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Cryptococcus neoformans is an invasive human fungal pathogen that causes more than
181,000 deaths each year. Studies have demonstrated that pulmonary C. neoformans
infection induces innate immune responses involving copper, and copper detoxification in C.
neoformans improves its fitness and pathogenicity during pulmonaryC. neoformans infection.
However, the molecular mechanism by which copper inhibits C. neoformans proliferation is
unclear. We used a metallothionein double-knockout C. neoformans mutant that was highly
sensitive to copper to demonstrate that exogenous copper ions inhibit fungal cell growth by
inducing reactive oxygen species generation. Using liquid chromatography-tandem mass
spectrometry, we found that copper down-regulated factors involved in protein translation,
but up-regulated proteins involved in ubiquitin-mediated protein degradation. We propose
that the down-regulation of protein synthesis and the up-regulation of protein degradation are
the main effects of copper toxicity. The ubiquitin modification of total protein and proteasome
activity were promoted under copper stress, and inhibition of the proteasome pathway
alleviated copper toxicity. Our proteomic analysis sheds new light on the antifungal
mechanisms of copper.

Keywords: Cryptococcus neoformans, copper toxicity, ROS, quantitative proteomics, ubiquitin degradation
INTRODUCTION

Cryptococcus neoformans is a commonly inhaled fungal pathogen. It infects approximately 1 million
individuals annually (Maziarz and Perfect, 2016) and causes over 181,000 deaths (Agustinho et al.,
2018). Fifteen percent of AIDS-related deaths were reported to be associated with cryptococcosis. It
also affects immunocompetent individuals (Datta et al., 2009; Kronstad et al., 2011; Andreou et al.,
2020). The high mortality of cryptococcosis poses a huge burden, especially in medically deficient
Abbreviations: Cu, copper; LC-MS/MS, liquid chromatography-tandem mass spectrometry; NAC, N-acetylcysteine; ROS,
reactive oxygen species.
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areas (Agustinho et al., 2018). Improved therapies are required to
overcome challenges such as drug cost and availability, toxic side
effects, lengthy treatment regimens, and resistance.

With the emergence of drug-resistant isolates, new
antimicrobial agents, including metals, have received increasing
attention. Copper (Cu), along with silver, gold, iron, zinc, and
magnesium,has goodantimicrobial properties (Germanetal., 2016;
Vimbela et al., 2017). The in vitro antimicrobial properties ofmetals
are mainly attributed to their electron transport function. Cu and
Cu alloys are now widely used as antimicrobials in healthcare
settings because of their “contact killing” antimicrobial activity.
Cu was registered as the first solid antimicrobial material by the US
Environmental Protection Agency (Grass et al., 2011). Copper can
exist in two forms in cells: oxidized copper (Cu2+) or reduced
cuprous (Cu+) (Gaetke and Chow, 2003). Several enzymes, such as
lysyl oxidase, tyrosinase, cytochrome c oxidase, contain Cu, which
acts as an electron donor/acceptor, alternating between oxidation
and reduction (Karlin, 1993). However, the redox properties of Cu
can also cause cell damage.

Metals also play an essential role in innate defense (Hood and
Skaar, 2012). Copper aids in the host resistance against both
bacteria and fungi (Li et al., 2019). Down-regulating the Cu
transporter ATP7A on the lysosome and phagosome membranes
was shown to inhibit the phagocytosis of bacteria and fungi by
macrophages (White et al., 2009; Shen et al., 2018). After Cu
supplementation, neutrophilic counts returned to normal in a
patient with Coeliac disease (Khera et al., 2016). Ceruloplasmin,
a multicopper oxidase, was elevated during infection with
pathogens (Besold et al., 2016).

Pathogens have evolved complex Cu detoxification mechanisms
to survive in their hosts. They can be divided into two aspects: Cu
efflux systems and Cu sequestration (Chaturvedi and Henderson,
2014).Mycobacterium tuberculosis uses P-type ATPases (CtpC and
CtpV)and themetallothioneinMymTto resistCu toxicity (Neyrolles
et al., 2013). Defects in the Cu transporter CopA and the polycopper
oxidase CueO in Campylobacter jejuni reduced its colonization of
avian hosts (Gardner and Olson, 2018). Candida albicans adapts to
high Cu levels by regulating the metallothioneins Cup1 and Crd2
through CaAce1/Cup (Ballou and Wilson, 2016). C. neoformans
regulates Cu metabolism using Cuf1 to maintain Cu homeostasis
(Ding et al., 2011; Jiang et al., 2011; Raja et al., 2013; Kosman, 2018).
C. neoformans response to Cu stress was found to be activated upon
lung invasion (Sun et al., 2014; Garcia-Santamarina and Thiele,
2015). Impairments in both metallothionein genes, CMT1 and
CMT2, reduce virulence during pulmonary infection (Ding et al.,
2013; Ding et al., 2014). The membrane Cu importer CTR4 in
C. neoformans was down-regulated under Cu stress and it has been
recognized as an indicator of Cu stress during pulmonary
C. neoformans infections (Sun et al., 2014).

