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Production planning for biopharmaceutical portfolios becomes more complex when products
switch between fed-batch and continuous perfusion culture processes. This article describes the
development of a discrete-time mixed integer linear programming (MILP) model to optimize
capacity plans for multiple biopharmaceutical products, with either batch or perfusion biopro-
cesses, across multiple facilities to meet quarterly demands. The model comprised specific fea-
tures to account for products with fed-batch or perfusion culture processes such as sequence-
dependent changeover times, continuous culture constraints, and decoupled upstream and
downstream operations that permit independent scheduling of each. Strategic inventory levels
were accounted for by applying cost penalties when they were not met. A rolling time horizon
methodology was utilized in conjunction with the MILP model and was shown to obtain solu-
tions with greater optimality in less computational time than the full-scale model. The model
was applied to an industrial case study to illustrate how the framework aids decisions regard-
ing outsourcing capacity to third party manufacturers or building new facilities. The impact of
variations on key parameters such as demand or titres on the optimal production plans and
costs was captured. The analysis identified the critical ratio of in-house to contract manufactur-
ing organization (CMO) manufacturing costs that led the optimization results to favor building
a future facility over using a CMO. The tool predicted that if titres were higher than expected
then the optimal solution would allocate more production to in-house facilities, where manufac-
turing costs were lower. Utilization graphs indicated when capacity expansion should be con-
sidered. VC 2013 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on
behalf of American Institute of Chemical Engineers Biotechnol. Prog., 30:594–606, 2014
Keywords: capacity planning, scheduling, business decision-making, mixed integer linear
programming, rolling time horizon

Introduction

Biopharmaceutical companies with growing portfolios of
commercial therapeutics face the challenge of generating
medium- and long-term production plans for several drugs
across several multiproduct manufacturing sites that maximize
capacity whilst minimizing cost. There are various examples

of the repercussions of incorrect capacity planning, including
high-profile company acquisitions owing to over- and under-
capacity, respectively.1 Capacity sourcing strategies for bio-
pharmaceutical companies often involve consideration of
build-vs.-buy decisions, that is, choosing whether to build in-
house facilities or outsource manufacturing to a contract man-
ufacturing organization (CMO).2 Developing a comprehensive
production planning strategy requires careful assessment of
the cost, risk, and time trade-offs of each option.1,3,4

Decisions to build a facility for commercial production
need to be scheduled several years in advance before a
drug’s full market potential, likely dose range, cell line pro-
ductivity, and process yields are known. The use of CMOs
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enables such capital outlays to be delayed whilst incurring a
premium for their services. A further factor affecting the
decision relates to the relative difference in manufacturing
efficiencies assumed between in-house and external manufac-
turing. In the case study presented in this article, third party
manufacturers were assumed to have higher manufacturing
yields than the drug developer company.5

By outsourcing to CMOs, biopharmaceutical companies
can mitigate risks concerning failed batches, natural disas-
ters, incorrect market demand forecasts, or a clinical trial
failure. The downside of using CMOs is usually the loss of
process control, or delays in technology transfer to in-house
facilities if later required.6 Building a new facility con-
versely, requires consideration of the lead time for construc-
tion, commissioning, and validation of the facility, all of
which can take up to 4 years to complete, and can cost $40–
650M for large commercial antibody facilities.7 Conse-
quently, more effective optimization frameworks are required
to facilitate capacity sourcing decisions across a network of
existing in-house and CMO facilities as well as potential
new builds so as to ensure the availability of sufficient
capacity whilst minimising running costs and capital outlays.

Production planning is complicated by portfolios of commer-
cial candidates that are made with different cell culture modes:
fed-batch mode, or continuous perfusion for labile products.
The complication arises from the fact that perfusion cell cul-
tures can span many months, whereas fed-batch cell cultures
are usually 2 weeks in duration. The discrete time representa-
tion used in this model is of 1 month, thus extra modeling con-
straints need to be introduced to ensure that production is not
stopped half-way through a cell culture (as it is meant to model
a continuous process). Every time a new perfusion cell culture
begins, ramp-up times need to be considered as the manufac-
turer may choose not to harvest any material during this period,
as it is not meeting all required specifications. Material is nor-
mally harvested semicontinuously from perfusion processes,
which is conceptually different from a fed-batch process where
material is harvested at the end of the cell culture. Thus, these
continuous harvests need to be incorporated in the model’s con-
straints. Changing from one mode of operation to another also
increases the changeover time normally associated with product
switchovers. This adds more complexity to the optimization as
a larger number of constraints are required.

