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ABSTRACT Invasive pathogens interface with the host and its resident microbiota through interkingdom signaling. The bacterial
receptor QseC, which is a membrane-bound histidine sensor kinase, responds to the host stress hormones epinephrine and nor-
epinephrine and the bacterial signal AI-3, integrating interkingdom signaling at the biochemical level. Importantly, the QseC
signaling cascade is exploited by many bacterial pathogens to promote virulence. Here, we translated this basic science informa-
tion into development of a potent small molecule inhibitor of QseC, LED209. Extensive structure activity relationship (SAR)
studies revealed that LED209 is a potent prodrug that is highly selective for QseC. Its warhead allosterically modifies lysines in
QseC, impairing its function and preventing the activation of the virulence program of several Gram-negative pathogens both in
vitro and during murine infection. LED209 does not interfere with pathogen growth, possibly leading to a milder evolutionary
pressure toward drug resistance. LED209 has desirable pharmacokinetics and does not present toxicity in vitro and in rodents.
This is a unique antivirulence approach, with a proven broad-spectrum activity against multiple Gram-negative pathogens that
cause mammalian infections.

IMPORTANCE There is an imminent need for development of novel treatments for infectious diseases, given that one of the big-
gest challenges to medicine in the foreseeable future is the emergence of microbial antibiotic resistance. Here, we devised a
broad-spectrum antivirulence approach targeting a conserved histidine kinase, QseC, in several Gram-negative pathogens that
promotes their virulence expression. The LED209 QseC inhibitor has a unique mode of action by acting as a prodrug scaffold to
deliver a warhead that allosterically modifies QseC, impeding virulence in several Gram-negative pathogens.
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Antimicrobial resistance poses an alarming threat to public
health, with a rising number of infections being refractory to

antibiotic treatment. Microorganisms naturally develop drug re-
sistance, and the misuse of antibiotics coupled with the limited
development of new antimicrobials has allowed for a surge in the
emergence of resistance. Historically, antibiotics were aimed at
essential targets and were either bacteriostatic or bactericidal. To
combat these emerging resistant populations, as well as the com-
plications that can accompany antibiotic therapy, the next gener-
ation of antimicrobial drugs must exploit new therapeutic strate-
gies. One promising approach impedes signaling pathways
responsible for expression of virulence traits (1, 2). Inhibitors of
virulence are being developed to target a wide range of bacteria (1,
2). The appeal of these antivirulence approaches is that they pre-
vent disease by disrupting the expression of a pathogen’s virulence

repertoire but do not interfere with growth, possibly engendering
a lower evolutionary pressure toward the development of drug
resistance (1).

We sought to identify an inhibitor of the bacterial membrane-
bound histidine sensor kinase QseC. QseC is an attractive target,
as it is present in at least 25 important human and plant pathogens
(Fig. 1) and contributes to the virulence of every pathogen exam-
ined thus far, including enterohemorrhagic Escherichia coli
(EHEC) O157:H7, Salmonella enterica, uropathogenic E. coli
(UPEC), nontypeable Haemophilus influenzae, Aeromonas hydro-
phila, Aggregatibacter actinomycetemcomitans, Edwardsiella tarda,
and Francisella tularensis (3–15). QseC responds to the host stress
hormones epinephrine and norepinephrine, as well as to the bac-
terial signal AI-3 (16). Upon sensing its signals, QseC autophos-
phorylates and then transfers its phosphate to three response reg-
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ulators (RRs): its cognate RR QseB and the noncognate QseF and
KdpE RRs (see Fig. S1 in the supplemental material) (17). Upon
phosphorylation, these RRs directly regulate expression of differ-
ent sets of genes in EHEC. QseB is involved in regulation of the
flagella and motility genes (17, 18); KdpE directly activates tran-
scription of the locus of enterocyte effacement (LEE) genes that
are key to EHEC virulence (17, 19); QseF is involved in the regu-
lation of the stxAB genes encoding Shiga toxin that is responsible
for the often-fatal complication hemolytic uremic syndrome
(HUS) (17). The broad distribution of QseC among Gram-
negative pathogens, and the inherent involvement of this signal-
ing cascade in bacterial pathogenesis, indicates that interference
with QseC signaling is a promising strategy to develop broad-
spectrum drugs (1, 4).

We previously identified an inhibitor of QseC, LED209 [N-
phenyl-4-(3-phenylthioureido)benzenesulfonamide], through a
high-throughput screen (HTS) of a library of 150,000 small or-
ganic compounds and subsequent lead optimization (4). In vitro
treatment of EHEC, Salmonella enterica serovar Typhimurium,
and F. tularensis with LED209 resulted in a global reduction of
virulence traits in a QseC-dependent manner, confirming the
suitability of the HTS to identify candidate inhibitors of QseC.
Furthermore, administration of LED209 during either S. Typhi-
murium or F. tularensis murine infection cogently demonstrated
the ability of this scaffold to suppress the pathogenicity of these
Gram-negative bacteria (4).

While LED209 emerged as a promising antimicrobial agent
during preliminary in vitro and in vivo studies, many questions
remained regarding its mechanism of inhibition of QseC-

mediated virulence, its toxicity, its biochemical interaction with
QseC, and its efficacy as a broad-spectrum antivirulence drug.
Herein, we report that LED209 acts as a prodrug, releasing a se-
lective warhead that interacts potently with QseC via allosteric
modification and inactivation. Extensive SAR analysis shows that
minor modification of either LED209 or the QseC receptor signif-
icantly impacts efficacy. Additionally, we have extended our stud-
ies to show that LED209 can function as both a therapy for existing
infections and also prophylactically to prevent S. enterica and
F. tularensis murine infections. We also expand the spectrum of
Gram-negative pathogens susceptible to LED209 treatment to in-
clude multidrug-resistant clinical isolates of UPEC, Klebsiella, and
Pseudomonas aeruginosa. Finally we show that LED209 can de-
crease biofilm formation by multiple pathogens, including the
deadly enteroaggregative E. coli (EAEC) O104:H4 responsible for
a 2011 outbreak of diarrhea and HUS in Germany.

