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Induction of potent tumor-specific cytotoxic T-cell responses is a fundamental objective in
anticancer therapeutic strategies.This event requires that antigen-presenting cells present
tumor-associated antigens (Ag) on their MHC class-I molecule, in a process termed cross-
presentation. Dendritic cells (DC) are particularly keen on this task and can induce the
cross-priming of CD8+ T cells, when exposed to danger or inflammatory signals that
stimulate their activation. Type I interferons (IFN-I), a family of long-known immunostim-
ulatory cytokines, have been proven to produce optimal activation signal for DC-induced
cross-priming. Recent in vitro and in vivo evidences have suggested that IFN-I-stimulated
cross-priming by DC against tumor-associated Ag is a key mechanism for cancer immuno-
surveillance and may be usefully exploited to boost anti-tumor CD8+ T-cell responses.
Here, we will review the cross-presentation properties of different DC subsets, with spe-
cial focus on cell-associated and tumor Ag, and discuss how IFN-I can modify this function,
with the aim of identifying more specific and effective strategies for improving anticancer
responses.

Keywords: type I interferon, interferon alpha, cross-priming, dendritic cells, dendritic cell subsets, cancer, tumor-
associated antigen, immunosurveillance

INTRODUCTION
Anti-tumor immune responses are evoked by several effector
cells. These include both innate immune cells, like NK cells and
macrophages, and cells of the adaptive immunity. Among these,
CD8+ T cells are ideal tumoricidals, due to their capacity to
recognize and kill malignant cells in an antigen (Ag)-specific fash-
ion and to establish a long-lasting protection. The activation of
anti-tumor CD8+ T-cell responses is fulfilled through a process
known as cross-priming and requires the uptake of extracellu-
lar Ag also in the form of tumor cells by the antigen-presenting
cell (APC), which subsequently delivers the engulfed material to
a distinct endosomal/lysosomal pathway that allows the processed
peptides to be presented on MHC class-I (MHC-I) molecules
(cross-presentation) (1).

Among APC, dendritic cells (DC) have been described as the
sole cell type able to cross-present cell-associated Ag and stud-
ies on both mouse and human models have revealed that distinct
DC subsets display differential capacities to perform this process
resulting in the induction of immunity or tolerance. In this respect,
for cross-presentation to result in cross-priming, three signals
must be delivered by DC: (i) loading and cross-presentation of cell-
derived Ag onto MHC-I, (ii) appropriate co-stimulation through
membrane molecules, and (iii) secretion of pro-inflammatory
cytokines. Among cytokines produced by DC and capable of trig-
gering DC activation, type I interferons (IFN-I) have been shown
to play a major role in promoting cross-priming against both solu-
ble proteins and cell-associated Ag, such as Ag derived from tumor
apoptotic cells.

Here we discuss the most recent advances in Ag cross-
presentation properties by several types of DC and on the capacity
of IFN-I to turn on CD8+ T-cell cross-priming.

DC SUBSETS CAPABLE OF MEDIATING CROSS-PRIMING
MOUSE DC
In the murine immune system several DC subtypes have
been characterized (2). The spleen contains at least five sub-
sets distinguished by expression of specific surface markers:
plasmacytoid DC (pDC; CD11clowPDCA-1+B220), CD8α DC
(CD8α+CD4−CD11b−), CD11b DC (CD8α−CD4−CD11b+),
CD4 DC (CD8α−CD4+CD11b+), and merocytic DC (mcDC;
CD8α−CD4−CD11b−). These DC subsets markedly differ in their
abilities to capture and cross-present antigenic material and only
some of them can cross-present cell-associated Ag (3).

CD8α DC is the most efficient DC subset in Ag cross-
presentation uniquely able to prime CD8+ T cells against cell-
associated Ag in vivo (4–6). In the steady-state, CD8α DC capture
dead cells resulting from constitutive turnover and play a cen-
tral role in self-tolerance (6, 7). The in vivo relevance of CD8α

DC in CD8+ T-cell cross-priming against cell-associated Ag has
been better clarified by studies with mice devoid of this DC
subset. Mice deficient for either transcription factors Batf3 or
NFIL3/E4BP4, both lacking CD8α DC selectively, display impaired
cross-priming of CD8+ T cells against cell-associated Ag (8, 9).
Similarly, IRF-8−/−mice, which are devoid of CD8α DC and pDC,
display impaired capacity to cross-present both soluble and tumor
cell-derived Ag (10, 11).

