10.1371/journal.pone.0077192.t002

divided in two, the cells harvested, washed with dH,0 and
transferred to fresh YNB S+ or YNB S- medium and incubated
at 30 °C. Samples were collected at 0, 0.5, 1, 3 and 6 h post
inoculation. Slides were prepared directly from the indicated
cell cultures followed by immediate analysis using the 100x
objective lens of a Nikon Eclipse E600 microscope. Images
were recorded using a Coolsnapfx monochrome CCD digital
camera (Roper Scientific) and processed using Metamorph
(Universal Imaging, Version 5.0).

Results

MFD ICGC overview

The maximal ICGC conditioned on NSF1 obtained after gene
expression analysis of the six microarrays contained a total of
254 genes that were characterized through manual curation
into 10 biologically relevant categories. The most
representative genes of each category are shown in Table 1.
The bolded genes show up-regulation or down-regulation
towards the end of fermentation (corresponding to 85% sugars
fermented, the last time point) as compared to the first time
point during the initial stage of fermentation. The most
prevalent functional categories represented by genes in the
ICGC corresponded to biological processes related to: (1)
transcription, translation and protein modification; (2) various
stress responses; (3) cell cycle control; (4) ribosome assembly;
and, (5) carbohydrate, energy metabolism and nutrient
adaptation (Table 1). As expected, not all 254 genes in the
ICGC had known biological functions. In addition, in
comparison to the overall GO functional enrichment results of
the MFD ICGC, similar enriched functions related to protein
synthesis, transport and degradation, and nitrogen, energy and
sulfur metabolism functions were observed (Table S3).
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VFD ICGC overview

The VFD ICGC for the dataset contained 83 genes that were
functionally categorized (Table 2). Similarly to the MFD
dataset, the main functional categories related to: (1) protein
synthesis; (2) vesicle trafficking; (3) sulfur metabolism; (4)
stress response; and (5), energy metabolism.

The representative genes with known biological functions
present in the VFD ICGC are shown in Table 2. Again, the
protein synthesis and vesicle trafficking categories had the
most genes with the majority of genes down-regulated towards
the end of the fermentation (Table 2). Cell cycle and energy
metabolism categories contained fewer genes than in the MFD
dataset. The sulfur metabolism category had more genes than
in the MFD dataset. The key regulator of the sulfur metabolism,
MET4, was present in both datasets and was up-regulated
towards the end of the fermentation (Tables 1 and 2).

The most significant GO terms from the functional
enrichment analysis of the VFD ICGC were related to protein
and amino acid synthesis, nutrient utilization and energy
metabolism, and stress responses to toxins (Table S4). Please
note that p-values for corresponding GO terms are rather
conservative due to multiple-testing corrections (see Methods).

Functional analysis of the MFD and VFD ICGCs in
relation to NSF1

The results from the MFD and VFD datasets provided similar
NSF1 functional contexts, highlighting the robustness of the
method. The genes in the two ICGCs represent functional
neighbourhoods that allow predictions to be made as to the
putative biological functions of NSF1. Interestingly, the genes
within the respective ICGCs differed significantly (Tables 1 and
2), but there was little variation observed in terms of biological
functions. This is not surprising as the datasets were generated
with two different wine yeast strains, M2 and Vin13, fermenting
two different vintages of Riesling grape must.

NSF1 involvement in energy metabolism and response
to nutrient limitation. NSF7 could directly regulate energy
metabolism genes that are part of the TCA cycle and ATP
production pathways in response to nutrient limitation
conditions as suggested by functional analysis of the genes
present in the ICGCs. For example, KGD2, YIA6 and MLS1
were clearly functionally linked as genes needed for important
steps in the TCA ~cycle (Table 1). Dihydrolipoyl
transsuccinylase (KGD2) participates in the mitochondrial
conversion of 2-oxoglutarate to succinyl-CoA, which requires
NAD* to be carried from the cytoplasm into the mitochondria by
the transporter encoded by Y/A6 [20]. Malate synthase (MLST)
utilizes glyoxylate to produce malate, which in turn is converted
into the TCA cycle intermediate, oxaloacetate.