RESULTS
LED209 acts as a prodrug, allosterically modifying QseC. We
have previously reported that LED209 significantly attenuates vir-
ulence in the human pathogens EHEC, Salmonella, and F. tular-
ensis without inhibiting pathogen growth (4). Compounds that
interfere with pathogen virulence represent a novel class of anti-
microbial drugs that offer an alternative treatment against mi-
crobes that are resistant to current antimicrobials. Using QseC
reconstituted in liposomes, we showed biochemically that
LED209 acted on the QseC receptor, preventing binding to its
signals and consequently its autophosphorylation in response to
them (4). To further determine the specificity of LED209 to QseC,
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FIG 1 LED209 targets the histidine sensor kinase QseC to attenuate virulence gene expression. (A, B) LED209 signals through the bacterial receptor QseC but
not through the bacterial receptor QseE. Wild-type (WT) EHEC and the �qseC (A) and �qseE (B) isogenic mutants were grown in vitro in the presence (5 nM)
or absence (DMSO only) of LED209 to late logarithmic phase. Expression of ler, the master transcriptional regulator of the LEE pathogenicity island in EHEC,
of tir, a key LEE-encoded virulence gene, and of stx2a, a subunit of Shiga toxin, was measured by qRT-PCR. Expression is relative to that of the WT grown in the
absence of LED209 (error bars, standard deviation [SD]; **, P � 0.01; ***, P � 0.001; NS, not significant). (C) QseC homologues are present in more than 25 plant
and animal pathogens.
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we took a genetic approach. We evaluated the expression of key
virulence genes after treatment with LED209 in vitro in the EHEC
wild type (WT) and in isogenic qseC and qseE mutants. The histi-
dine sensor kinases QseC and QseE positively and negatively reg-
ulate virulence gene expression in EHEC, respectively, and QseE
also responds to epinephrine as a signal (20). The qseC mutant was
refractory to treatment with LED209, whereas the qseE mutant
remained responsive to LED209 treatment, further indicating that
LED209 acts through QseC (Fig. 1A and B). Importantly, treat-
ment of the WT with LED209 phenocopied a qseC mutation
(Fig. 1A). Because QseC phosphorylates three RRs (17), we delved
into mapping through which RR LED209-mediated QseC inhibi-
tion is decreasing virulence expression in the human pathogen
EHEC. We chose to map this circuit in EHEC, because the QseC
signaling cascade has been studied in exquisite genetic and bio-
chemical mechanistic detail in this pathogen, with the mode of
action of all three response regulators (QseB, KdpE, and QseF)
being defined (16–29). As expected, expression of the virulence
genes was decreased in a �qseBC mutant (see Fig. S1B in the sup-
plemental material), and this mutant did not respond to LED209,
similarly to the �qseC mutant (Fig. 1A). QseC-dependent expres-
sion of the virulence genes (LEE) occurs through the KdpE RR (17,
19), and concurrent with previous reports, expression of these
genes was decreased in the �kdpE mutant, which is also nonre-
sponsive to LED209 and phenocopies the LED209 decreased vir-
ulence gene expression in the WT (see Fig. S1), akin to the pheno-
type of the �qseC mutant (Fig. 1A) (11, 12, 17, 30). It is
noteworthy that when using animal models, �qseC, �qseBC, and
�kdpE mutants are all attenuated for infection (see Fig. S1). QseC
homologues are present in more than 25 plant and animal patho-
gens, suggesting that QseC inhibitors might have broad effective-
ness against Gram-negative pathogens (Fig. 1C).

Because of the high conservation of QseC across numerous
bacterial species, we sought to better understand the mechanism
by which LED209 inhibited QseC, as LED209 represents a poten-
tial broad-spectrum therapeutic. LED209 acts as a prodrug, and
upon interaction of LED209 with its target QseC within the bac-
terial cell, it acts as a prodrug by loss of an aniline group to release
the warhead of LED209, isothiocyanate OM188 (Fig. 2A). The
delivery of OM188 via LED209 avoids the metabolism and/or deg-
radation experienced by OM188 en route to the target. It is worth
noting that conversion of LED209 to OM188 via cleavage of the
aniline occurs only within the bacterial cell and presumably in
close proximity to QseC. This would help account for the remark-
able potency of LED209. We cannot detect OM188 or the cleaved
aniline in mammalian tissues (data set available from the author).
This is a bacterium-specific hydrolysis of the prodrug, which alle-
viates concerns of host toxicity, which our toxicity studies de-
scribed below confirm to be negative. Treatment of EHEC with
500 nM of OM188 significantly reduced the expression of the
EHEC ler gene that encodes a transcriptional regulator that acti-
vates expression of key virulence genes responsible for the EHEC-
mediated hemolytic colitis, the eae gene encoding an essential ad-
hesin to establish gut colonization, and the gene (stx2a) encoding
the Shiga toxin that leads to HUS following EHEC infections
(Fig. 2B). Additionally, treatment with OM188 also reduced the
formation of attaching and effacing (A/E) lesions, a hallmark of
EHEC infection and a requisite for gut colonization and diarrheal
disease (Fig. 2C and D). Moreover, OM188 also decreased Salmo-
nella enterica serovar Typhimurium intramacrophage replication

(Fig. 2E), which is also a QseC-dependent virulence phenotype
inhibited by LED209 (see Fig. 5D).