It has been reported that the toxicity of Cu to cells stems from its
ability to induce reactive oxygen species (ROS) production (Gaetke
and Chow, 2003). Cu2+ can be reduced to Cu+ in the presence of
reducing agents such as superoxide, ascorbic acid, and glutathione
(GSH). Cu+ catalyzes the conversion of hydrogen peroxide (H2O2)
to form hydroxyl radicals (OH·) via the Haber–Weiss reaction
(Bremner, 1998). The antimicrobial activity of Cu-induced ROS
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was reported to involves membrane breakdown, respiratory
inhibition, protein inactivation, and DNA degradation (Hans
et al., 2015). Cu toxicity in C. neoformans has been investigated at
the transcriptome level (Garcia-Santamarina et al., 2018), but little
is known about how Cu modulates protein expression in fungal
cells. In this study, we investigated the antifungal action of Cu by
assessing proteomic changes using liquid chromatography-tandem
mass spectrometry (LC-MS/MS).
METHODS

Strains and Medium
Cryptococcus neoformans var. grubii (serotype A) H99, was used
as the wildtype strain for the experiment. cmt1/2DD is a mutant
C. neoformans strain on wild-type strain H99. The mutant is
generated by knocking out both CMT1 and CMT2, which encode
metallothioneins, with the selection markers being NAT and
NEO (Ding et al., 2013). The cells were routinely grown in yeast
extract peptone dextrose medium (YPD: 1% yeast extract, 2%
peptone, and 2% dextrose). CuSO4 (final concentrations: 0.5 or 1
mM) was added to induce Cu stress. N-acetylcysteine (NAC;
final concentrations: 30, 40, or 50 mM) was added to block ROS
production. Colony images were captured using ImageQuant
LAS 500 (GE, Boston, MA, USA).

ROS Measurement
Intracellular ROS levels were measured using a ROS assay kit
(CA1410; Solarbio, Beijing, China). Overnight cultures of cmt1/
2DDwere diluted in fresh YPDmedium to an optical density at 600
nmof 0.2. The cells were treatedwith 0.5 or 1mMCuat 30 °C for 4 h
(n=3). The cellswere thencollected andwashed twice inphosphate-
buffered saline (PBS). Next, about 2×107 cells were stained with 20
mM2′,7′-dichlorofluorescin diacetate (DCFH-DA) for 1 h. DCFH-
DA (non-fluorescent) was hydrolyzed to dichlorofluorescin
(DCFH) after entering cells. When DCFH is in the presence of
ROS, it is oxidized to dichlorofluorescein (DCF), which is a strong
green fluorescent substance. Fluorescence intensity was measured
using microplate luminometers (Varioskan Flash; Thermo Fisher
Scientific,Waltham, USA), with excitation at 488 nm and emission
at 525 nm. The intracellular ROS level is shown as fluorescence
value divided by the absorbance at 600 nm.

Real-Time PCR
cmt1/2DD was cultured in YPD medium and treated with 0.5
mM CuSO4 or both 0.5 mM CuSO4 and 30 mM NAC (n=3).
RNA samples used for real-time PCR were isolated using TRIzol
reagent (Thermo Fisher Scientific, Waltham, MA, USA) followed
by TURBO DNase I treatment (Thermo Fisher Scientific) to
eliminate DNA contamination. One microgram of total RNA
was reverse-transcribed into cDNA using the GoScript Reverse
Transcription System (Promega, Madison, WI, USA). Real-time
PCR was performed using a CFX Connect thermal cycler (Bio-
Rad, Hercules, CA, USA). The data were analyzed using the
2−DDCt method. ACT1 was used as the loading control. Table S1
lists the primer pairs used.
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Protein Extraction, Digestion, and Labeling
cmt1/2DD was cultured in YPD medium and treated with 0.5
mM Cu or both 0.5 mM Cu and 30 mM NAC. The cells were
washed twice in PBS and proteins were then extracted using lysis
buffer (7 M urea, 2 M sulfourea, and 0.1% CHAPS) with a
protease inhibitor cocktail using a Precellys Evolution tissue
homogenizer (Bertin, Montigny-le-Bretonneux, France).
Protein concentrations were determined using the Bradford
method. Dithiothreitol was added to a 100 µg protein extract
to a final concentration of 25 mM, and the mixture was
incubated at 37°C for 1 h. Iodoacetamide (163-2109; Bio-Rad)
was then added to a final concentration of 50 mM and the
mixture was incubated at room temperature in the dark for 30
min. Next, the mixture was sieved through a 10-kDa filter
(UFC501096; MilliporeSigma, Burlington, MA, USA) and
washed thrice in 0.2 M triethylammonium bicarbonate (TEAB,
T7408, MilliporeSigma) buffer. The protein was digested
overnight with 2 mg trypsin (trypsin to protein mass ratio of
1:50) at 37°C. Next, the peptides were labeled using isobaric tags
for relative and absolute quantitation (iTRAQ) reagents
(4381663; AB Sciex, Framingham, MA, USA) desalted using a
hydrophilic/lipophilic balanced column (WAT094226; Waters,
Milford, MA, USA), and vacuum-dried. The iTRAQ-labeled
peptides were dissolved in 2% acetonitrile, and then
fractionated using high-pH high-performance liquid
chromatography (HPLC; Xbridge Peptide BEH C18 column,
4.6 mm × 150 mm, 3.5 mm; Waters). The elution gradient was
95–5% phase A (2% acetonitrile, pH 10) and 5–95% phase B
(98% acetonitrile, pH 10) for 60 min. The eluted peptides were
collected at a rate of one fraction per min. To shortening the
loading time in the LC-MS/MS analysis, 60 offline fractions were
pooled into 10 fractions and lyophilized. All fractions were then
combined for database searching.