Initial studies showing that CD8α DC capture cellular Ag more
efficiently than other DC subsets suggested that this was the prin-
cipal mechanism for increased cross-presentation ability by CD8α

DC (5, 12). Indeed, CD8α DC selectively express some recep-
tors, such as CLEC9A or Tim-3, involved in the recognition of
necrotic and apoptotic cells, respectively, and implicated in cross-
presentation of cellular Ag (13–15). Additional studies unraveled

www.frontiersin.org December 2013 | Volume 4 | Article 483 | 1

http://www.frontiersin.org/Immunology
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/about
http://www.frontiersin.org/Journal/10.3389/fimmu.2013.00483/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2013.00483/abstract
http://www.frontiersin.org/people/u/69455
http://www.frontiersin.org/people/u/67040
http://www.frontiersin.org/people/u/88545
mailto:giovanna.schiavoni@iss.it
http://www.frontiersin.org
http://www.frontiersin.org/Tumor_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Schiavoni et al. Interferon-induced DC cross-priming in cancer

that CD8α DC also possess a special processing machinery that
delivers the internalized Ag onto the MHC-I processing pathway
(16). Such machinery involves the activity of the small GTPase
Rac2, selectively operating in CD8α DC, and the subcellular
assembly of the NADPH oxidase complex (NOX2) to phago-
somes that maintains a high phagosomal pH and thus facilitates
cross-presentation (17).

The lymph nodes (LN) contain additional DC subtypes, termed
migratory DC, arising from non-lymphoid tissues where they
normally reside. Of the two types of migratory DC described,
namely CD103−CD11b+ and CD103+CD11b−, only the latter
has been described to cross-present cellular Ag captured either in
the lung (18) or in the skin (19). The shared efficiency for Ag cross-
presentation by CD8α DC and CD103+ DC has been attributed
to a developmental relationship, since these two DC subsets have
a common dependence on the transcription factors Batf3, Flt3L,
Id2, and IRF8 for their differentiation (20–22). Recent findings
showed that CD8α DC and CD103+ DC specifically co-express
XCR1, a receptor for CD8+ T-cell-secreted XCL1 that couples DC
cross-presentation to induction of CD8+ T-cell immunity (23,
24). XCR1 was found to be a conserved specific marker also for
additional murine DC subtypes (including a small percentage of
mcDC and of CD103− DC) and for human DC subsets devoted
to cross-presentation of cell-associated Ag (25–27).

Janssen’s group reported that mcDC capture dying cells,
although less efficiently than CD8α DC, and cross-prime CD8+

T cells for an extended time due to prolonged Ag storage (3,
28). In vivo, mcDC induce tumor-specific CTL responses in B16
melanoma-bearing mice (28). Of note, injection of tumor vaccine-
loaded mcDC, but not of CD8α DC, elicited protective responses
from subsequent tumor challenge in mice in a vaccination EL-
4 thymoma model and resulted in therapeutic eradication of
established EL-4 and B16 melanoma tumors (28, 29).

Although cross-presentation of soluble proteins by mouse pDC
can occur upon Toll-like receptor (TLR) engagement (30), there
is no evidence that pDC may cross-present cell-associated Ag.
Instead, pDC can indirectly enhance CD8+ T-cell cross-priming,
through production of IFN-I and other soluble mediators (31–
34). The capacity of CD11b DC to cross-present cellular Ag
is also weak. In a murine model of mesothelioma expressing
influenza virus hemagglutinin, as a membrane-bound neo-tumor
Ag, one group has reported that both CD8α DC and CD11b
DC from tumor-draining LN could cross-present membrane
hemagglutinin (35). This observation suggests that the anatom-
ical location may affect the efficacy of CD11b DC for tumor Ag
cross-presentation.

HUMAN DC
Human DC also display some heterogeneity. In the blood, DC may
be essentially distinguished into BDCA1+ myeloid DC (mDC),
BDCA3+ mDC, and pDC. BDCA3+ mDCs have been reported to
cross-present Ag on their MHC-I molecules more efficiently than
other DC populations. Due to functional and phylogenetic simi-
larities, this subset is thought to be the human equivalent of mouse
CD8α DC (36–38). BDCA3+ mDCs selectively express CLEC9A
and XCR1 and efficiently cross-present Ag derived from dead cells
(25, 36, 37).