An azide was added to OM188 to perform click chemistry,
generating OM201. We determined that OM201 directly binds to
QseC (Fig. 3A and B) and that OM201 is still active to decrease
virulence gene expression (Fig. 2C). Mass spectrometry analysis
confirmed that OM188 directly binds to two lysine residues (K256
and K427) on QseC (Fig. 3D). Importantly, K256 is conserved in
the QseC from all E. coli strains, including EHEC, and from Sal-
monella enterica, Shigella species, Citrobacter rodentium, Entero-
bacter species, Klebsiella pneumoniae, Erwinia species, Pectobacte-
rium atrosepticum, and F. tularensis (Fig. 3E). K427 is conserved
only in E. coli and Shigella species (Fig. 3E). We generated site-
directed mutants of QseC in both K256 and K427, changing K to R
to assess the role of these lysines in QseC function (strains RR03
and RR04). Both QseC mutant proteins were expressed normally
and folded properly (data not shown). However, neither mutant
was able to activate expression of the EHEC virulence genes
(Fig. 3F), suggesting that modification of either of these lysines
impairs QseC function, akin to the block observed by treatment
with LED209 or its warhead OM188 (Fig. 1 and 2).

SAR of LED209 shows that minor structural modifications
significantly impact its activity. An extensive SAR of LED209 (see
Table S6 in the supplemental material) was conducted and, for
simplicity, the structure of LED209 was divided into four major
regions (Fig. 4A). Modifications to the left-hand aniline group
(part A) abolished the bioactivity of LED209 (Fig. 4B). Treatment
with CF290 resulted in a 2-fold increase of ler, reversing the strong
antagonist activity of LED209 into a slight agonist of EHEC viru-
lence. CF287 also lost the antagonist activity seen with LED209
and returned expression levels of ler and stx2a to those seen in the
untreated control group. Alterations to part A likely disrupt
LED209’s ability to act as a prodrug and release its active compo-
nent OM188. Modifications to part C, as exemplified in com-
pound CF252, also reversed the antagonist behavior of LED209.
In contrast, replacing the benzene ring located in part D with a
cyclohexane (CF283) did not modify the antagonist activity com-
pared with the parent LED209. CF283 significantly reduced the
expression of both ler and stx2a (Fig. 4B).

A commercially available version of LED209 (Sigma-Aldrich),
sold as LED209 hydrate, was devoid of LED209-like antagonist
activity against EHEC. Treatment with LED209 hydrate (Sigma
LED209) did not alter virulence gene expression levels compared
with those of the untreated control (Fig. 4C) and also failed to
decrease A/E lesion formation (Fig. 4D and E). The origins of the
problems with the Sigma-Aldrich material were further investi-
gated (data set available from the author) and showed that the
Sigma-Aldrich LED209 product did not contain LED209 but
rather a mixture of CF104 and OM124 (sample B in the data set; all
other samples are different batches of LED209 synthesized by us),
which are both inactive compounds (see Table S6 in the supple-
mental material). To provide consistency for future studies, a
large-scale batch of LED209 was manufactured according to Good
Laboratory Practice (GLP) regulations, and it works as well as all
of our previous LED209 batches to block bacterial virulence ex-
pression (Fig. 4F).

Treatment with LED209 protects against S. Typhimurium
and F. tularensis murine infections. Salmonella enterica serovar
Typhimurium carries a homolog of the EHEC QseC (87% simi-
larity). QseC acts globally in S. Typhimurium to regulate key vir-
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ulence genes required for flagellar motility, invasion of epithelial
cells, survival within macrophages, and murine infection, with the
qseC mutant being nonvirulent in mice (4, 8, 31). A single dose of
LED209 (20 mg/kg of body weight) or a vehicle control was ad-
ministered orally to mice 30 min prior to intraperitoneal injection
of a lethal dose of S. Typhimurium. Seventy-two hours after in-
fection, 25% of the untreated mice remained alive, whereas 60%
of the LED209-treated group remained alive (Fig. 5A). Twenty-
five percent of the untreated mice survived up to 6 days after
infection, while 50% of the LED209-treated group survived up to
6 days after infection. To determine if a more rigorous dosing
regimen would increase protection against S. Typhimurium infec-
tion, LED209 (20 mg/kg) was administered at 3 h before, at the
time of, and 3, 6, 9, and 12 h after intraperitoneal injection of a
lethal dose of S. Typhimurium. At 48 h, only 14% of the untreated
mice remained alive, with none surviving beyond 72 h postinfec-
tion, whereas 43% of the LED209-treated mice remained alive and
survived up to 8 days after infection, when these animals were

sacrificed (Fig. 5B). Expression of sifA, an effector secreted via the
type III secretion system SPI-2 and required for vacuolar replica-
tion, was significantly decreased when LED209 was administered
during in vitro growth in minimal medium (Fig. 5C). The addition
of LED209 also decreased survival of S. Typhimurium within
macrophages by 4 logs (Fig. 5D).