ATP18, ATP19 and ATP23 are part of the essential FjF;-
ATP synthase complex that is located in the inner membrane of
mitochondria; a proton gradient across the membrane is
required to produce ATP molecules under aerobic conditions
(Table 1). ATP18 and ATP19 represent the j and k subunits
while ATP23 is a metalloprotease required to process the a
subunit [21]. All genes in the energy metabolism category were
up-regulated towards the end of fermentation (i.e. 85% of
sugars fermented), reflecting the increased energy demands of
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the yeast as nutrients were depleted and fermentation stresses
were enhanced (Table 1). These observations were supported
by the GO functional enrichment of the ICGC that highlighted
nutrient-related processes such as the utilization of ATP (GO:
0046034 p=0.0086)(Table S3) and energy production via H*
proton transport (GO:0015992 p=0.00346)(Table S3), nitrogen
utilization and production of non-fermentable and fermentable
sugars (G0O:1901137 p=0.04525), and nutrient transport
pathways (Table S3). Collectively, these data suggest the
participation of NSF1 in energy metabolism when nutrients
become limiting.

NSF1 could function in stress response toward the end
of fermentation. NSF1 is known to participate in the response
of yeast to environmental stress, specifically salt stress [8]. In
addition, NSF1 was identified as one of the FSR genes in a
Riesling fermentation [7]. To this end, the MFD ICGC identified
genes known to participate in the stress response of yeast:
GSH1 and GSH2;, HAL1; and APJ1 (Table 1). y-
Glutamylcysteine synthetase and glutathione synthetase
(GSH1 and GSH2) are known components of the yeast stress
response as they are involved in the production of glutathione,
an essential thiol compound and reductant implicated in
detoxification of toxic chemicals and combating oxidation
damage by free oxygen radicals [22]. APJ1 encodes a member
of the Hsp40-family of chaperone proteins that interact with
Hsp70 proteins involved in protein assembly and ftrafficking
[23]. HAL1, which is involved in hyper-osmotic stress
responses, decreases intracellular Na* via interaction with
Ena1p, a known target of the NSF1 [8,24]. Furthermore this is
supported by the GO term of the MFD ICGC related to
regulation of cellular response to stress (G0O:0080135
p=0.00143)(Table S3).

Further analysis of the VFD ICGC revealed strong correlation
among GIP2, RIM15 and NSF1 co-expression (Table 2). The
synthesis and accumulation of intracellular glycogen is one of
the physiological mechanisms used by yeast to respond to
environmental stress [25]. Glycogen metabolism is partially
controlled by the actions of the protein phosphatase GIc7p and
the PAS kinase Rim15p. Gip2p is a putative subunit of the
protein phosphatase Glc7p involved in activating glycogen
accumulation [26,27]. GIP2 expression is induced by glucose
limitation and ethanol shock [28,29]. In turn, RIM15 encodes an
effector kinase regulated by both the Target of Rapamycin
(TOR) and RAS/cAMP/Protein Kinase A (PKA) signalling
pathways to coordinate cell growth with environmental
conditions. Environmental stress inactivates TOR and PKA,
thereby activating Rim15p, which inactivates the stress
response-associated transcription factors Msn2p and Msn4p
[30]. This process includes the accumulation of glycogen. As
these ICGCs are conditioned on NSF1, the abovementioned
data in combination provide further evidence for the
participation of Nsf1p in the response to fermentation stresses.

NSF1 and protein synthesis. The two most prevalent
down-regulated functional categories of both the MFD and VFD
ICGCs were the ribosome assembly/protein synthesis and
transcription/translation regulation groups (Tables 1 and 2).
This was supported by significant GO terms related to
translation regulation and protein synthesis in both datasets
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(Tables S3 and S4). Strikingly, genes encoding the large and
small ribosomal subunits, including RPL7A, RPL2A, RPL18A,
RPS17B, RPL8A, RPS3, RPS2, RPS9B (Table 1) and, RPL3,
RPL34B, RPL22B, RPS5, RPS25A, RPSOA (Table 2), and
several GO terms related to protein synthesis (Table S3 and
S4) were down-regulated in both datasets. Some of the GO
terms included GO:0002181 (p-value < 1x10%°) and GO:
0006414 (p-value 4.70x10).