Previous work on production planning has been limited to
batch processes and has revolved predominantly around mathe-
matical programming, most commonly mixed integer linear pro-
gramming (MILP). Early research into capacity planning8–11

produced general mathematical formulations for multiple cam-
paigns in multipurpose batch plants with features such as cam-
paign changeovers and inventory profiles. These included
models for the pharmaceutical sector using a mathematical
MILP formulation that addressed strategies in capacity plan-
ning, product development, and investment where taxation and
different sales regions were captured.12 The model used time
periods of 1 year, and hence it was solely to be used for capacity
planning rather than scheduling. Lakdhar et al.13 developed an
MILP for the planning and scheduling of a multi-product bio-
pharmaceutical manufacturing facility and showed it to be more
efficient in terms of facility utilization and cost reduction than
the standard industrial rule-based approach. This model was
later expanded into a multi-facility and multi-product model,
where fluctuations in demand were considered, as well as multi-
objective criteria such as customer service level and facility uti-
lization by means of goal programming.3

Short-term scheduling of batch plants with sequence-
dependent changeover times has been addressed using
continuous-time representation MILP models with either
binary variables or extra constraints.14 Combined planning
and scheduling models can be computationally expensive
and have been tackled by different approaches such as a
multi-stage MILP approach15 and mathematical program-
ming formulations with separate scheduling and planning
aspects of supply chain optimization, which are then linked
sequentially via a common time basis.16

Biological systems often show great variability in productiv-
ity during early development, and thus attempts to capture
uncertainties within the model are important. For pharmaceuti-
cal (non-biologic) products, capacity planning under uncertainty
in clinical trials has been addressed using an MILP model with
a hierarchal procedure to improve performance of large mod-
els,17 a scenario-based aggregation/disaggregation procedure18

and a framework, which includes both stochastic simulation and
an MILP model.19 For biopharmaceutical products, both evolu-
tionary algorithms and mathematical programming approaches
have been developed. Lakhdar et al. captured the impact of
uncertain fermentation titres on medium-term production plans
of biopharmaceutical products using chance-constrained pro-
gramming.20 George and Farid addressed capacity planning
under several clinical, technical, and commercial uncertainties
using stochastic evolutionary algorithms.21

Most biopharmaceutical production planning work20,21 has
focused on batch rather than continuous processes. Perfusion
mode is not as common as batch mode, but in certain circum-
stances (e.g., when product stability is an issue) it is the only
option available to manufacturers. In these cases, a framework
which can help them predict capacity bottlenecks and manu-
facturing profitability would aid decision-making on key ques-
tions such as whether to outsource production or not.

This article describes the development of a discrete-time
MILP model that incorporates both perfusion and fed-batch
processes to produce capacity plans and manufacturing
schedules. Extra constraints have been incorporated to more
realistically model the perfusion process. For example, ramp-
up times and cell culture durations spanning multiple time
periods have been implemented for perfusion-mode proc-
esses. One of the challenges met by this formulation is the
ability to include sequence-dependent changeover times
between products, which is necessary because switching
between perfusion and fed-batch modes takes longer than
staying within the same process mode. Annual fixed costs
are also included in the model, along with other investment
considerations such as retrofitting costs and investment into
constructing new facilities. These additional features allow
the model to pick strategies based on a more holistic
approach, and thus provide more economically feasible solu-
tions. Strategic inventory targets have also been implemented
such that the manufacturer can choose to have extra stock of
product should demand unexpectedly rise or supply suddenly
fall. These extra features add to the complexity of the model,
and thus require additional central processing unit (CPU)
resources to obtain a satisfactory solution. Hence, a rolling
time horizon has been implemented and has successfully
managed to improve solutions, whilst at the same time
reduce time requirements. The impact of variations on key
parameters such as demand or titres on the optimal produc-
tion plans and costs was captured through scenario analysis.

The remainder of this article consists of an explanation of
the problem domain in Section “Problem Definition,”
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followed by a description of mathematical formulation used
in the MILP model in Section “Mathematical Formulation
and Solution Procedure.” An industrial case study is then
used to explore the capabilities of the model and identify
trends, which can be used to aid business decisions (Section
Illustrative Example). The mathematical nomenclature can
be found at the end of this article.

Problem Definition

The focus of this work is on long-term multi-site production
planning for biopharmaceuticals to minimize the total manu-
facturing cost and investment whilst satisfying demands. The
key features of the problem are discussed below.