F. tularensis also encodes a homolog of the EHEC QseC (57%
similarity) that serves as the sole histidine sensor kinase encoded
within the F. tularensis genome. We previously demonstrated that
LED209 treatment decreases the expression of several F. tularensis
virulence genes and markedly decreases macrophage survival in
vitro. To explore the dosing requirements to yield protection
against a lethal dose of intranasal F. tularensis, a single dose of
LED209 was administered orally to mice either 1, 3, 6, 9, or 24 h
prior to infection or alternatively 1, 3, 6, 9, or 24 h after infection
(Fig. 5E and F). Pretreatment with LED209 prior to F. tularensis
infection provided some protection at the 24-h time point, with
25% of the untreated animals surviving by day 7, while 85% of the
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treated animals were alive. By day 8, 10% of the untreated animals
and 50% of the treatment animals were alive. In contrast, a single
dose of LED209 administered at 3 or 6 h after infection provided
more significant protection compared to that of the untreated
mice. On day 7 after infection, 85% of the mice treated at 3 h
postinfection, 75% of the mice treated at 6 h postinfection, and
85% of the mice treated 24 h postinfection remained alive, while
only 20% of the untreated mice remained alive. On day 8, 85% of
the mice treated at 3 h, 60% of the mice treated at 6 h, and 60% of
the mice treated at 24 h survived, while only 20% of the untreated
animals remained alive. On day 9, 80% of the mice treated at 3 h,
50% of the mice treated at 6 h, and 40% of the mice treated at 24 h
survived, while only 10% of the untreated animals were alive. Only
10% of the untreated mice survived 12 days postinfection, whereas
80% and 50% of the mice treated at 3 or 6 h postinfection, respec-
tively, survived. The animals that survived were sacrificed at day
12.

LED209 decreases biofilm formation in EAEC O104:H4 and
in several multidrug-resistant clinical isolates of rUTIs. The ad-
dition of 5 nM LED209 significantly reduced biofilm formation by
the enteroaggregative E. coli (EAEC) O104:H4 strain isolated dur-

ing the German outbreak of 2011 (37% reduction; ***, P �
0.0006) and by the uropathogenic E. coli (UPEC) strain UTI89
(35% reduction; *, P � 0.0486); however, LED209 did not signif-
icantly reduce biofilm formation by the UPEC strain CFT073 (8%
reduction; P � 0.2682) (Fig. 6A). Additionally, treatment with
LED209 significantly reduced the expression of stx2a in EAEC
O104:H4 (Fig. 6B). This EAEC Stx-positive strain was responsible
for a diarrhea and uremic syndrome outbreak in Germany in 2011
that led to serious morbidity and mortality rates (32). Multidrug-
resistant clinical isolates from patients with recurrent urinary tract
infections (rUTI) were collected and isolated from urine and blad-
der biopsy specimens, and the samples were characterized to de-
termine their probable species. The addition of LED209 signifi-
cantly reduced biofilm formation by several of the isolates. UPEC
isolates 6, 8, and 25 achieved reductions of 43%, 48%, and 43% in
biofilm formation, respectively (Fig. 6C and D). Furthermore,
LED209 proved efficacious against Pseudomonas and Klebsiella
isolates, reducing biofilm formation by 26% in isolate 18 and by
21% in isolate 20 (Fig. 6C and D).

Toxicology and pharmacokinetics of LED209. Our prelimi-
nary toxicology studies were performed by treating mice daily
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with 5, 20, and 80 mg/kg of LED209 for 14 days. These studies
suggested that LED209 did not present any toxicity, with treated
and untreated animals having similar body weights, blood chem-
istry, complete blood counts (CBC), and levels of T4 (as a measure
of thyroid function) and no liver toxicity (see Table S2 to S5 and
Fig. S2 in the supplemental material). No effects of LED209 in the
hERG channel (see Tables S2 to S5 and Fig. S2 to S4) were ob-
served as measured by a radioligand binding assay in which 10 �M
LED209 was tested in duplicate for its ability to block the interac-
tion of 1.5 nM astemizole to the hERG channel expressed recom-
binantly in HEK293 cells. Minimal inhibition of binding (4%) was
observed. An analysis of LED209 plasma levels after oral gavage
revealed that the compound shows good oral bioavailability but
nonlinear pharmacokinetics by this route (see Fig. S3). Plasma
area under the concentration-time curve (AUClast, which is de-
fined as the area under the concentration-time curve from time 0
up to the last measurable concentration) increased more than
proportionally with doses from 5 to 80 mg/kg, possibly due to
inhibition of drug efflux pumps in the gastrointestinal tract or
inhibition of drug metabolism enzyme in the gut or liver at high
drug concentrations. Exposures at doses above 80 mg/kg in-
creased less than proportionally with dose. We found that at these
higher doses, absorption was incomplete, and a significant
amount of compound was simply excreted unchanged in feces. In
contrast, LED209 pharmacokinetics via the intravenous route
from 5 to 20 mg/kg is linear (4). Despite a relatively short terminal
half-life of 40 to 100 min in mice, LED209 showed high peak

concentrations in plasma at each dose, which may serve as an
efficient means of delivering large amounts of compound into
bacterial cells for generation of the active OM188 warhead. Al-
though plasma exposures with LED209 were high, limited pene-
tration of the blood-brain barrier was observed (see Fig. S4).

DISCUSSION

The originality and benefits of the proposed approach to combat
infectious diseases are 2-fold. First, this is a broad-spectrum ther-
apeutic antivirulence approach. Most antivirulence approaches
are restricted to a specific pathogen. In contrast, the broad distri-
bution of QseC among Gram-negative pathogens, and the inher-
ent involvement of this signaling cascade in bacterial pathogene-
sis, indicates that interference with QseC signaling is a promising
strategy to develop broad-spectrum drugs (1). Second, pathogens
sense host neurotransmitters to modulate their virulence gene ex-
pression to ensure optimal host colonization. Furthermore, this is
also a means for the invading pathogen to gauge the physiological
and immunological state of the host. Since these processes do not
control bacterial growth, interference with this signaling will only
stop virulence, not kill the bacteria. Consequently, this antiviru-
lence approach may engender a lower evolutionary pressure to-
ward the development of drug resistance.