The synthesis of ribosomal proteins and consequently the
translational machinery is known to decrease toward the end of
fermentation and also in response to nutrient limitation
[7,31,32]. Due to the stressful environment the yeast did not
multiply late in the fermentation as it does in the less stressful
earlier stages. These results suggest that NSF1 seems to be
involved in down-regulation of protein synthesis as the
fermentation proceeds. Whether NSF1 is directly involved in
the regulation of ribosomal gene expression or simply
controlled by the same mechanism that controls ribosomal
gene expression, is not known.

NSF1 and sulfur metabolism. The sulfur metabolism-
related genes HOM2, FOL 1 and MET4 correlated with NSF1
in the ICGCs of both datasets (Tables 1 and 2). MET4 is the
key regulator of the sulfur amino acid biosynthetic pathway,
whereas HOM2 is needed for the synthesis of L-aspartate-
semialdehyde, the precursor of homoserine, which is needed
for the production of the sulfur containing amino acids
methionine and cysteine [33,34]. FOL 1 encodes a
multifunctional enzyme essential in the biosynthesis of folic
acid [35], which is readily converted to tetrahydrofolate, a
methyl donor in the metabolism of glycine, methionine, serine
and homocysteine [35]. NSF1 involvement in sulfur metabolism
was further suggested by the presence of several sulfur-related
GO terms in the ICGCs of both the MFD and VFD datasets.
Specifically, we identified GO terms associated with sulphur
metabolic pathways and the biosynthesis and catabolism of the
sulfur containing amino acids methionine and cysteine. Other
sulfur metabolism-related GO terms were associated with
sulfur compound biosynthesis (G0O:004427 p=0.049) central to
the well studied sulfur metabolic pathways in S. cerevisiae
(Table S3). Collectively, these data suggest NSF1 is involved
in sulfur metabolism during fermentation.

Biological data confirm NSF1 as a negative regulator in
sulfur metabolism

The observations made from the respective ICGCs led to
predictions for the potential functions of NSF1 during
fermentation. To validate one of these predictions, we
employed targeted molecular and cellular biology approaches
to investigate the proposed function of NSF71 in the sulfur
metabolism of wine yeast.

NSF1 is needed for the expression of sulfur metabolic
genes near the end of Riesling fermentation. To gain
insight into the impact of Nsf1p on the transcriptional response,
we analyzed the differences in gene expression between the
M2 and M2 nsf1A strains near the end of the fermentation at
85% sugars fermented time point (Figure 3A) as this is when
the transcription of NSF1 is reportedly activated in the FSR
gene group reported by [7]. A total of 934 differentially
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Figure 6.

NSF1 was needed for the controlled transcription of some sulfur pathway genes under defined sulfur

conditions. The indicated genes were assayed in M2, M2 nsf1A, met4A and nsf1Amet4A mutants under sulfur rich (S+) and (S-)
limiting conditions. Asterisk (*) denotes statistically significant differences in gene expression at 95% significance level according to
one sample t-test with population mean = 1 (no change in gene expression between assayed conditions).

doi: 10.1371/journal.pone.0077192.g006

expressed genes (DEGs) at a 95% confidence level were
identified; 497 were up-regulated and 437 were down-regulated
in M2 nsf1A with respect to M2. Strikingly, the DEGs contained
ten sulfur metabolism genes all up-regulated in the mutant,
including METS5, MET8, MET14, MET16, MET17, MET22,
MET28, MET32, MMP1 and SUL2 (Figure 3B). SUL2 and
MMP1 encode transporters of sulfur compounds [36,37], while
METS5, MET14, MET16, and MET17 encode metabolic
enzymes needed for assimilation of sulfur into homocysteine,
the precursor for methionine and cysteine synthesis [38].
MET28 and MET32 encode regulatory proteins that assemble
into a multi-protein complex along with Cbf1p, Met31p and
Met4p, which binds to conserved DNA elements (CDEIs) in the
promoter regions of the MET genes to activate their
transcription [39]. All these sulfur metabolism-related genes
were up-regulated in M2 nsf1A compared to the parent strain,
suggesting that Nsf1p functions as a negative regulator of the
MET genes (Figure 3B).