Facility features

Allocation of biopharmaceutical facilities across multiple
sites requires an understanding of the different facility fea-
tures such as scale and capability to manufacture each prod-
uct as well as any differences in fermentation titres and
downstream processing (DSP) yields. The number and size
of bioreactors will directly affect a facility’s upstream proc-
essing (USP) capacity. The same product could be manufac-
tured in two different facilities, with each facility having a
different number of bioreactors available; hence, the optimi-
zation will select, which facility to use based on cost and
capacity requirement. DSP scales will also vary as there
may be different sized purification equipment such as chro-
matography columns or filtration rigs. Depending on how
the DSP is set up, it could mean that the time required for
purification is different between facilities. For example, if
the same amount of material is to be processed by a facility
with a smaller filtration device, that particular step will be
slower (when compared to a larger filtration unit with
greater throughput). There may also be multiple DSP trains
to process the material from one harvest, which is common
for antibody production with high titres.22 Conversely, oper-
ators could decide to keep the purification time constant, but
change the amount of material processed. These process
choices must be correctly captured in the model for there to
be realistic manufacturing flexibility. The capability of a
facility to manufacture a product will differ, not just owing
to logistical aspects, but also strategic. For example, if a
future facility is built with perfusion products in mind, then
it may not be possible to later manufacture fed-batch prod-
ucts. A CMO, however, may be capable of manufacturing
all of the products, but due to licensing and IP issues a
company may wish to keep production of certain products
in-house. Another key facility feature is the cost of manu-
facturing a product there. Cost differences are present
between in-house and CMO facilities to reflect the extra
service cost with CMOs.21

Fed-batch vs. perfusion culture processes

The USP stages of mammalian cell culture processes typi-
cally involve either fed-batch or perfusion culture.23 It is
also possible to have one or more steps of the seed train as
perfusion-mode, and the production cell culture as fed-
batch.24 Perfusion culture is necessary for labile products
such as blood factors and enzymes (e.g., CerezymeVR ) and
has also been used for certain stable monoclonal antibody
(mAb) products (e.g., RemicadeVR ) using retention devices
that range from gravity settlers to filtration devices.23 Perfu-
sion processes typically offer higher daily volumetric pro-
ductivities, and hence smaller facility footprints than fed-
batch culture strategies.23,24 However, they are generally
more complex to operate, require increased amounts of
media, and are susceptible to higher failure rates.23,25 Newer
perfusion retention devices using external tangential flow fil-
ters aim to overcome some of these obstacles with the capa-
bility to attach to single-use bioreactors combined with
lower failure rates and higher productivities.26 This has
increased interest in the business case for perfusion-based
processes and process economic analyses have explored the
cost-benefit of perfusion vs. fed-batch processes.23,25 How-
ever, in recent years, fed-batch culture has become the plat-
form choice for most mAbs due to dramatic increases in fed-
batch titres combined with ease of operation.22,25

The USP mode of operation has a direct impact on the
scheduling of the subsequent DSP steps. In fed-batch mode
(Figure 1), the culture is harvested at the end of the cell cul-
ture duration and subsequently purified by a series of DSP
steps (e.g., chromatography). In perfusion mode, material is
continuously harvested, recovered, captured, and sometimes
frozen throughout the fermentation culture. Once enough
material has been pooled together, it is purified downstream
(Figure 2). There is also a set amount of time required for
quality and assurance tests after each harvest before it can
be processed downstream. The ramp-up time is the time
required for the cell culture to reach a certain cell density,
after which steady state is achieved. Material is sometimes
harvested during the ramp-up time, but in this work it is
assumed to be discarded. The DSP can be carried out imme-
diately or at a later date, either within the same facility or a
different one should there be financial incentive. The DSP
can only be carried out immediately after harvesting if no
quality release testing is required. Perfusion cell cultures
usually operate for longer than fed-batch cultures, and as no

Figure 1. Batch-mode process using two staggered bioreactors.

Figure 2. Perfusion mode cell culture.
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clean-in-place or steam-in-place can occur during this time,
there is a greater risk of contamination.27 For perfusion proc-
esses, sterility samples are taken every day and viral samples
are taken every 2 weeks. Extra testing may be required for
longer cell culture durations as the risk of contamination is
increased the longer a bioreactor is operating for.

Perfusion processes can, therefore, be modeled as a black
box, where DSP directly follows USP, or using a decoupled
design. The flexibility in perfusion-mode manufacturing is
only apparent if USP and DSP are decoupled from each
other. The black box design is simpler and can, therefore, be
solved quicker, but the decoupled design allows for more
manufacturing flexibility, which could (depending on input
parameters) provide a lower overall manufacturing cost and
is also a closer representation of reality.

Key performance indicators

Successful production planning requires consideration of
cost factors such as the manufacturing cost, the capital invest-
ment required either to build new facilities or retrofit existing
ones, as well as inventory costs. The manufacturing cost can
be separated into fixed and variable costs. This model assumes
the variable cost to consist solely of materials, with costs
attributed to labour, depreciation, and facility overheads being
assigned to fixed costs. The inventory cost includes the actual
warehouse costs as well as the cost attributed to the opportu-
nity lost in selling the product. In addition to costs, customer
service levels can be assessed to see how much customer
demand is met on time. Insufficient capacity will lead to lower
customer service levels. It is also important to determine the
facility utilization to avoid idle expenses. Facility utilization
may need to be kept within certain targets. If facility utiliza-
tion is too high, any unplanned downtime could severely affect
the customer service level. Underutilization, conversely, may
suggest a misplaced investment in capacity. Together, these
performance indicators help a manufacturer to assess the via-
bility of a production plan.