This antivirulence strategy addresses an urgent unmet need in
health care. It is clear that we are in a postantibiotic era, with a
rapidly contracting armamentarium to combat infectious dis-
eases. Emergence and reemergence of pathogens and antibiotic
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resistance in these “superbugs” have brought infectious diseases to
the forefront of global health challenges in the 21st century. How-
ever, as promising as these antivirulence approaches are, they
come with a new set of regulatory and preclinical development
challenges. Pharmaceutical companies and regulatory govern-
ment agencies are accustomed to relying on MICs or other simple
tests for bactericidal or bacteriostatic drugs. Antivirulence drugs
require more involved and state-of-the-art testing, often utilizing
multiple molecular biology and microbiology techniques to assess
whether these drugs are indeed preventing virulence instead of
simply killing the pathogens. One can also foresee some potential
advantages for these types of approaches; e.g., in addition to treat-
ing a bacterial infection, host exposure to a disarmed pathogen
may engender immunological protection to recurrent infections,
akin to a vaccination approach. Additionally, one can also con-
ceive of combinatorial treatments combining antivirulence and
antibiotic strategies, which may extend the clinical utility of sev-
eral antibiotics.

MATERIALS AND METHODS
Synthesis of compounds. LED209 was synthesized as previously de-
scribed (4). GLP synthesis of 1 kg of LED209 was conducted by Symmetry
Biosciences. LED209 hydrate (L8919) was purchased from Sigma.

OM188. To a stirring, room temperature solution of 4-amino-N-
phenyl-benzenesulfonamide (4) (CF103; 506 mg, 2.04 mmol) was dis-
solved in dry tetrahydrofuran (THF; 10 ml), 1,1=-thiocarbonyl-
diimidazole (484 mg, 90%, 2.44 mmol). After 4.5 h, the THF was removed
in vacuo, and the residual oil was purified on silica gel (20 to 30%
EtOAc-hexanes) to give 475 mg (80%) of isothiocyanate OM188 as a
white solid.

N-(4-(3-Phenylureido)phenyl)benzenesulfonamide (CF252). A
mixture of N-(4-aminophenyl)benzenesulfonamide (80 mg, 0.322 mmol),

phenylisocyanate (38.4 mg, 35 �l, 1 equivalent), and triethylamine (NEt3,
65.2 mg, 90 �l, 2 equivalents) in THF (2 ml) was heated at 60°C. After 12 h,
all volatiles were removed in vacuo, and the residue was purified by pre-
parative TLC (EtOAc-hexanes, 1:1, 2 elutions) to give CF252 (44 mg,
37%). 1H NMR (300 Mz, CD3COCD3) � 8.78 (br s, 1 H), 8.12 (br s, 2 H),
7.77 to 7.42 (m, 2 H), 7.60 to 7.49 (m, 5 H), 7.42 (d, J � 9.0 Hz, 2 H), 7.26
(t, J � 7.2 Hz, 1 H), 7.09 (d, J � 8.7 Hz, 2 H), 6.99 (t, J � 7.2 Hz, 1 H); 13C
NMR (100 MHz, CD3COCD3) � 152.42, 139.96, 139.87, 137.32, 132.57,
131.71, 128.88(2), 128.63(2), 127.03(2), 122.78(2), 122.05, 119.06(2),
118.52(2).

N-Cyclohexyl-4-(3-phenylureido)benzenesulfonamide (CF283).
Cyclohexylamine (14 mg, 0.142 mmol) and Et 3N (22 �l, 0.155 mmol)
were added to a 0°C solution of 4-(3-phenylureido)benzene-1-sulfonyl
chloride (40 mg, 0.129 mmol) in dry dichloromethane (2 ml). After being
stirred overnight, the mixture was poured into water (10 ml) and ex-
tracted with EtOAc (5 ml; three times). The combined organic extracts
were washed with brine (5 ml), dried, and concentrated. The residue was
purified by PTLC (polar thin-layer chromatography) (CH2Cl2-MeOH,
95:5) to give CF283 (40 mg, 83% yield) as a white solid. 1H NMR
(300 MHz, CD3COCD3) � 8.66 (br s, 1 H), 8.39 (s, 1 H), 7.79 to 7.69 (m,
4 H), 7.57 to 7.54 (m, 2 H), 7.31 to 7.22 (m, 2 H), 7.03 to 6.98 (m, 1 H),
6.28 (d, J � 7.5 Hz, 1 H), 3.16 to 3.00 (m, 1 H), 1.73 to 1.63 (m, 4 H), 1.29
to 1.14 (m, 6 H); 13C NMR (100 MHz, CD3COCD3) � 152.12, 143.54,
139.54, 135.27, 128.69(2), 127.79(2), 122.42, 118.72(2), 117.67(2), 52.45,
33.62(2), 25.10(2), 24.66.

4-(3-(2-Methoxyphenyl)ureido)-N-phenylbenzenesulfonamide
(CF287). 4-Amino-N-phenylbenzenesulfonamide (248 mg, 1.0 mmol)
was added to a solution of triphosgene (312 mg, 1.05 mmol) in dry diox-
ane (4 ml) at room temperature. The reaction mixture was heated at 70°C
for 4 h and then concentrated in vacuo to give crude 4-isocyanato-N-
phenylbenzenesulfonamide, which was used without further purification.