NSF1 transcription is activated in sulfur limiting
conditions in a Met4p-dependent manner. Met4p is the
major transcriptional activator of the sulfur metabolic genes
[40]. We identified MET4 as one of the ICGC genes in both the
MFD and VFD datasets and showed that the sulfur metabolic
genes are transcribed in a manner dependent on Nsf1p (Table
1; Figure 3B). To further investigate the relationship among
Nsf1p, the regulation of sulfur metabolism and Met4p, we
determined if NSF1 transcription is affected by the reigning

PLOS ONE | www.plosone.org

10

sulfur conditions in the medium. RNAs were extracted from
cells grown in synthetic medium containing or devoid of MgSO,
as the sole sulfur source and analyzed for NSF1 expression.
The absence of sulfur increased the transcriptional activation of
NSF1 by 56% (Figure 6). When this transcriptional response
was analyzed in the absence of MET4 the expression level of
NSF1 decreased by 45% (Figure 6). NSF1 transcription was
therefore activated during sulfur limiting conditions in a manner
dependent on Met4p. This finding confirms a functional link
between NSF1 and MET4, and provides the biological
evidence for identification of new functions for poorly
characterized genes using the ICC method.

We performed further gene expression studies in sulfur
limiting conditions to identify possible co-regulatory roles for
Nsfip and Metdp in sulfur-regulated gene expression. The
gene expression levels of MET14, MET5, and SUL1 were
monitored in the parent strain (M2), nsfiA, met4A and
nsfi1Amet4A strains. Overall, the results indicated the greatest
gene expression variation in a single met4A and double
nsf1Amet4A mutants compared to the parent M2 strain (Figure
6). Surprisingly, changes in expression of the genes analyzed
were not statistically significant in the nsffA single mutant
grown in sulfur limiting conditions (Figure 6). By contrast, the
transcription of MET14 and MET5 was clearly down-regulated,
while that for SULT was unchanged in the met4A mutant.
However, the negative regulatory role of NSF1 was clearly
observed in the nsf1Amet4A double mutant; in comparison to
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the met4A single mutant, the transcription of MET14 and SUL1
increased, while that of the MET5 gene was unchanged. These
observations suggest that the negative impact of NSF71 on
gene expression in sulfur limiting conditions could be masked
by the presence of Met4p.

Sulfur conditions affect the sub-cellular localization of
Nsf1p. Since Nsf1p is a transcription factor that is localized to
the nucleus of the cell under salt stress and glucose limiting
conditions [8], the sub-cellular localization of Nsfip was
investigated in sulfur rich and sulfur limiting conditions to
further support its involvement in sulfur-regulated gene
expression. Nsf1-GFP clearly co-localized to the nucleus with
Nic96-mCherry in sulfur limiting conditions. When yeast cells
were grown in and shifted to sulfur limiting media, Nsf1-GFP
was nuclear throughout the entire time course (Figure 7).
Interestingly, Nsf1-GFP was visible in the nucleus up to 30 min
following a shift from sulfur limiting to sulfur rich conditions, but
was absent from the nucleus 3 hours or longer after the shift
(Figure 7). Also, when yeast cells were grown in sulfur rich
media, Nsf1-GFP was not initially visible in the nucleus (Figure
7). When these cells were shifted to sulfur limiting media, Nsf1-
GFP was visible in the nucleus 30 min after the shift. However,
then cells were shifted to sulfur rich conditions, Nsf1-GFP was
visible in the nucleus only at 6 h post-shift (Figure 8). It is
important to note that glucose depletion stimulates Nsf1p entry
into the nucleus [8]. Nsf1p nuclear localization 6 h after the shift
from sulfur rich to sulfur rich conditions could therefore be due
to the decreases in sulfur and/or glucose (Figure 8). This was
not the case when cells were shifted from sulfur rich to sulfur
poor conditions as Nsf1p already appeared in the nucleus 30
minutes after the shift while glucose was still abundant,
indicating the nuclear localization in this case was due to sulfur
limitation.