LC-MS/MS Analysis
Dried peptides were re-suspended in 0.1% formic acid and
loaded onto a reversed-phase C18 analytical column (75 mm ×
150 mm, 3 mm, custom-made in our lab). Elution was
accomplished using a constant flow (0.6 mL/min) of buffer A
(0.1% formic acid) and buffer B (80% acetonitrile) over a gradient
from 5% to 38% for 120 min. The polypeptide mixture was
analyzed using an Orbitrap Q-Exactive Plus mass spectrometer
(Thermo Fisher Scientific). Each full scan was a high-speed
signal-dependent scan. The first-level full scan was performed
from 350 to 1,800 m/z at 70,000 resolution, and automatic gain
control was set at 3e6. The second-level scan was performed from
100 to 1,800m/z at 17,500 resolution, and automatic gain control
was set at 1e5. Higher-energy collisional dissociation mode was
used, with a normalized collision energy of 32% and a scanning
time of 120 min.

Database Search and Bioinformatics
Analysis
The LC-MS/MS data were searched against the UniProt
Cryptococcus neoformans H99 database (https://www.uniprot.
org/proteomes/UP000010091), which provide resource of
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protein sequence and functional information, using Mascot
(version 2.5.1) and Scaffold (version 4.6.2) software, assuming
the digestion enzyme trypsin and two missed cleavages at
maximum. The MS tolerance was 10 ppm and the fragment
ion mass tolerance was 0.02 Da. Carbamidomethyl of cysteine
and iTRAQ-8plex of lysine and the n-terminus were specified in
Mascot as fixed modifications. Oxidation of methionine, acetyl of
the n-terminus and iTRAQ-8plex of tyrosine were specified in
Mascot as variable modifications. Protein identifications were
accepted as contained at least 2 identified peptides. Protein
probabilities were assigned by the Protein Prophet algorithm
(Nesvizhskii et al., 2003).

Proteins were considered to be differentially expressed if the
ratio <0.769 or >1.3 (foldchange > 1.3) (Zhu et al., 2020; Jiang
et al., 2020) and FDR corrected q-value <0.05. The quantified
proteins were annotated by Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses. GO
analysis was performed using clusterProfiler (version 3.14.0) in
R (version 3.6.1) (Yu et al., 2012). C. neoformans gene ontology
data were downloaded from Annotation Hub. The EnrichGO
and compareCluster functions were used for the analyses.
KOBAS (version 3.0) was employed to perform the KEGG
analysis (Li et al., 2019).

Parallel Reaction Monitoring Assay
PRM, a reliable targeted LC-MS analysis, was used as a validation
of the quality of iTRAQ-proteomic data in this research,
considering antibodies to target proteins were not easy to be
acquired in C. neoformans. It can provide higher accuracy,
sensitivity and reproducibility data compared with non-
targeted profile (Manes and Nita-Lazar, 2018). The proteins
were reduced with 0.25 M dithiothreitol, alkylated with 0.5 M
iodoacetamide, cleaned thrice with 0.2 M TEAB, digested
overnight with trypsin (the ratio of trypsin to protein was
1:50), then cleaned thrice with 0.5 M TEAB and collected by
centrifugation. Solid-phase extraction was performed using a
ZipTip C18 column (Millipore, USA). After separation using an
EASY-nLC liquid phase, the proteins were subjected to low-pH
reversed-phase C18 capillary chromatography (150 mm×150
mm, 1.9 mm). Phase A consisted of 0.1% formic acid and the
phase B consisted of 80% acetonitrile and 0.1% formic acid. The
elution gradient was 13–38%, the total elution time was 60 min,
and the flow rate was 0.6 mL/min. The polypeptide mixture was
identified using an Orbitrap Q-Exactive Plus mass spectrometer.
High-sensitivity and data-dependent acquisition scanning modes
were used, and the scanning time was 120 min. The first-level full
scan was performed from 300 to 1500 m/z at 60,000 resolution,
with collision energy of 30%. The second-level scan was
performed at 15,000 resolution. PRM was conducted according
to the data-dependent acquisition scanning results. Each full
scan was followed by 25 targeted scans, and the scanning time
was 60 min. The first-level full-scan was performed from 300 to
1250m/z at 60,000 resolution and automatic gain control was set
at 3e6, with a normalized collision energy of 28% and a
maximum injection time of 80 ms. The resolution of the
secondary scan was 30,000. The mixed essential-spectral data
were retrieved by Proteome Discoverer (version 2.1). The
August 2021 | Volume 11 | Article 662404
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retrieval parameters were obtained from the UniPort
Cryptococcus neoformans H99 database. Mass errors of parent
and fragmentation ions were 10 ppm and 0.05 Da, respectively.
Quality control parameters included polypeptide false discovery
rate <1.0% and protein false discovery rate <1.0%, with each
protein identified to at least one specific polypeptide. Pooled
peptide samples (2 mg of each sample) were subjected to LC-MS/
MS analysis for preparation of the spectrum library. Skyline
(version 4.1.1.11725) was used to process the MS data.