2-Methoxyaniline (22 mg, 1 equivalent) was added to a solution of
4-isocyanato-N-phenylbenzenesulfonamide in dry THF (1 ml, 50 mg/
1 ml). The mixture was heated at 80°C overnight and then concentrated in
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vacuo. The residue was purified by PTLC (CH2Cl2-MeOH, 9:1) to give
CF287 (70 mg, 93% yield) as a white solid. 1H NMR (300 MHz,
CD3COCD3) � 9.26 (br s, 1 H), 8.89 (br, 1 H), 8.16 to 8.13 (m, 1 H), 8.07
(br, 1 H), 7.69 to 7.65 (m, 4 H), 7.49 to 7.46 (m, 1 H), 7.28 to 7.23 (m, 5 H),
7.08 to 7.03 (m, 2 H), 2.73 (s, 3 H); 13C NMR (100 MHz, CD3COCD3) �
151.83, 147.93, 144.24, 138.12, 132.39, 129.01(2), 128.57, 128.29(2),
124.22, 122.27, 120.63(2), 120.61, 118.61, 117.42(2), 110.30, 55.29.

4-(3-(1,3,4-Thiadiazol-2-yl)ureido)-N-phenylbenzenesulfonamide
(CF290). Following the above-given procedure, an equimolar mixture
of 4-isocyanato-N-phenylbenzenesulfonamide and 1,3,4-thiadiazol-2-
amine in dry THF (1 ml, 50 mg/1 ml) was heated at 80°C overnight and
then concentrated in vacuo. Purification of the residue via PTLC gave
CF290 (90%) as a white solid. 1H NMR (300 MHz, CD3SOCD3) � 10.2 (s,
1 H), 9.58 (br s, 2 H), 9.04 (br s, 1 H), 7.69 to 7.60 (m, 4 H), 7.23 to 7.18 (m,
2 H), 7.08 to 6.97 (m, 3 H); 13C NMR (100 MHz, CD3SOCD3) � 160.33,
152.29, 148.03, 142.70, 137.83, 132.80, 129.13(2), 128.12(2), 124.00,
120.09(2), 118.16(2).

Synthesis of N-(2-hydroxyethyl)-4-(3-phenylthioureido)benzene-
sulfonamide (CF355). A mixture of N-(2-hydroxyethyl)-4-nitro-
benzenesulfonamide (530 mg, 2.15 mmol) and 5% WT Pd/C (53 mg) in
anhydrous tetrahydrofuran (13 ml) was stirred under hydrogen (1 atm)
for 16 h and then diluted with EtOAc (15 ml) and filtered through Celite.
The filtrate was concentrated in vacuo and further dried under high vac-
uum to give 4-amino-N-(2-hydroxyethyl)benzenesulfonamide as a light-
brown solid (459 mg, 98%).

Phenylisothiocyanate (180 �l, 1 equivalent) was added to a solution of
the above-described crude amine (200 mg, 0.925 mmol) in anhydrous
acetonitrile (9 ml). The reaction mixture was stirred at 70°C for 24 h and
then concentrated and purified via PTLC (80% EtOAc-hexanes, 2 elu-
tions) to give CF355 (22 mg, 7%) as a white solid (mp of 129.2°C). 1H
NMR (400 MHz, CD3OD) � 7.83 to 7.78 (m, 2 H), 7.75 to 7.70 (m, 2 H),

7.47 to 7.42 (m, 2 H), 7.40 to 7.34 (m, 2 H), 7.24 to 7.17 (m, 1 H), 3.55 (t,
J � 6.0 Hz, 2 H), 2.96 (t, J � 6.0 Hz, 2 H); 13C NMR (100 MHz, CD3OD)
� 180.40, 143.37, 138.63, 135.65, 128.52(2), 127.21(2), 125.36, 124.09(2),
122.95(2), 60.40, 44.79.

Quantitative real-time PCR. Strain information is available in Ta-
ble S1 in the supplemental material. Overnight cultures were diluted 1:100
and grown aerobically in low-glucose Dulbecco’s modified Eagle medium
(DMEM) (Gibco) for EHEC or in N-minimal medium for S. Typhimu-
rium with 5 or 500 nM drug, or with an equivalent volume of dimethyl
sulfoxide (DMSO), at 250 rpm to late exponential growth phase (optical
density at 600 nm [OD600] � 1.0). RNA was extracted from three biolog-
ical samples using a RiboPure bacterial RNA isolation kit (Ambion) by
following the manufacturer’s guidelines. The primers used in the real-
time assays were designed using Primer Express v 1.5 (Applied Biosys-
tems) (see Table S2) and were validated for amplification efficiency and
template specificity. Quantitative real-time PCR (qRT-PCR) was per-
formed as previously described (17) in a one-step reaction using an ABI
7500 sequence detection system (Applied Biosystems). Data were col-
lected using the ABI Sequence Detection 1.2 software (Applied Biosys-
tems).

All data were normalized to an rpoA (RNA polymerase subunit A)
endogenous control and analyzed using the comparative critical threshold
(CT) method. Virulence gene expression was presented as fold changes
over the expression level of WT EHEC or S. Typhimurium grown in the
absence of drug. Error bars indicate the standard deviations of the fold
change values. The Student unpaired t test was used to determine statis-
tical significance.