The role of human pDC as professional APC in the cross-
presentation of exogenous Ag is under intensive investigation.
Tumor cells infected with a measles virus vaccine are able to
induce tumor Ag cross-presentation by human pDC via pro-
duction of large amounts of IFN-α (39). Furthermore, harness-
ing uptake receptors to deliver Ag to pDCs can enhance cross-
presentation and IFN-I production, resulting in the generation
of potent anti-tumor responses (40). The efficacy of pDC has
been verified in a cohort of metastatic melanoma patients in
whom activated pDC were found to induce Ag-specific T-cell
responses and significantly extended overall survival (41). It has
been recently shown that pDC cross-present soluble and cell-
associated tumor Ag to cytotoxic T lymphocytes to the same degree
as BDCA3+ mDC (42, 43). Indeed, two recent reports argued on
the notion that cross-presentation is restricted to certain human
DC subsets. Amigorena’s laboratory showed that freshly isolated
tonsil-resident pDC, BDCA1+, and BDCA3+ mDC cross-present
soluble Ag with the same efficiency, displaying comparable phago-
somal pH, production of reactive oxygen species and capacity
to export internalized proteins to the cytosol (44). Delamarre’s
group reported that the diverse human DC subsets are equally
able to cross-present exogenous Ag to CD8+ T cells provided that
the Ag is delivered to early endocytic compartments (43). These
findings have extensive implications for vaccination strategies
aiming at exploiting ex vivo-differentiated autologous DC, resem-
bling primary DC subsets and endowed with strong cross-priming
ability.

ENHANCEMENT OF CROSS-PRESENTATION BY IFN-I IN
MURINE DC
In the steady-state or in the context of a tumor, DC cross-
presentation of cell-associated Ag rarely results in CD8+ T-cell
cross-priming due to lack of immunostimulatory signals capable
of activating DC. IFN-I is the prototype inflammatory cytokine
released upon infection or under physiological distress acting as a
stimulus for DC cross-priming (45). In vivo, IFN-I induces CD8+

T-cell cross-priming against viral or soluble protein Ag through
DC stimulation (46). Recently, we showed that IFN-I can affect DC
cross-presentation of cell-associated Ag. In vitro or in vivo expo-
sure of CD8α DC that have engulfed irradiated tumor cells to IFN-I
resulted in three distinct effects: (i) increased retention of engulfed
apoptotic material that correlated with decreased endosomal acid-
ification and resulted in enhanced Ag cross-presentation, (ii)
prolonged survival of phagocytic CD8α DC, and (iii) pheno-
typic activation of the cross-presenting DC that resulted in DC
“licensing” for cross-priming (10). Similar results were obtained
using tumor cells killed by the chemotherapeutic agent cyclophos-
phamide as a source of antigenic material for CD8α DC. In this
setting, addition of IFN-I resulted in CD8+ T-cell cross-priming
in vitro and tumor rejection in vivo (47).

Two different groups have recently reported the in vivo rele-
vance of endogenous IFN-I signaling on CD8α DC for promoting
CD8+ T-cell-dependent spontaneous tumor rejection. Diamond
et al. (48) showed that mice lacking IFN-α/β receptor 1 selectively
in DC cannot reject methylcholanthrene-induced fibrosarcoma,
a highly immunogenic tumor normally rejected by immuno-
competent mice, and that CD8α DC from these mice display
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defective Ag cross-presentation to CD8+ T cells. Similarly, by using
IFN-α/β receptor 1−/− and Batf3−/− mice transplanted with B16
melanoma, Fuertes et al. (49) reported that endogenous IFN-I,
produced shortly after tumor challenge, was essential for intratu-
moral accumulation of CD8α DC and for induction of tumor
Ag-specific T-cell priming and tumor rejection via CD8α DC
stimulation. These studies underscore CD8α DC as fundamen-
tal targets for endogenous IFN-I-mediated spontaneous immune
control of a rising tumor.

Cross-priming mediated by mcDC also requires IFN-I. How-
ever, unlike CD8α DC, which fail to produce IFN-I upon uptake of
apoptotic cells, mcDC are able to do so. Adoptive transfer exper-
iments revealed that this endogenous IFN-I acts in an autocrine
manner to activate mcDC and is both necessary and sufficient for
boosting CD8+ T-cell cross-priming against cell-associated Ag (28,
29). Of interest, endogenous IFN-I signaling in mcDC was essen-
tial for preserving internalized material from early degradation
and endosomal acidification similarly to what observed with CD8α

DC exposed to exogenous IFN-I (3,10). These findings suggest that
IFN-I promote cross-priming in DC by exploiting a mechanism
involving regulation of endosomal pH and Ag retention that direct
the antigenic cargo toward the MHC-I processing pathway, as also
observed with human DC (see below) (50). Thus, regulation of
phagosomal acidification may be viewed as a strategy exploited by
inflammatory signals, such as IFN-I, to switch on cross-priming in
those DC subsets that under steady-state are devoted to tolerance
induction and may provide a mechanism (coupled to MHC-I up-
regulation) by which IFN-I induce autoimmune reactions, namely
by enhancing presentation of self Ag.