Western Blot
cmt1/2DD was treated with 0.5 mM Cu in YPD medium at 30°C
for 4 h (n=3). The cells were washed twice in cold PBS, and then
the proteins were extracted in lysis buffer (7 M urea, 2 M
sulfourea, and 0.1% CHAPS) with a proteinase inhibitor and
phenylmethylsulfonyl fluoride (PMSF). Next, 30 µg of protein
was used for sodium dodecyl sulfate-polyacrylamide gel
electrophoresis. Western blot assays were performed using an
anti-ubiquitin antibody (1:1,000; 3933; Cell Signaling
Technology, Boston, MS, USA), anti-histone H3 antibody
(1:1,000; 4499S; Cell Signaling Technology), and goat anti-
rabbit IgG (H+L) secondary antibody (1:5,000; A16096;
Thermo Fisher Scientific). The results were imaged using
ChemiDoc XRS+ (Bio-Rad, USA).

Proteasome Activity Assay
cmt1/2DD was treated with 0.5 mM Cu, 0.5 mM Cu and 30 mM
NAC, or 1 mM Cu in YPD medium at 30°C for 4 h (n=3). Cells
were washed twice in cold PBS, and then lysed using in 0.5%
NP40. Proteasome activity was assessed using a proteasome
activity assay kit (ab107921; Abcam, Cambridge, MA, USA).
The samples were mixed with proteasome substrate and
incubated at 37°C. The proteasome activity units (relative to
the standard fluorescence intensity) were determined according
to the fluorescence consumed from 30 to 60 minutes of the
reaction. Fluorescence intensity was measured using a multi-
mode reader (SYNERGY-LX; BioTek, Winooski, VT, USA), with
excitation at 350 nm and emission at 440 nm.

Growth Kinetics Assay
cmt1/2DD was shake cultured in YPDmedium overnight at 30°C.
The cells were then treated with 0.5 mM Cu, 10 mg/mL
proteasome inhibitor MG132 (HY-13259; MedChemExpress,
Monmouth Junction, NJ, USA), or both 0.5 mM Cu and 10
mg/mLMG132 in 96-well plates (n=3). The optical density at 600
nm of the initial culture system was 0.05. The optical density of
the cells was detected every 4 h to plot the growth curves.

Statistics and Reproducibility
Statistical analysis of ROS level, real-time PCR data, and
proteasome activity data was performed in GraphPad Prism
6.0 software. Significant differences between two groups were
determined by Student’s t-test (*p values<0.05, **p values<0.01,
***p values<0.005). comparison between multiple treatments was
performed using ANOVA (***p values<0.005). All experiments
were performed using three biological replicates to ensure
reproducibility. Proteomic data reproducibility was analyzed
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
using principal component analysis (PCA), using the R
package ggplot2 (version 3.2.1). Two-tailed Fisher’s exact tests
were used to assess the GO and KEGG enrichment of the
differentially expressed proteins against all identified proteins.

Data Availability
Themass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org) via the iProX partner repository with the
dataset identifier PXD024098 http://proteomecentral.
proteomexchange.org/cgi/GetDataset?ID=PXD024098.
RESULTS

Exogenous Cu Induces Intracellular ROS
Generation in C. neoformans
It was reported that the antimicrobial activity of Cu is associated
directly with its oxidative characteristics (Vincent et al., 2018). The
activities of superoxide dismutase, catalase and glutathione
peroxidase, proteins associated with ROS metabolism, in Cu
sensitive strain cmt1/2DD were improved under copper stress
(Sun et al., 2021). But whether ROS is the primary cause of cell
death was unknown. We used N-acetylcysteine (NAC), an
aminothiol and synthetic precursor of intracellular cysteine and
glutathione, as an ROS scavenger. It is a sulfhydryl-containing
antioxidant that increases the free radical scavenging in cells. The
metallothioneins double-knockout mutant cmt1/2DD is very
sensitive to Cu stress compared with wildtype strain H99, which
was consistent with previous job (Ding et al., 2013), but it did not
exhibit growth retardation when NAC was added to the medium.
The growth of H99 and cmt1/2DD were not affected by NAC
treatment alone. With an increased Cu concentration, more NAC
was required to neutralize the effects of Cu stress. When the Cu
concentration was 0.5 mM, 30 mM NAC was required to prevent
toxicity, and when it was raised to 1mM, 50 mM NAC was
required to prevent toxicity (Figure 1A). This preliminary
experiment suggested that the generation of intracellular ROS is
an important factor in Cu toxicity, although ROS-independent Cu
toxicity remains possible (e.g., impairment of iron–sulfur protein
biogenesis) (Brancaccio et al., 2017).