Mathematical Formulation and Solution Procedure

The following section describes the mathematical formula-
tion developed to address the problem domain. The nomencla-
ture can be found at the end of this article. It is important to
note that many of the variables have been duplicated for the
upstream and downstream parts of the model (e.g., the number
of batches produced). To aid with legibility, the superscripts
“U” or “D” denote upstream or downstream, respectively.
This model uses a discrete time representation, with monthly
time resolution. This means, for example, that for an 8 year
planning horizon there would be 96 time periods.

Technical and commercial constraints

Production Constraints. In essence, the number of
upstream batches produced in time period t, for product p, in

fermentation suite i, is denoted by BU
ipt and is equal to the

batch rate ðrU
ipÞ multiplied by the amount of time

available ðTU
iptÞ. If there is a changeover between products

p’ and p, ZU
ip0pt

will equal 1, and a campaign changeover

time ðap0pÞ is subtracted from the available time. Depending

on whether the product is manufactured using fed-batch or
perfusion culture, an additional time is subtracted. For per-

fusion products p 2 Pp (Eq. 2), the ramp-up times ðbpÞ are

subtracted when new perfusion cell cultures begin (Fipt 5 1).

For fed-batch products p 62 Pp (Eq. 1), the time required for

the first batch (s
0
p) is subtracted so that the effective batch

rate can be used from that point onward. For example, if the
fed-batch process is like that shown in Figure 1, the first
upstream batch would take 14 days, but from that point
onward there will be another batch every 7 days. The extra
time necessary for the first batch is only required when a

new campaign starts (Y
0
ipt 5 1). To compensate for the

removal of time for the first batch, Y
0
ipt is added to the num-

ber of batches. Hence, when a new campaign of a fed-batch

product begins, Y
0
ipt is equal to 1, and the number of batches

produced is equal to 1 plus the effective batch rate multiplied
by time available minus time required for the first batch.

BU
ipt5Y

0

ipt1 rU
ip TU

ipt2s
0

pY
0

ipt2
X

p0
ap0pZU

ip0pt

 !
� � � 8t; p 62 Pp; i 2 It\Ip

(1)

BU
ipt5rU

ip TU
ipt2bpFipt2

X
p
0

ap0 pZU
ip0 pt

0
@

1
A � � � 8t; p 2 Pp; i 2 It\Ip

(2)

To ensure only one product is manufactured in a suite at
any given time, the binary variables YU

ipt and YD
ipt, which are

equal to 1 if product p is manufactured in suite i at time t
for upstream and downstream suites, respectively, are con-
strained as follows:X

p

YU
ipt � 1 � � � 8t; i 2 It (3)

X
p

YD
ipt � 1 � � � 8t; i 2 It (4)

New upstream campaigns are indicated with Y
0
ipt being

equal to 1, and this can only occur if there was no produc-
tion of that product in the previous time period.

Y
0

ipt � YU
ipt2 YU

ip;t21 � � � 8t; p; i 2 It\Ip (5)

The number of upstream batches for products using fed-
batch mode, p 62 Pp, is equal to the number of batches in the
purification (assuming there is no pooling or splitting of fer-
mentation volumes):

BU
ipt5BD

ipt � � � 8t; p 62 Pp; i 2 It\Ip (6)

For perfusion products, the number of downstream batches
is simply equal to the batch rate multiplied by the amount of
time available:

BD
ipt5rD

ipTD
ipt � � � 8t; p 2 Pp; i 2 It\Ip (7)

Availability Constraints. In order for production to take
place in a facility, it must first be available for use. It may
first need to be built, retrofitted, or may even be unavailable
for another reason (e.g., being used for another product
which is not in the current product portfolio). The variable
AU

ipt is equal to 1 if facility i is available to product p at time
t for upstream production. Variable Afacility

it is equal to 1 if
facility i has been built and is ready to be used at time t,
and variable Aretrofit ; U

ipt is equal to 1 if facility i has been ret-
rofitted for product p and is ready to be used at time t for
upstream production.
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YU
ipt � AU

ipt � � � 8t; p 2 P; i 2 It\Ip (8)

YD
ipt � AD

ipt � � � 8t; p 2 P; i 2 It\Ip (9)

AU
ipt � Afacility

it � � � 8t; p 2 P; i 2 It\Ip (10)

AD
ipt � Afacility

it � � � 8t; p 2 P; i 2 It\Ip (11)

AU
ipt � Aretrofit;U

ipt � � � 8t; p 2 P; i 2 It\Ip (12)

AU
ipt � Aretrofit;D

ipt � � � 8t; p 2 P; i 2 It\Ip (13)

The availabilities for building a facility or retrofitting
(Afacility

it , Aretrofit;U
ipt ) are linked to the investment constraints

which follow.