The ability of some compounds targeting TLR to stimulate
CD8+ T-cell cross-priming has also been shown to occur through
endogenous IFN-I production and subsequent DC stimulation
(51, 52). The efficacy of CpG in cancer immunotherapy is depen-
dent on cross-talk between pDC and conventional DC (mcDC and
CD8α DC), the first serving as a source of IFN-I through TLR9
triggering and the latter responding to IFN-I to promote CD8+ T-
cell cross-priming and anti-tumor response in melanoma-bearing
mice exposed to cryoablation (53).

ENHANCEMENT OF CROSS-PRESENTATION BY IFN-I IN
HUMAN DC
Type I interferons exert multiple effects on human DC, affect-
ing the major cellular pathways associated to their APC func-
tion, namely differentiation, maturation, and migration (54, 55).
Human immature conventional DC treated in vitro with IFN-I up-
regulate the expression of MHC-I, CD40, CD80, CD86, and CD83
molecules resulting in a superior capacity to induce CD8+ T-cell
responses (56, 57). Moreover, IFN-I support the differentiation of
human monocytes into DC with high capacity for Ag presentation
(58). IFNα induces one-step differentiation of human monocytes
into highly activated and partially mature DC (IFNα-DC), retain-
ing a marked phagocytic activity and exhibiting a special aptitude
for inducing CD8+ T-cell responses (59, 60). Studies on phenotype
and functions of IFNα-DC have pointed that these cells can resem-
ble naturally occurring DC, generated from monocytes in response
to danger signals, including infections when high levels of IFN-I
are released (61–65). Indeed, subtypes of DC resembling IFNα-DC

have been observed in patients suffering from autoimmune or
infectious diseases (54).

IFNα-DC express markers involved in antigen processing such
as CD208 and the scavenger receptor oxidized low-density lipopro-
tein receptor 1 (LOX-1), implicated in Ag uptake and CD8+ T-cell
cross-priming (66). In vivo, IFNα-DC generate cytotoxic responses
and CD8+ T-cell cross-priming against viral and tumor-associated
Ag (59, 67–69). Efficient cross-presentation of tumor-associated
Ag by IFNα-DC loaded with apoptotic human melanoma cells
was found to correlate with enhanced proteasome activity (68).
In addition, studies employing soluble Ag point to an effect of
IFNα in preserving Ag from early degradation, thus facilitating its
routing onto MHC-I pathway (50). Thus, although the intracellu-
lar mechanisms underlying the superior efficiency of IFNα-DC in
Ag cross-presentation need to be clarified, these evidences suggest
that IFN-I may control this process at diverse levels.

Interestingly, IFNα-DC have been reported to exhibit some
phenotypic features of pDC (70). We recently reported that IFNα-
DC and pDC share a similar miRNA signature as well as some
phenotypic and molecular markers potentially accounting for
common functional activities, such as IFN-I production upon viral
infection. Moreover, IFN-I was also able to affect some functions
of pDC, including the expression of the pDC-associated markers
IRF-8 and TLR-9 (71).

IMPORTANCE OF DC CROSS-PRIMING FOR ANTICANCER
IMMUNE RESPONSES AND PERSPECTIVES FOR
EXPLOITATION OF IFN-I POTENTIATING EFFECT
Several lines of evidence indicate that DC-mediated cross-priming
is crucial for anti-tumor immunity (72). First, tumor-infiltrating
DC purified from tumor samples have the capacity to cross-present
tumor Ag in vitro (73). Second, priming in vivo of anti-tumor
T-cell responses can be abrogated in models in which DC sub-
sets specialized for cross-presentation can be specifically depleted.
Indeed, Batf3−/− mice are unable to reject highly immuno-
genic tumors due to defective cross-presentation by Batf3−/− DC,
reduced tumor-infiltration of CD8+ T cells and failure to develop
tumor-specific CTL (8).

The therapeutic anti-tumor potential of IFN-I has been appre-
ciated since 1960s (74, 75). However, only recently it has become
clearer how IFN-I participate in naturally occurring, protective
immune responses to primary tumors, thus playing a promi-
nent role in cancer immunosurveillance. In addition, IFN-I has
been shown to be a crucial component of cancer-immunoediting,
namely the process whereby the immune system suppresses cancer
growth and shapes tumor immunogenicity (76,77). These findings
have renewed the interest in exploiting the anti-tumor potential
of IFN-I in therapeutic and vaccination strategies against cancer.