We used DCFH-DA fluorescent probes to image intracellular
ROS under Cu stress, and we found a positive correlation
between Cu concentration and intracellular ROS. Under Cu
stress, cmt1/2DD (which was deficient in the Cu detoxification
factors CMT1 and CMT2) generated more ROS than the wild-
type strain H99. However, Cu-induced intracellular ROS in both
the wild-type and cmt1/2DD strains was suppressed by NAC
(Figure 1B). To assess whether NAC operates independent of
chelating Cu ions during the Cu detoxification process, we
assessed the expression of the membrane Cu importer CTR4,
which is down-regulated under Cu stress, indicating high Cu
concentration sensed by cells (Sun et al., 2014). CTR4 was down-
regulated in cmt1/2DD under Cu treatment, regardless of whether
NAC was added to the medium (Figure 1C). This indicated that
the NAC action was attributable to its antioxidant activity rather
than depletion of Cu ions.
August 2021 | Volume 11 | Article 662404

http://proteomecentral.proteomexchange.org
http://proteomecentral.proteomexchange.org
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD024098
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD024098
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Sun et al. Cryptocccal Proteome Accommodating Copper Toxicity
Quantitative Proteomic Profile of
C. neoformans Under Cu Stress
Based on our previous work and the data presented in Figure 1
showing overall concordance regarding the responses to Cu and
NAC between wild-type and cmt1/2DD strains, we anticipated
that Cu-sensitive cmt1/2DD would accurately reflect the overall
response of C. neoformans to Cu stress, but with a magnitude of
changes more readily detectable at the proteomic level. We
therefore used cmt1/2DD to amplify the Cu stress response of
C. neoformans in the whole proteome analysis. The cells were
cultured to the logarithmic phase and then collected for protein
extraction. To investigate the function of ROS in response to Cu
treatment, the ROS scavenger NAC was added to the medium
(Figure 2A). A total of 3,529 proteins were quantified by LC-MS/
MS (Table S2) and validated for mass accuracy (Figure S1).
Principal component analysis suggested that the exposure groups
could be differentially separated into three clusters (Figure 2B).
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In the cells treated with Cu alone compared to untreated cells, 168
proteins were differentially expressed. In the cells treated with
NAC plus Cu compared to Cu alone, 289 proteins were
differentially expressed. In the cells treated with NAC plus Cu
compared to untreated cells, 61 proteins were differentially
expressed (ratio < 0.769 or> 1.3, FDR corrected q-value <0.05)
(Figure 2C and Table S3). Among the two sets of differentially
expressed proteins in control vs. Cu and Cu vs. Cu&NAC
comparisons, 95 proteins overlapped, and these were considered
potential targets of Cu-induced ROS (Figure 2D). Though 4
proteins were overlapped in the 3 pairs of comparisons, they all
showed the different trend in control vs.Cu compared with control
vs. Cu&NAC. The expression of the 95 proteins (37 down-
regulated and 58 up-regulated under Cu stress) was normalized
by NAC (Figure 2E). To verify the reliability of the iTRAQ
quantitative proteomic analysis, 82 peptides (Table S4A) of 37
proteins that were notably differentially expressed and involved in
A

B C

FIGURE 1 | N-acetylcysteine reduces the ROS-toxicity induced by copper in Cryptococcus neoformans. (A) Growth of C neoformans following treatment with Cu
and N-acetylcysteine (NAC). Clinically isolated wild-type C. neoformans strain H99 and the Cu-sensitive mutant cmt1/2DD were grown in yeast extract peptone
dextrose (YPD) liquid medium overnight, serially diluted and cultured on agar medium at 30°C for 2 days. (B) Levels of intracellular ROS following treatment with
Cu and NAC. Cells were treated with 0.5 or 1mM Cu and NAC was added to scavenge ROS. The intracellular ROS level is shown as fluorescence intensity
(Ex488/Em525) divided by the absorbance at 600 nm. ***p-value <0.005 (n=3). (C) Relative expression of the Cu importer CTR4 in the Cu-sensitive mutant
cmt1/2DD. Cells were treated with 0.5 mM Cu and/or 30 mM NAC and RNA was extracted and analyzed by real-time polymerase chain reaction. ***p-value
<0.005 (n=3). NS, not significant.
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FIGURE 2 | Continued
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FIGURE 2 | iTRAQ quantitative proteomic analysis of the copper (Cu)-sensitive mutant cmt1/2DD following treatment with Cu or Cu and N-acetylcysteine (NAC).
(A) Study flow diagram. The metallothionein double-knockout strain cmt1/2DD was grown in yeast extract peptone dextrose (YPD) liquid medium overnight and divided
into three groups: an untreated (Control) group (n=3), a group exposed to Cu (n=3), and a group exposed to both Cu and NAC (n=3). Cells grown to the logarithmic
stage were lysed to extract proteins, which were digested into peptides, labeled, and assessed by liquid chromatography-tandem mass spectrometry (LC-MS/MS).
(B) Principal component analysis (PCA) of proteomic data. Raw proteomic data were obtained using LC-MS/MS and analyzed using the R package ggplot2 (version
3.2.1). Each point in the figure represents a single sample and treatment groups are distinguished by color. (C) Volcano plots of differentially expressed proteins. Each
point represents a protein. The x-axis represents the log2 transformation of the protein ratio between two groups. The y-axis represents the −log10 transformation of
the FDR corrected q-values of the comparisons between the two groups. Green dots represent down-regulated proteins, red dots represent up-regulated proteins,
and black dots represent unchanged proteins. (D) Venn diagram of differentially expressed proteins in the three pairs of comparisons (Cu vs. Control, Cu&NAC vs. Cu
and Cu&NAC vs. Control). The size of each circle represents the number of differentially expressed proteins. (E) Heatmap of differentially expressed proteins common
to the two comparisons. The x-axis represents samples, and the y-axis represents proteins. The colors represent protein expression levels in the sample: the maximum
value is red, and the minimum value is blue. According to the similarity of color between samples, the proteins were divided into two clusters: up-regulated under Cu
stress and down-regulated under Cu stress.
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the enrichment pathways were selected and measured by PRM
(Yu et al., 2012). The target LC-MS/MS results were consistent
with the iTRAQ-LC-MS/MS analysis for 35 of the 37 proteins
(ratio < 0.769 or > 1.3, FDR corrected q-value <0.05) (Table S4B).
Most of the proteins identified were on the regression line in the
correlation plot (Figure S2). The two unverified proteins, have not
been found differentially expressed, may be limited by the
reliability of the representative peptide segments.