Investment Constraints. Before a facility can be used,
there must first be investment into the construction of that
facility. The facility is not available before the time is takes
to construct it (sbuild

i ). Construction starts as soon as invest-
ment is made. The variable Ki;t is equal to 1 if capital is
invested at time t.

Afacility
it � Afacility

i;t21 1Ki;t2sbuild
i
� � � 8t; i 2 It (14)

In order for a product to be manufactured in a facility,
any relevant retrofitting must be carried out. LU

ipt is equal to
1 if facility i has been retrofitted for product p at time t. The
investment for retrofitting must be spent sretrofit

i time periods
before the facility becomes available for that product.

Aretrofit;U
ipt � Aretrofit;U

i;p;t21 1LU
ip;t2sretrofit

i
� � � 8t; p 2 P; i 2 It\Ip (15)

Aretrofit;D
ipt � Aretrofit;D

i;p;t21 1LD
ip;t2sretrofit

i
� � � 8t; p 2 P; i 2 It\Ip (16)

The model also includes any licence fees and start-up costs,
and this is indicated via Lipt. There is no differentiation
between upstream and downstream here as a licence is assumed
to be required per facility, not per suite. If there are special
licences or costs that are applicable to suites rather than facili-
ties, then they can be incorporated into the retrofitting costs.

AU
ipt � AU

ip;t211Lipt � � � 8t; p 2 P; i 2 It\Ip (17)

AD
ipt � AD

ip;t211Lipt � � � 8t; p 2 P; i 2 It\Ip (18)

Fixed Cost Constraints. A simplified fixed cost model is
used to calculate the annual fixed cost in each facility. Gen-
erally, the products would have different fixed costs, and
thus, the annual fixed cost would be the maximum of the
fixed costs of the products produced in that year. If no prod-
uct is manufactured in a given year, then there is still a fixed
cost applied because the facility still needs to be maintained
under Good Manufacturing Practice (GMP) conditions.

Upstream and downstream suite use (UU
i and UD

i Þ is sepa-

rated so that fixed costs can be attributed individually. If a
suite has never been used over the planning horizon (e.g., if
it had never been built, or if no product was ever allocated
to it), then no fixed costs need to be applied for that suite.

Also note that only the facilities which are owned (Iowned )
need to be subjected to fixed costs. This is achieved in the
objective function where the cost is applied.

UU
i � YU

ipt � � � 8t; p; i 2 It\Ip (19)

UD
i � YD

ipt � � � 8t; p; i 2 It\Ip (20)

Timing Constraints. To tighten the optimization’s search
for an integer number of batches, a minimum processing

time can be enforced. The maximum utilization time in any
given month,Tmax

p ; is usually just equal to 30 days, but in
some cases this can be adjusted to tighten the optimization.

Tmin;U
p YU

ipt � TU
ipt � Tmax;U

p YU
ipt � � � 8t; p 2 P; i 2 It\Ip (21)

TD
ipt � Tmax;D

p YD
ipt2

X
p0

ap0pZD
ip0pt � � � 8t; p 2 P; i 2 It\Ip (22)

Changeovers occur when there is a product switch within
the same facility. In the following equations, ZU

ip0pt is equal
to 1 when there is a changeover from product p0 to p. If
there is an idle period, this model will assume that the
changeover will take place in the idle period and thus will
not subtract from available production time.

ZU
ip0pt � YU

ipt1 YU
ip0 ;t21

21 � � � 8t; p0 ; p; i 2 It\Ip\Ip0 (23)

ZU
ip0pt � 12YU

ipt1 YU
ip0 ;t21

� � � 8t; p0 ; p; i 2 It\Ip\Ip0 (24)

ZD
ip0pt � YD

ipt1 YD
ip0 ;t21

21 � � � 8t; p0 ; p; i 2 It\Ip\Ip0 (25)

For perfusion products, new cell cultures start (Fipt 5 1)
when a new campaign starts:

Fipt � YU
ipt2 YU

ip;t21 � � � 8t; p 2 Pp; i 2 It\Ip (26)

As perfusion cell cultures have a fixed length (sT
p ), it is

necessary to ensure that a new cell culture is started once
the previous one has finished.

Fipt � YU
ipt1Fip;t2sT

p
21 � � � 8t; p 2 Pp; i 2 It\Ip (27)

The following constraint ensures that the perfusion cam-
paign is run for its entire length, and that each day in the
month is also used. This last point is important as once a
perfusion process has started, it should be run continuously,
and thus there cannot be idle days in the middle of the cell
culture. The cell culture’s duration in days and time periods
are represented by sp and sT

p , respectively. Thus, if a new
150 day cell culture is started, Fipt will be equal to 1, and so
the equation forces the total time used during the cell culture
to be equal to 150 days. Note that although the equation
does not explicitly restrict the total time, it is limited in the
timing constraint from earlier (Eq. 21).

spFipt �
Xsp21

h50

TU
ip;t1h � � � 8t; p 2 Pp; i 2 It\Ip (28)

The following constraint is needed to prevent the situation
where perfusion campaigns are started near the end of the
planning horizon, without enough time to finish. It also sol-
ves a problem, where Fipt can potentially be equal to 1 even
if it is not the beginning of a new perfusion campaign (this
can happen if the model wishes to add downtime to lower
the cost or meet a constraint).