Therapeutic approaches that involve either exogenous IFN-I
administration or its induction within the tumor microenviron-
ment have shown effects on CD8+ T-cell responses via DC stimu-
lation at various levels. In mice with established B16 tumors, radio-
therapy induced a local increase in IFN-I expression by myeloid
immune infiltrates that acted enhancing the cross-priming abil-
ity of tumor-infiltrating DC and was crucial for host therapeutic
response (78). Furthermore, intratumoral delivery of IFN-I syn-
ergized with immunotherapy (79) and chemotherapy (47) to
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FIGURE 1 | In vivo induction of anti-tumor CD8+ T-cell responses through
IFN-I-mediated DC cross-priming at the tumor site. Systemic
chemotherapy and local radiotherapy (RT) induce tumor cell death that result
in the availability of antigenic material (which is otherwise provided by a tumor
vaccine) for internalization by specialized DC subsets, namely mcDC and
CD8α DC. These subsets then cross-present the tumor-associated Ag (TAA)
through their MHC-I complex to CD8+ T cells. In order to induce CD8+ T-cell
cross-priming, the cross-presenting DC need to be exposed to activation
stimuli (DC licensing), such as IFN-I. While mcDC spontaneously produce
IFN-I that act in an autocrine fashion to induce DC licensing for cross-priming,
CD8α DC are unable to do so and require the exogenous cytokine. Thus, in

the tumor site IFN-I may be made available in different manners: (1) via
intratumoral injection, (2) by RT, which stimulates IFN-I release by infiltrating
myeloid CD11b DC (and possibly other immune and non-immune cells), and
(3) by intratumoral delivery of IFN-I-inducing substances, such as TLR ligands.
Some TLR ligands can also bind to tumor cells that express TLR3 and TLR4 to
trigger autocrine IFN-I production and stimulation of DC. Alternatively, TLR
ligands, such as dsRNA and CpG, stimulate pDC to produce large amounts of
IFN-I. IFN-I secretion by pDC may also be stimulated by invariant NKT (iNKT)
cells via OX40 and HMGB1 released by dying tumor cells. The final outcome
of these events is the expansion of tumor-reactive CD8 T cells with killing
activity.

induce therapeutic response in tumor-bearing mice that involved,
in both cases, enhanced DC cross-presentation. Notably, IFN-I
can enhance anti-tumor CTL responses also via direct effects on
CD8 T cells, inducing their expansion and acquisition of effector
functions thus improving therapeutic efficacy (80, 81).

With regard to protocols employing vaccine preparations, co-
administration of CpG with a DC vaccine was found to overcome
tumor-specific tolerance after stem cell transplantation, induc-
ing protective anti-tumor response through CpG-induced IFN-I
in vivo (82). Recently, Shimizu and colleagues showed that vacci-
nation with B16 melanoma cells loaded with the invariant NKT
cell ligand αGalCer stimulated tumor-reactive CD8+ memory T

cells in a novel mechanism involving cross-talk between XCR1-
expressing DC and pDC via NKT-stimulated IFN-α production by
pDC (33). Human studies also point to the use of IFN-I-inducers
as promising approach to boost anti-tumor effector responses. The
efficacy of topical application of the TLR7/8 agonist imiquimod,
the only TLR agonist approved by FDA for skin cancer treatment,
has been linked to local increase of IFN-I production, recruitment
of DC and induction of tumor-reactive CTL (83). Finally, it is
worth mentioning that tumor-derived IFN-I may also positively
contribute to anti-tumor immune response. In virtue of their TLR
expression, B16 melanoma cells were found to respond to ligands
to TLR3 and TLR4 by releasing substantial levels of IFN-I that
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induced DC activation and resulted in tumor growth inhibition
by the host (84, 85).

CONCLUDING REMARKS
Despite IFN-α has received approval for therapy of several neo-
plastic diseases, side effects of systemic long-term treatments and
insufficiently high efficacy have challenged its use in current clini-
cal protocols. Therefore, novel strategies to exploit IFN-I in thera-
peutic and vaccination protocols are needed that take into account,
for example, controlled timing of administration to avoid negative
feedback mechanisms in the responding immune cells (58, 86),
and the involvement of active cross-talk between multiple types
of immune cells that play different, non-overlapping roles within
the tumor site. In this view, the combined use of chemotherapy
or radiotherapy that kill cancer cells, providing source of Ag for
DC, with exogenous IFN-I or compounds capable of inducing
IFN-I in situ may be viewed as promising strategies for boost-
ing DC cross-presentation and CTL induction within the tumor
microenvironment (Figure 1).
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