Gene Ontology Analysis of Differentially
Expressed Proteins Under Cu Stress
Toglobally analyze themolecularmechanismofCutoxicity, basedon
the main functions of the differentially expressed proteins, we
performed GO annotation using Blast2GO software (version 4.1.9)
(Gotz et al., 2008) followedby enrichment analysis using theR cluster
Profiler R package. TheGO itemswith a p-value <0.05were enriched
in the biological process, cellular component, andmolecular function
categories from identified up-regulated proteins and down-regulated
proteins under Cu stress, respectively (Ashburner et al., 2000). The
up-regulated proteins were enriched in protein catabolic processes
and ubiquitin-dependent protein catabolic processes. These changes
mainly occurred in the proteasome complex, endopeptidase
complex, peptidase complex, and catalytic complex, involving
molecular functions related to endopeptidase activity, peptidase
activity, catalytic activity acting on proteins, enzyme regulator
activity, ATP binding and nucleotide binding. The down-regulated
proteins were enriched in protein metabolic processes, translation,
peptide biosynthetic process, amide biosynthetic process,
organonitrogen compound biosynthetic process and branched-
chain amino acid biosynthetic process. These changes mainly
occurred in the ribosome, non-membrane-bound organelles,
involving molecular functions related to structural constituents of
ribosome, structural molecule activity and RNA binding (Figure 3).
This indicated that the main features of the Cu toxicity were
decreased in protein synthesis and increased protein degradation.

Quantile-Based Clustering Analysis
To clearly delineate the changes in protein expression in each
treatment group, we constructed a heatmap of differentially
expressed proteins (Figure 4A). The proteins were clustered
according to their global expression characteristics and z-scores
were calculated according to the normalized intensity in the
horizontal and vertical dimensions separately. These z-scores
were then clustered by one-way hierarchical clustering (Euclidean
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
distance, average linkage clustering) using Genesis. Cluster
membership was visualized using the “heatmap.2” function from
the “gplots” package in R. As expected, the expression of proteins
fromcells treatedwithCuplusNACexhibited overall similarities to
control cells, though the expression of some proteins was more
similar to that in cells treated with Cu alone. Cu-treated cells also
exhibited some unique overlap with control cells that differed from
the cells treatedwithCuplusNAC,whichmaybepartly attributable
to the detoxification role of NAC in Cu stress.

Based on further hierarchical clustering, the differentially
expressed proteins were divided into three clusters according to
their distinctive expression characteristics. For each cluster, we
grouped all the enriched functional categories along with their p-
values (Figure 4B). The proteins in cluster 1 were down-regulated
under Cu stress but not when Cuwas administered with NAC; these
proteins were mainly involved in biological processes related to
translation, peptide synthetic process, amide synthetic process,
peptide metabolic process, organonitrogen compound synthetic
process and protein metabolic processes. The proteins in cluster 2
wereup-regulatedunderCustressbutnotwhenCuwasadministered
with NAC; these proteins were mainly involved in protein catabolic
process, ribosome biogenesis, organonitrogen compound catabolic
process, ribonucleoprotein complex biogenesis, macromolecule
catabolic processes, cellular compound biogenesis, organic
substance catabolic process, rRNA processing, ubiquitin-dependent
protein catabolic processes, ncRNA processing, cellular component
organization or biogenesis, and protein metabolic process. The
proteins in cluster 3 were down-regulated when Cu was
administered with NAC; these proteins were related to glucan
metabolism processes, response to oxidative stress, polysaccharide
metabolic processes, carbohydrate metabolic processes and cellular
catabolic process. In general, biological processes related to cluster 1
and cluster 2 proteinswere the targets of ROS-dependentCu toxicity.

