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In April 2020, we published a special issue on schizo-
phrenia, with multiple articles of considerable conceptual
novelty and impact [1–19]. As we finish this 25th volume of
Molecular Psychiatry, we have in this issue four exciting
new papers that address two crucial and inter-related
directions in schizophrenia research, namely glycosylation
and white matter changes.

In a Perspective article, Mealer et al. point out that the
role of glycosylation in schizophrenia has been emerging
from genome-wide association studies (GWAS) [20]. They
discuss the findings that the most robust coding variant in
schizophrenia GWAS is a missense mutation in the man-
ganese transporter gene solute carrier family 39 member 8
(SLC39A8), which is associated with altered glycosylation
patterns in humans, and variants near several genes
encoding glycosylation enzymes are unambiguously asso-
ciated with schizophrenia. Those include the fucosyl-
transferase 9 (FUT9), alpha-mannosidase 2 (MAN2A1),
transmembrane O-mannosyltransferase targeting cadherins
1 (TMTC1), polypeptide N-acetylgalactosaminyltransferase
10 (GALNT10), and 3-beta-glucuronosyltransferase 1
(B3GAT1) genes. In this interesting perspective/hypothesis
paper, the authors summarized the known biological func-
tions, target substrates, and expression patterns of these
enzymes as primers for future studies. They also highlighted
a subset of schizophrenia-associated proteins critically
modified by glycosylation including glutamate receptors,
voltage-gated calcium channels, the dopamine D2 receptor,
and complement glycoproteins. Their central hypothesis
is that common genetic variants alter brain glycosylation
and play a fundamental role in the development of
schizophrenia.

Aberrant glycosylation in schizophrenia was also the
topic of a review of 25 years of post-mortem brain studies
by Williams et al. [21]. They point out the same observation
noted by Mealer et al. [20] that there is recent evidence for
the association of several enzymes of glycosylation with
schizophrenia by GWAS, which shows the importance of
glycosylation in this disease. Williams et al. then review
studies conducted over the past 25 years, analyzing post-
mortem brain samples, which have found evidence of
aberrant glycosylation in individuals with schizophrenia.
Those findings underline the role of proteins involved in
both excitatory and inhibitory neurotransmission display
altered glycans in the disease state, including α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and
kainate receptor subunits, glutamate transporters excitatory
amino acid transporter 1 and 2 (EAAT1 and EAAT2), and
the γ-aminobutyric acid A (GABAA) receptor. Poly-
sialylated NCAM (PSA-NCAM) and perineuronal nets,
highly glycosylated molecules critical for axonal migration
and synaptic stabilization, which are downregulated in
multiple brain regions of individuals with schizophrenia.
They also show that, additionally, enzymes spanning sev-
eral pathways of glycan synthesis exhibit differential
expression in brains of individuals with schizophrenia.
These changes may be due to genetic predisposition,
environmental perturbations, medication use, or a combi-
nation of these factors. Enhancing our understanding of
how glycosylation is dysregulated in the brain will make it
possible for us to fully ascertain its role in the development
and pathophysiology of schizophrenia.

The connection between glucose, cognition, and white
matter (WM) was the topic of an exciting study conducted
by Zhang et al. that simultaneously examined glucose dis-
turbances, cognitive deficits and WM abnormalities in first-
episode drug-naive schizophrenia [22]. First, it is very
important that they were able to conduct their study at the
pre-treatment stage, thereby avoiding the confounding fac-
tor of the effects of antipsychotics on glucose metabolism.
Having obtained such a critical group of drug-naïve
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patients, they showed that abnormal glucose metabolism,
cognitive impairment and widespread disruption of WM
structure occurs early in the course of schizophrenia, and is
demonstrable at the onset. They conclude that interactions
between glucose metabolism abnormality and WM dys-
connectivity may lead to cognitive impairment. Because
this study examines a sample at the onset of illness, the
question then arises: how do these alterations in critical
pathways evolve during the course of schizophrenia?

The WM component of that important question is
answered by Cetin-Karayumak et al. in a large multicenter
study involving 13 centers in North America, Europe and
Asia [23]. The authors determined the pattern of age-related
fractional anisotropy (FA) changes by cross-sectionally
assessing the timing of the structural neuropathology asso-
ciated with schizophrenia. Quadratic curves were used to
model between-group FA differences across whole-brain
white matter and fiber tracts at each age; fiber tracts were
then clustered according to both the effect-sizes and pattern
of lifespan white matter FA differences. They found that in
whole-brain white matter, FA was significantly lower across
the lifespan and reached peak maturation younger in
patients compared to controls. Additionally, they demon-
strated that three distinct patterns of neuropathology
emerged when investigating white matter fiber tracts in
patients: (1) developmental abnormalities in limbic fibers,
(2) accelerated aging and abnormal maturation in long-
range association fibers, (3) severe developmental
abnormalities and accelerated aging in callosal fibers. The
authors concluded by suggesting that these findings indicate
that white matter in schizophrenia is affected across entire
stages of the disease and that white matter alterations in
schizophrenia involve dynamic interactions between neu-
ropathological processes in a tract-specific manner.

It is remarkable that these four outstanding papers pro-
vide an in-depth understanding of both glycobiology
[20, 21], white matter abnormalities [23], well as well as
their interactions in schizophrenia [22]. In future issues,
Molecular Psychiatry will continue to publish outstanding
advances in schizophrenia research.
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