Fipt50 � � � 8i; p 2 Pp; t 2 T : t > ðjTj2sT
p 11Þ (29)

Inventory Constraints. The constraint shown in Eq. 30
states that the inventory level for the fermentation product
(IU

ipt) is equal to its previous level plus any material produced
in subsequent batches (taking into consideration quality
checks of duration sqc

p ), minus any material which is used
for purification (Qijpt). The amount of material produced in
one time period is equal to the output per batch (xU

ip) multi-
plied by the number of batches, and is adjusted using a
rejection coefficient (R). So if 5% of material is rejected,
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then 95% of the material from the batches can enter the
inventory.

IU
ipt5xU

ip 12Rð ÞBU
ip;t2sqc

p
1IU

ip;t212
X

j

Qijpt � � � 8t; p 2 P; i 2 It\Ip

(30)

The flow of material from the fermentation suite, i, to the
purification suite, j, is characterised by Qijpt. Aforemen-
tioned, the lot size for the purification train is fixed for each
product, and this is enforced by the following constraint:

X
i

Qijpt5xload
p BD

jpt � � � 8t; p 2 P; j 2 It\Ip (31)

where i is the fermentation suite and j is the purification
suite. Equation 31 states that the total flow of material in a
given time period from all the fermentation suites to the cur-
rent purification suite must equal an integer number of
batches multiplied by the batch lot size. This constraint
means that material can be pooled from different fermenta-
tion suites and processed as one batch in a DSP suite. This
is an assumption in the model and should be adapted if pool-
ing is not allowed.

The downstream inventory level of product p in time
period t in facility i is equal to the amount produced (taking
into consideration production losses) plus the previous
month’s inventory level, minus any amount of material sold
(Sipt) or wasted (Wipt). The amount sold is limited by
demand (Eq. 39). Assuming all material here is used, the
amount produced is simply equal to the output per batch
(xD

ip) multiplied by the number of batches (BD
ipt).

ID
ipt5xD

ipBD
ipt1ID

ip;t212Sipt2Wipt � � � 8t; p 2 P; i 2 It\Ip (32)

In any given time period, the model will try to maintain
the strategic inventory level (Imin

p Þ by calculating the gap
between the inventory level and the target (Iunder;U

pt Þ, and
then penalizing this variable in the objective function.X

i

IU
ipt � Imin;U

p 2Iunder;U
pt � � � 8p 2 P; t (33)

X
i

ID
ipt � Imin;D

p 2ID;under;D
pt � � � 8p 2 P; t (34)

Utilization Constraints. There are maximum utilization
targets for in-house facilities, and thus constraints need to be
put into place to accomplish this. For every in-house facility
and each year, the following equations restrict the total time
used for each product in each month of the year to be below
the maximum allowed. Therefore, if the maximum desired
facility utilization is 75%, Tmax util can be set to 270 days.
The model applies the same utilization target to both
upstream and downstream suites.X

p

X
t2Ty

TU
ipt � Tmax util � � � 8i 2 Iowned ; y 2 Y (35)

X
p

X
t2Ty

TD
ipt � Tmax util � � � 8i 2 Iowned ; y 2 Y (36)

Shelf-Life Constraints. The products have a limited shelf-
life (fpÞ, and so a constraint needs to be introduced (Eq. 38)
to ensure that the product is sold before its shelf-life expires.
Also, the intermediate product from the upstream process
must be purified before it expires (Eq. 37).

IU
ipt �

XfU
p

h51

X
j

Qijp;t1h � � � 8t; p 2 P; i 2 It\Ip (37)

ID
ipt �

XfD
p

h51

Sip;t1h � � � 8t; p 2 P; i 2 It\Ip (38)

Sales Constraints. To allow for feasible solutions in situa-
tions where demand cannot be met, a backlog variable Dpt is
introduced. This variable is then penalized in the objective
function so as to ensure as much demand is met as possible.
Some products (notably those which use perfusion) require
quality checks before being passed to purification, and thus
this time must be considered when meeting the demand. If the
demand for a certain product is in month eight, but it takes
one month to perform the quality checks, then the material
must be ready by month seven, ensured by Sip;t2squality

p
.X

i2Ip

Sip;t2squality
p

5Dpt2Dpt1Dp;t21 � � � 8p; t (39)

Objective function

The discount factor is calculated as:

�t5
11f

11g

� �t21

; (40)

where f is the rate of inflation and g is the interest rate.