Ubiquitin-Mediated Proteolysis Is Up-
Regulated in C. neoformans in Response
to Cu Stress
To identify the target pathways under Cu stress, we conducted a
KEGG enrichment analysis in KOBAS (version 3.0) (Kanehisa
et al., 2012). The proteins that were differentially expressed in
cells treated with Cu alone compared to untreated control cells
were enriched in three pathways: ribosome, proteasome, and
protein processes in the endoplasmic reticulum. The
differentially expressed proteins included ribosome and
August 2021 | Volume 11 | Article 662404
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proteasome subunits, chaperones (HSP70 and HSP90), and
glycogen metabolism-related protein (Ubx), ubiquitin-
conjugating enzyme variant MMS2 (p97), ER-associated
protein catabolism-related protein (Npl4), ubiquitin fusion-
degradation 1-like protein (Ufd1), and ubiquitin receptor
(RAD23) (Table S5). Under Cu stress, 37% of the ribosomal
subunits were down-regulated, while 66% of the ubiquitin ligase
complex and proteasomal subunits were up-regulated (Figure 5).
Cells treated with Cu plus NAC compared to untreated control
cells could prevent from these changes in ribosomal subunits.
These findings suggest that Cu-induced ROS alter protein
synthesis and degradation processes.

Western blotting showed that Cu stress up-regulated the total
ubiquitination in cmt1/2DD (Figure 6A). The proteasome activity
assay of cmt1/2DD indicated increased proteasome activity after
treatment with 0.5 or 1 mM Cu, but unchanged when treated with
both 0.5 mM Cu and 30 mM NAC (Figure 6B). The proteasome
inhibitorMG132 partially rescued the cmt1/2DD growth inhibition
after Cu treatment (Figure 6C), without changing the cell size and
morphology (Figure S3) It indicates that promoting ubiquitin-
mediated proteolysis is a primary effect of Cu toxicity.
DISCUSSION

The toxicity of Cu to microbial pathogens has been used as a host
defense strategy (Wiemann et al., 2017; Shen et al., 2018). In
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
particular, Cu toxicity affects the virulence of C. neoformans
during pulmonary infection (Ding et al., 2013), although the
exact mechanism has not been fully elucidated. Cu can exist in an
oxidized or reduced state, influencing its catalytic activity and
contributing to ROS production (Kaur et al., 2019). We
confirmed that intracellular ROS accumulated under Cu stress,
especially in a Cu-sensitive mutant that lacked metallothioneins.
We hypothesize that Cu toxicity in C. neoformans was ROS-
dependent, as cell growth under Cu stress on plated media was
not affected in the presence of a ROS inhibitor.

The Cu metabolic pathway is well understood in fungi (Smith
et al., 2017; Garcia Silva-Bailao et al., 2018; Li et al., 2019; Raffa
et al., 2019; Antsotegi-Uskola et al., 2020), but the molecular
mechanisms underlying Cu toxicity have mainly been explored
in bacteria. It was postulated that the targets of Cu toxicity are
nucleic acids, structural and functional proteins, lipids, and
inhibition of metabolic processes such as respiration and
osmotic pressure, leading to cytolysis (Gaetke et al., 2014; Tan
et al., 2017). To investigate the primary intracellular targets of
Cu-induced ROS, we compared the proteomic profiles of a Cu-
sensitive metallothionein double-knockout mutant among the
Cu treatment, Cu plus NAC treatment groups, and control
groups. The differentially expressed proteins under Cu stress
were restored by NAC, an ROS scavenger, suggesting that ROS
accumulation is a key factor in Cu toxicity.

We investigated the normalized intensity identified by MS of
several proteins associated with ROS metabolism (Figure S4)
FIGURE 3 | Gene Ontology (GO) enrichment of differentially expressed proteins under copper (Cu) stress. The proteins were annotated with subcategory terms in
the three GO categories: biological processes, cellular compartments, and molecular functions. For each category, a two-tailed Fisher’s exact test was used to
assess the enrichment of the differentially expressed protein against all identified proteins. The GO subcategories with a p-value <0.05 were considered significantly
enriched and shown in the figure. The size of the bubbles represents the proportion of differentially expressed proteins in this subcategory among the total number of
proteins in the corresponding category.
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(Aguirre et al., 2006). For example, Sod2 (J9VWW9_CRYNH)
was up-regulated during Cu treatment, but not in the presence of
NAC, while Sod1 (J9VLJ9_CRYNH) was stably expressed under
each treatment. These results were consistent with those reported
in Histoplasma: Sod2 protects yeasts specifically from exogenous
superoxide, while intracellular Sod1 eliminates endogenous ROS
(Youseff et al., 2012). In addition, Catalase3 and peroxidase Tsa1
(J9VH55_CRYNH) were significantly up-regulated under Cu
treatment. Furthermore, Cu up-regulated the iron-sulfur
cluster transporter Atm1 (J9VWU3_CRYNH) and iron-sulfur
protein assembly co-chaperone HscB (J9VWP1_CRYNH).
These results were consistent with the previous research
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
(Aguirre et al., 2006; Perez-Gallardo et al., 2013; Garcia-
Santamarina et al., 2017)

The role of Cu inDNA damage is controversial. Macomber and
colleagues reported noDNA oxidative damage during Cu overload
in Escherichia coli (Macomber et al., 2007). In our study, Cu down-
regulated processes involving the nucleosome and DNA packaging
complex, as inferred based on expression changes in histone
proteins. Histone ubiquitination and ADP glycosylation have
been reported to be related to DNA repair (Thorslund et al., 2015;
Cao et al., 2016; Uckelmann and Sixma, 2017; Liszczak et al., 2018).
However, in our western blot analysis, the major differences in
ubiquitination were concentrated in proteins with a molecular
A B

FIGURE 4 | Clustering-based Gene Ontology (GO) enrichment analysis of differentially expressed proteins following treatment with copper (Cu), Cu and N-
acetylcysteine (NAC), or untreated (control). (A) Hierarchical clustering analysis of differentially expressed proteins under Cu stress. The x-axis represents the
clustering of the samples and the y-axis represents the clustering of the differentially expressed proteins. The colors represent the relative expression levels of the
proteins: the maximum value is red and the minimum value is blue. (B) Bubble diagram of enriched GO subcategories for the differentially expressed proteins in the
three clusters, indicating p-values and protein ratios.
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weight higher than that of histone. Thus, further experiments are
required to explore the effect of Cu stress on DNA.