Fluorescein actin staining. Fluorescein actin staining (FAS) assays
were performed as described by Knutton et al. (33). Briefly, HeLa cells
were grown on coverslips in 12-well culture plates with DMEM supple-
mented with 10% fetal bovine serum (FBS) and 1% penicillin-
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streptomycin-gentamicin (PSG) antibiotic mix at 37°C and 5% CO2,
overnight to 80% confluence. The wells were washed with phosphate-
buffered saline (PBS) and replaced with low-glucose DMEM supple-
mented with 10% FBS. Bacterial cultures were grown statically overnight
in LB in the presence of drug or with an equivalent volume of DMSO at
37°C. Overnight bacterial cultures were diluted 1:100 to infect confluent
monolayers of HeLa cells for 6 h at 37°C and 5% CO2 in the presence or
absence of drug. After a 6-h infection, the coverslips were washed, fixed,
permeabilized, and then treated with fluorescein isothiocyanate (FITC)-
labeled phalloidin to visualize actin accumulation and propidium iodide
to visualize host nuclei and bacteria. The coverslips were mounted on
slides and visualized with a Zeiss Axiovert microscope. To determine the
percentage of infected cells, 5 to 7 fields from three separate coverslips
(triplicate) were counted and calculated as follows: (cells with pedestals/
total cells) � 100. Statistical analyses were performed using the Student
unpaired t test.

Mouse survival experiments. For S. Typhimurium infections, mice
(BALB/c, 7 to 9 weeks old, female) were either treated orally with LED209
(20 mg/kg in 5% DMSO, 23% polyethylene glycol [PEG] 400, 70% so-
dium bicarbonate [pH 9], 2% Tween 80) at 30 min preinfection only or at
3 h before, at the time of, and 3, 6, 9, and 12 h after infection and then
intraperitoneally infected with 106 CFU of S. Typhimurium strain SL1344.
We used 10 mice per treatment, and these experiments were repeated
twice to ensure reproducibility. Mice were returned to their cages and
monitored daily for signs of morbidity (anorexia, rapid and shallow
breathing, scruffy fur, decreased muscle tone, and lethargy) and lethality
up to 10 days. The animals that survived were humanely euthanized by
CO2 asphyxiation.

For F. tularensis infections, mice (C3H/HeN, female) were either
treated orally with LED209 (20 mg/kg in 5% DMSO, 23% PEG 400, 70%
sodium bicarbonate [pH 9], 2% Tween 80) at 1, 3, 6, 9, or 24 h prior to
infection and then intranasally infected with 30 CFU of F. tularensis strain
SCHU S4 or intranasally infected with 30 CFU of F. tularensis strain
SCHU S4 and then treated with LED209 at 1, 3, 6, 9, or 24 h postinfection.
All animal work performed with the SCHU S4 strain was conducted in a
federally licensed small animal containment level 3. Mice were monitored
daily for signs of morbidity and death. At 12 days postinfection, the ani-
mals that survived were euthanized by CO2 asphyxiation.

Macrophage infection. J774 murine macrophages were infected with
opsonized S. Typhimurium with normal mouse serum at 37°C for 15 min
and washed. These macrophages were infected using a multiplicity of
infection (MOI) of 100:1 for 30-min bacterium-cell interaction at 37°C
and 5% CO2. These cells were treated with 40 �g/ml of gentamicin for 1 h
to kill extracellular bacteria and lysed with 1% Triton-X. Bacteria were
diluted and plated in LB plates for CFU determination (34–36). LED209
(5 nM in DMSO) or Om188 (500 nM, 5 nM, or 5 pM) was added to
DMEM during the entire incubation.

Biofilm formation inhibition upon LED209 treatment. Biofilm for-
mation was assessed in experiments as previously described (37) and
stained by the crystal violet method. All experiments were performed in
triplicate using LB broth. Overnight bacterial cultures grown under static
conditions were inoculated into fresh medium in a 1:100 dilution on
96-well cell culture polystyrene plates (Falcon). These plates were incu-
bated at 37°C in a CO2 atmosphere for 24 h. These conditions were as-
sayed in the absence and presence of 5 nM of LED209 (DMSO), and
DMSO in the same quantity was employed under all conditions. All these
assays were repeated three times to ensure reproducibility.

Clinical isolates. Urine and bladder biopsy samples were isolated
from clinically relevant bacterial strains obtained from patients at the
UTSW hospitals and clinics under the supervision of Philippe Zimmern.
Samples were first enriched in LB broth and isolated in MacConkey agar
to differentiate Gram-negative bacteria, as well as lactose fermentation,
and classified via API 20E kits, according to the manufacturer’s directions
(bioMérieux, France).

Construction of C. rodentium mutants. Isogenic nonpolar qseC,
kdpE, and qseBC mutants were constructed in C. rodentium ICC168 using
�-red mutagenesis as previously described (2).

Mouse infection experiments. For mouse survival experiment, 10
3.5-week-old male C3H/HeJ mice per group were infected by oral gavage
with either 1 � 109 cells of wild-type C. rodentium ICC168 or the �kdpE,
�qseC, or �qseBC mutant; five 3.5-week-old male C3H/HeJ mice were
inoculated by oral gavage with 100 �l of PBS. Mouse survival in each
group was assessed over the course of 14 days.

For bacterial load and colon weight measurement, as well as for colon
pathology, 10 3.5-week-old male C3H/HeJ mice per group were infected
with 1 � 109 cells of wild-type C. rodentium ICC168 or the �kdpE, �qseC,
or �qseBC mutant. The infected mice were sacrificed on day 6 postinfec-
tion, and their colons were taken. For bacterial load measurement, colons
of 5 mice per group were homogenized, and the homogenates were seri-
ally diluted and plated on LB agar plates containing 100 �g/ml of nalidixic
acid.