Together, these results suggest that the presence of Nsf1p in
the nucleus is tightly controlled by sulfur availability in the
environment; limited sulfur in the environment results in nuclear
Nsf1p, while rich sulfur stimulates the loss of Nsf1p from the
nucleus.

Discussion

The overall objective of this study was to employ inter-
disciplinary approaches of both the data mining and molecular
biology fields to unravel the function of a poorly characterized
gene. We developed and applied the ICC method to microarray
data generated by two different industrial wine yeast strains
during the fermentation of Riesling grape juice to gain insight
into the function(s) of the poorly characterized gene NSF1.
These computational analyses were followed by verification
with targeted molecular and cellular biology experiments to
underline the validity of the ICC method in predicting the
function for NSF1.

The ICC method represents complex data clearly as a
weighted graph of genes focusing on intrinsic relationships
existing among these genes, thereby providing a closer view of
in vivo biological systems. Converting gene expression data
into a graph allowed application of Graph Theory techniques
such as the search of the largest maximally interconnected
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sub-graph (ICGC). Here the biggest strength of the ICC
method came from the use of characteristically stringent criteria
to generate the ICGC of co-expressed genes centered on
NSF1; each additional gene inclusion into the growing ICGC
needed to satisfy the connection threshold to all genes already
present in the existing ICGC. These characteristics made the
ICC method highly suitable for the analysis of very small and
complex datasets with a limited number of replicas even if the
expression profile of the target gene has high degree of
similarity to other gene expression profiles.

The ICC method applies a combination of the graph theory
and multivariate analysis on correlation values, taking into
account corresponding dependence between variables (i.e.
genes) that more closely mimics the biological reality of gene-
gene interactions and regulatory mechanisms of gene
transcription. Importantly, the ICC method does not depend on
the multivariate normality distributions as the expression data is
transformed in the network with posterior application of the
graph methods with a posteriori intuitive interpretation of the
results.

Compared to other gene expression exploratory multivariate
methods such as Boolean networks [41], ordinary differential
equations [42] and Bayesian-network approaches [43], ICC
clearly stands out due to its reasonable scalability, ease of final
results interpretability, suitability to situations of conditional
gene expression in gene function elucidation studies and ability
to capture relationships between continuous variables without
loss of information. Amongst the mentioned methods the
Dynamics Bayesian-network (DBNs) approaches are very
promising, but suffer from important shortcomings including the
requirement of relatively large datasets due to need of training
dataset for the candidate network construction, and poor
scalability of non-heuristic algorithm implementations [44].
Although reasonably good for regulatory network predictions,
the DBNSs fall short in the creation of large co-expression gene
networks for the purposes of the gene function prediction.

In this study, we showed that the resulting ICGC allowed for
the prediction, with biologically proven accuracy, of target gene
function(s) and could be easily applied to investigate functions
of other poorly characterized genes. To this end, the functional
characterization of some genes found in each of the VFD and
MFD ICGCs supported previously known functions of NSF1,
including its involvement in the regulation of the carbon and
thus energy metabolism [8]. More interestingly, new functions
for NSF1 that correlate well with the fermentation-related
context of the generated microarray datasets were predicted.
The genes present in the ICGCs provided NSF1 with a co-
expression functional neighbourhood, implicating NSF17 in the
general responses to nutrients, osmotic stress and toxins,
regulation of carbon and energy metabolism in response to
nutrient limitation/starvation, regulation of protein synthesis and
transcription/translation control, vesicle trafficking and protein
trafficking, and sulfur metabolism.