The spatial distribution of ROS formation suggests that RNA is
more likely to be damaged than DNA. We did not confirm the
stability of RNA under Cu stress, but research in E. coli has shown
that oxidative stress can disrupt translation and damage ribosomal
RNA. When the 70S and 23S subunits, which harbor the peptidyl
transferase center, were oxidized, cells lost translation activities
related to ribosomal proteinL12(Willi et al., 2018).These results are
consistent with our data, which showed that most of the ribosome
subunits were down-regulated under Cu stress. Our functional
annotation analysis also suggested that up-regulated rRNA
biogenesis and U3 small nucleolar RNA-associated proteins may
be related to the response to Cu stress.

According to our data, Cu stress down-regulated protein
synthesis and up-regulated protein degradation in C. neoformans,
while NAC prevented these changes, suggesting that disruption of
protein homeostasis is the main effect of Cu-induced ROS.
Regarding down-regulating protein synthesis, in E. coli,
ribosomes are inhibited by gold nanoparticles, which prevent
ATPase and tRNA binding (Cui et al., 2012). Additionally, the
key regulatory role that ribosomesplay in cell proliferation (Wilson,
2014), indicates that the down-regulation of the ribosomal subunits
may be a key limiting factor in cell growth. Consistently, proteomic
analysis of Saccharomyces cerevisiae showed that increased
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
intracellular ROS suppressed global protein synthesis, which may
be regulated by modulating the redox state of proteins (Topf et al.,
2018). Furthermore, a subunit of eukaryotic initiation factor 2
(eIF2a) was identified to be the translational repressor in response
to oxidative stress inC. neoformans (Leipheimer et al., 2019). These
evidence of crosstalk between ROS and protein synthesis may help
to elucidate the mechanism of Cu toxicity in C. neoformans.

Regarding the up-regulated protein degradation under Cu
stress, the proteasome pathway is the principal route of
intracellular protein degradation (Rousseau and Bertolotti, 2018).
We showed that proteasome activitywas increased duringCu stress
and induced by ROS accumulation. The fact that the effect of Cu
stress on growth restriction in C. neoformans was partially
ameliorated by the proteasome inhibitor MG132 suggested that
ubiquitin-mediated degradation underlies the growth restriction.
The crosstalk between Cu or Cu-induced ROS and the proteasome
pathway in C. neoformans remains unclear. However, clues can be
found in several studies. The accumulation of ubiquitinated
proteins alters the cellular redox state, leading to AMPK
activation (Jiang et al., 2015). Additionally, cAMP/PKA can
protect against oxidative damage (Geddes et al., 2016). Our study
provides the perspective in that the inhibition of ubiquitin–
proteasome pathway help to recover C. neoformans proliferation
during high Cu or ROS stress. The protective function of MG132
may dues to the inhibition of degradation of key regulatory factors,
A

B

FIGURE 5 | Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways targeted after copper (Cu)-induced accumulation of reactive oxygen species (ROS).
(A) The ribosome pathway was down-regulated under Cu stress. The KEGG database was used to identify enriched pathways. A schematic diagram of ribosome
subunits from the KEGG database is shown. All proteins in the ribosome pathway that were identified in the proteomic analysis are displayed in squares. Blue
indicates down-regulated proteins (q-value <0.05) and gray indicates unchanged proteins. (B) Two protein degradation pathways (endoplasmic reticulum-associated
degradation and ubiquitin-mediated proteolysis) were up-regulated under Cu stress. All proteins identified in these two pathways that were identified in the proteomic
analysis are displayed in ellipses. Red indicates up-regulated proteins (q-value <0.05) and gray indicates unchanged proteins.
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such as heat shock factors. And the accumulation of abnormal
proteins caused rapid increases in mRNA levels. This may induce
the protective factors expression during recovery process (Bush
et al., 1997; Lee and Goldberg, 1998; Mazroui et al., 2007).

Inhibition of protein degradation could not completely offset
Cu toxicity. We identified changes in branched-chain amino acid
biosynthesis, mitochondrial transmembrane transport, and
ATP-binding cassettes in response to Cu stress, which may be
associated with energy metabolism. Their relationship of these
changes to Cu toxicity requires further study.

In summary, we assessed the global proteins response to Cu
toxicity in C. neoformans. The core data may provide a theoretical
basis for the development of antifungal drugs targeting the Cu ion
metabolism pathway, to shorten treatment courses and increase
therapeutic options. Continued attention should be paid to the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
characterization of the roles of specific proteins in virulence and the
molecular mechanisms based on proteomic data.
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