The individual costs have been broken down as follows:

Inventory cost

5 IC5
X

i

X
p

X
t
�t qip IU

ipt1ID
ipt

� �
1qcarry

ip IU
ipt1ID

ipt

� �� �
(41)

Inventory penalty cost

5 IPC5
X

p

X
t

�t Ipenalty
p Iunder;U

pt 1Iunder;D
pt

� �� �
(42)

Variable cost 5 VC5
X

i

X
p

X
t
�t gbias

ip gU
ipBU

ipt1gD
ipBD

ipt

� �� �
(43)

Fixed Cost 5 FC5
X

i2Iowned

X
t

�t ucost;U
i UU

i 1ucost;D
i UD

i

� �
(44)

Transportation cost 5 TC5
X

i

X
j

X
p

X
t
�t qc

ijQijpt

� �
(45)

Waste cost 5 WC5
X

i

X
p

X
t
�t wcost Wiptð Þ (46)

Backlog penalty cost 5 BPC5
X

p

X
t

�t dpDpt

� �
(47)

Facility investment 5 FI5
X

i

X
t

�t jiKitð Þ (48)

Retrofitting cost 5 RC5
X

i

X
t

X
p

�t kU
ipLU

ipt1kD
ipLD

ipt

� �
(49)

Licence cost 5 LC5
X

i

X
t

X
p

�t kipLipt

� �
(50)

The total cost consists of all the above costs summed
together, and finally Eq. 1–51 form the MILP problem to be
optimized.
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Minimize Total Cost 5 IC 1 IPC 1 VC 1 FC 1 TC

1 WC 1 BPC 1 FI 1 RC 1 LC

(51)

Optimization strategies

To obtain a good solution within reasonable time
becomes increasingly more difficult as the number of prod-
ucts, facilities or time periods being captured rises. To
achieve better solutions, a rolling time horizon was used,
whereby a smaller optimization problem was run first, and
part of the solution to this subproblem was used to initiate
the subsequent larger problem. For example, if the capacity
plan was for 8 years, the first subproblem could be a 4-year
plan, and once this has solved the second subproblem could
be 5 years in length, but with the binary variables in the
first year fixed to the solution from the previous subpro-
blem. The next subproblem would be 6 years in length,
with the first 2 years fixed from previous solutions, and the
process continues until the full 8 years has been captured.
Although this approach is unlikely to find the true optimum
(as optimality gaps are accumulated for each subproblem),
for the example investigated in this work it can provide bet-
ter solutions than the full scale optimization under finite
time. It should be stressed that given an unlimited amount
of time, the full scale mode will always provide the best solu-
tion. Table 1 shows a rolling time horizon where only 4 years
are actually optimized in any given subproblem, with the

time horizon expanding by 1 year each time, fixing the binary
variables of earlier years using the solution from the previous
subproblem. The rolling horizon approach implemented in
this work avoids infeasible situations by allowing backlogs to
accumulate if demands in future years are greater than the
model was previously able to detect in the subproblems.
Backlogs are penalized in the objective function, hence infe-
rior solutions could arise. However, in the base case pre-
sented here, the rolling time horizon approach performed
better than the full model in finite time.

Illustrative Example

Input data

This framework is tested on a case study of a generic port-
folio of four drugs and four facilities, key details of which are
listed in Tables 2–5. Representative data for this case study
were derived from literature sources (e.g. 22,23,28), as well
as through discussions with industrial practitioners involved
in fed-batch and perfusion processes and production planning.
The four facilities consist of two in-house facilities, one con-
tract manufacturer, and one facility that can be built in the
future if required. The four products are in differing stages of
clinical trials, but the demands modeled here are for when the
products reach the consumer market. Hence, the points where
demands start in Table 4 differ according to how close the
product is to market penetration. The time horizon for this
case study is 8 years.

The quality control/quality assurance (QC/QA) time
shown in Table 2 is only applicable to perfusion processes,
whereby the intermediate frozen material from fermentation
is checked prior to purification. This can lead to a substantial
lag between material being produced in the fermentation
step, and it being able to be purified and thus meet demand,
hence is included in the model.

Not all products can be manufactured in every facility,
and for those combinations which are allowed there may be
a one-off retrofitting cost associated with initial production.
For example, for strategic reasons a company may wish to

Table 1. Illustration of a Rolling Time Horizon.

Dark-grey boxes show years where optimization takes place, white
boxes where no optimization occurs, and diagonally shaded boxes where
the binary variables are fixed from the previous solution.