As the sulfur metabolism of yeast is of great interest to the
wine industry, we employed transcriptional analysis of potential
Nsfip target genes and subcellular localization studies of
Nsf1p to verify the ICC method’s prediction of the possible
involvement of NSF1 in the regulation of sulfur metabolism.
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were monitored by fluorescence microscopy at the indicated times. The arrow (—

doi: 10.1371/journal.pone.0077192.g007

Our gene expression analysis suggests that Nsf1p functions as
a negative regulator of some sulfur metabolism related genes,
specifically MET14 and SUL1, wunder sulfur limitation
conditions. NSF1 expression was elevated and Nsf1p localized
more readily to the nucleus under sulfur limiting conditions.
Similarly, NSF1 expression increased [7] and Nsf1 localized to
the nucleus of wine yeast (data not shown) near the end of
wine fermentations. These lines of evidence suggest that Nsf1p
expression increases in sulfur limiting conditions and Nsflp
subsequently localizes to the nucleus to fine-tune the
transcriptional activation of genes needed for the assimilation
of available sulfur.

The transcriptional activation of many sulfur assimilatory
genes is governed by Met4p [40]. Our expression analysis
using the nsf1Amet4A double mutant suggests that some, but
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) represents media shift.

not all, sulfur assimilatory genes were controlled by both Met4p
and Nsflp. Nsflp could therefore function to fine tune the
Met4p-mediated transcriptional activation in response to sulfur
availability. We also showed that NSF71 transcriptional
activation was partially dependent on Met4p. In addition,
analysis of the NSF1 5’ upstream non-coding region revealed a
Cbf1p-Met4p-Met28p binding site (5-TCACGGC-3’) 268 nt
upstream of the NSF1 ORF, thereby providing further evidence
for the transcriptional regulation of the NSF1 by Met4p. In turn,
Met4p levels could also be controlled by Nsfip since the
promoter region of the MET4 contains the CCCCT sequence,
the STRE that corresponds to the Nsf1p DNA binding motif [9].

The proposed regulatory model between Met4p and Nsf1p is
not novel as there are similar examples that exist in S.
cerevisiae. For example, when yeast experiences poor nitrogen
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Figure 8. Nsf1 was not nuclear under rich sulfur conditions. M2 NSF1-GFP cells transformed with pNIC96-mCherry-hphMX
were pre-cultured in YNB S- medium to early log phase and shifted to fresh YNB S+ or YNB S- medium. Cells were monitored by
fluorescence microscopy at the indicated times. The arrow (—) represents medium shift.

doi: 10.1371/journal.pone.0077192.g008

conditions, GIn3p acts as a major transcriptional activator of
nitrogen-regulated genes needed for growth [33]. Dal80p, a
repressor of GIn3p-mediated activation of nitrogen-regulated
genes, is only expressed in poor nitrogen conditions. Thus,
GIn3p and Dal80p act together to fine-tune the yeast's
responses to nitrogen availability [45]. GIn3p is needed for the
transcriptional activation of DAL80 when the yeast is grown
under nitrogen limiting conditions. The transcriptional activator
GIn3p is needed for the activation of the expression of its own
repressor Dalp80p to fine tune the expression of GIn3p target
genes. The same model seemed to apply to the relationship
between Met4p and Nsfip when it comes to the controlled
expression of some MET genes under sulfur limitation.

Our main contributions include the application of the ICC
method to molecular biology data analysis needs. Although the
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focus of this paper was the NSF1 gene, the ICC method could
be used to investigate the function of any gene. Prior to this
work, NSF1 was poorly characterized and thought to be
involved mainly in the regulation of gluconeogenesis and salt
stress responses [8]. The ICC method has identified new
potential functions for Nsf1p; we have confirmed that this
protein is also needed for the regulation of sulfur assimilation.

Supporting Information

Figure S1. The pseuso-code used for mining for the
largest ICGCs.
(DOCX)

October 2013 | Volume 8 | Issue 10 | 77192
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