Pharmacokinetic analysis. Female CD-1 mice (6 to 7 weeks old) were
purchased from Charles River Laboratories. Animals were allowed to ac-
climate to the animal facility at UT Southwestern Medical Center for
approximately 1 week prior to use, and all animal work was approved by
the Institutional Animal Care and Use Committee at UT Southwestern.
Mice were treated with 5, 20, 80, or 160 mg/kg LED209 given by oral
gavage in 10% DMSO, 10% Cremophor EL, 30% PEG 400, and 50%
carbonate buffer (pH 10) either a single time or daily for 14 days. At the
indicated time points on either day 1 (single dose) or day 14 (chronic
dose), animals were given an inhalation overdose of CO2, and blood was
harvested by cardiac puncture with a sodium citrate-coated needle and
syringe containing 50 �l of sodium citrate. Plasma was isolated by centrif-
ugation of the blood for 10 min at 9,300 � g and frozen at �80°C until
analysis. Brains were isolated in an experiment in which animals were
dosed at 20 mg/kg, rinsed briefly with PBS to remove surface-adhering
blood, weighed, and snap-frozen in liquid nitrogen. Brain homogenates
were prepared by homogenizing the brain tissues in a 3-fold volume of
PBS (volume of PBS added in milliliters is 3 times the weight of the brain
in grams). Total brain homogenate volume was estimated as volume of
PBS added plus volume of brain in milliliters. One hundred microliters of
plasma or brain homogenate was mixed with 200 �l of acetonitrile con-
taining 0.15% formic acid and 300 ng/ml tolbutamide as an internal stan-
dard (IS). The samples were vortexed for 15 s, incubated at room temper-
ature for 10 min, and spun twice at 16,100 � g for 5 minutes at 4°C in a
standard microcentrifuge to pellet precipitated proteins. Supernatant was
collected and samples were analyzed on an ABSciex 4000-Qtrap liquid
chromatography-tandem mass spectrometer (LC-MS/MS) in positive
MRM mode. The MRM transition monitored for LED209 was 384.0 to
94.1 and 271.2 to 91.2 for the tolbutamide internal standard. A Shimadzu
Prominence LC system was used with an Agilent ZORBAX Eclipse XDB-
C18 column (5 micron packing, 4.6 � 50 mm). Samples were injected and
compound eluted using the following chromatography conditions: buffer
A, water and 0.1% formic acid; buffer B, MeOH and 0.1% formic acid;
flow rate of 1.5 ml/min; gradient conditions of 0 to 1 min 5% B; 1- to
1.5-min gradient to 95% B; 1.5 to 2.5 min 100% B, 2.5- to 2.6-min gradi-
ent to 5% B; 2.6 to 3.5 min 5% B. A standard curve was prepared by using
blank murine plasma (Bioreclamation, Westbury, NY) spiked with vari-
ous concentrations of LED209. The lower limit of detection was set at a
signal-to-noise ratio of 3:1 when spiked samples and blank plasma were
compared. Standard curves were constructed by plotting the analyte-to-
internal standard ratio versus the concentration of LED209 in each sample
and a quadratic curve fit to the data using the Analyst software program. A
value of three times above the signal obtained in the blank plasma or brain
homogenate was designated the limit of detection (LOD). The limit of
quantitation (LOQ) was defined as the lowest concentration at which
back-calculation yielded a concentration within 20% of the theoretical
value and above the LOD signal. The LOQ for LED209 was 1 ng/ml. In
general, back-calculation of concentrations indicated the curve was accu-
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rate to within 15% over 4 logs from 1,000 to 1 ng/ml. Pharmacokinetic
parameters for plasma were determined by using the noncompartmental
analysis tool on the WinNonlin software package (Pharsight, Mountain
View, CA).

In vivo toxicology studies. Sixteen male and sixteen female CD-1
mice (6 to 7 weeks of age) were purchased from Charles River Laborato-
ries. Animals were allowed to acclimate to the animal facility at UT South-
western Medical Center for approximately 1 week prior to use, and all
animal work was approved by the Institutional Animal Care and Use
Committee at UT Southwestern. Animals were placed into one of four
groups (vehicle only, 5 mg/kg, 20 mg/kg, or 80 mg/kg) in groups of 4 male
and 4 female mice. Animals were dosed daily in the morning by oral
gavage with LED209 formulated as 10% DMSO, 10% Cremorphor EL,
30% PEG 400, and 50% carbonate buffer (pH 10) for 14 days. Mice were
weighed daily at the same time each day. On day 15, the animals were
sacrificed by inhalation overdose of CO2, blood was collected by cardiac
puncture, and organs were isolated and weighed. Whole blood, collected
using K2-EDTA as the anticoagulant, was analyzed by the UT Southwest-
ern Animal Resource Center for complete blood counts. Serum, isolated
from whole blood collected in the absence of an anticoagulant, was eval-
uated by the UTSW Mouse Metabolic Phenotyping Core using the Vitros
250 chemistry analyzer for liver and kidney function. Additionally, a sep-
arate sample of serum was shipped to ANI Lytics (Gaithersburg, MD) for
measurement of thyroxin (T4) levels as a measure of thyroid function.

hERG radiolabeled ligand binding assay. LED209 was tested at
10 mM in duplicate in a radiolabeled ligand binding assay by MDS
Pharma Services (now Eurofins Panlabs, Taipei, Taiwan) for its ability to
block the interaction of 1.5 nM astemizole to the hERG channel expressed
recombinantly in HEK293 cells. Minimal inhibition (4%) of binding was
observed.
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