Table 2. Process Data for Drugs in Case Study

Product

p1 p2 p3 p4

Process Data

USP
Fermentation mode Perfusion Perfusion Perfusion Fed-batch
Cell culture duration (days) 150 60 28 14
Ramp-up time (days) 10 10 10 N/A
Harvest (AU*/day) 14.3 37.8 4.8 N/A
Shelf-life (months) 24 24 24 N/A
QC/QA time (days) 30 30 4 N/A

DSP
Lot size (AU*) 450 1,000 720 105,000
Duration (days) 1.5 1.5 4 4
Shelf-life (months) 24 24 24 24

Cost Data

USP
Variable cost (RMU†/AU*) 0.05 0.05 0.225 0.018
Fixed cost (RMU†/year) 65 65 65 65

DSP
Variable cost (RMU†/AU*) 0.002 0.002 9,000 100
Fixed cost (RMU†/year) 48 48 48 48
Sales price (RMU†/AU*) 6 6 27 0.1

*Arbitrary units.
†Relative monetary units.
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keep the production of one of their products to in-house
facilities only, and thus CMOs would not be available for its
manufacturing. To use in-house facilities, however, retrofit-
ting is required, which must be taken into account during the
optimization. Other products may not be able to be manufac-
tured in a facility simply because the correct equipment is
unavailable and retrofitting may be infeasible. Table 3 shows
the production relationships between the products and facili-
ties in this case study, and also states which combinations
require retrofitting.

Table 4 shows what the desired inventory levels for the
intermediate frozen material and final DSP products are, and
it is assumed that these levels remain constant throughout
the 8 years of capacity planning. In reality, these figures
would probably change as they are influenced by annual
demand, and thus as demand increases over the years so
would the strategic inventory level.

Once a product has shown promise and the company
wishes to expand to commercial manufacturing, a biologic
licence application and prescription drug user fee needs to
be applied for (this can total just over $2M).29 Each time a
product is manufactured in a new facility, a licence applica-
tion needs to be submitted, and thus the model will try to
minimize the number of licences applied for and keep pro-
duction limited to one facility if possible. Table 5 shows the
different costs associated with starting production in a partic-
ular facility for a certain product. These costs include the
licence costs mentioned previously and retrofitting costs
(new equipment and facility utilities).

There are also changeover times between the products, as
listed in Table 6, which are important to model as when the
process mode changes from perfusion to fed-batch, there can
be large amounts of downtime due to swapping large unit
operations which cannot be shared.

Computational results

The model predicted the production plan of the four prod-
ucts across four available facilities. The results in Figure 3
show the plan over 8 years for different demand scenarios.
The base case requires the use of a CMO to meet the
demand for p3 and excess demand for p4. Note that the man-
ufacturing of a product is kept within one facility if possible
so as to minimize licence fees. It is clear to see that when the

demand is low, all production can be met in-house and with-
out further expansion. Higher demands require almost full use
of all the facilities available, and expansion to a CMO and
new facility. Despite not being shown here, the market
demands for all the products were met in full for almost all
scenarios (100% customer service level). Only in the last year
of the 150% demand case was there a small backlog for p3

and p4 (customer service level of 95%). Therefore, from a
strategic viewpoint, the scenario with higher demand looks
less robust as the facilities are heavily utilized and there are
already small backlogs accumulating. There is very little mar-
gin for error should there be a contamination or failed batches,
thus extra capacity would be desirable.

A cost breakdown for the three demand cases shown in Fig-
ure 4 was conducted and shows a clear increase in cost attrib-
uted to CMO activity in the higher demand case (Figure 4c).
For in-house production, the ratio between variable to fixed
costs ranges from approximately 1:7 (low demand) to 1:4
(high demand). This range is justifiable as the demand
increases, so too will the variable costs, whilst the fixed costs
will remain unchanged. It should be noted that for this partic-
ular case study, once production in a facility has started,
annual fixed costs will be applied to that facility from that
point onward, because most activities included in the fixed
costs (such as labour, facility maintenance, and cleaning) will
be on-going even if there is an idle year. The higher demand
case also shows that 5% of the total cost comes from the
investment required to build the new facility.

Capital expenditure information for all three demand
cases is shown in Figure 5, and correlates to the retrofitting
and facility investment costs in Figure 4. The capital expen-
ditures for the reduced demand case and base case are only
that of retrofitting. For the higher demand scenario, a new
facility is required, and the cost of building the facility is
spread out over 4 years, hence the expenditure between
years 1–4. Retrofitting costs are minimized by the model
attempting to keep production within one facility if
possible.

Another scenario that may occur is variability in titres for
certain products. Process parameters for products in early
stages of development are not as well known as process
parameters for commercial products or products in late stage

Table 3. Facility Manufacturing Capabilities

Facility

Product

P1 P2 P3 P4

i1 Y* Y* Y* Y *
i2 Y Y N N
CMO N N Y Y
Future Y Y N Y

Note: Product can (Y) or cannot (N) be produced in facility. Retrofit-
ting requirement denoted by *. Facilities i1, i2 and the future facility are
owned.

Table 4. Product Demand and Strategic Inventory Levels (arbitrary units, 3103)

Year Strategic Inventory

1 2 3 4 5 6 7 8 USP DSP

p1 0 20.2 20.3 20.5 21.4 27.2 28.3 29.9 8.6 26.4
p2 0 0 1.1 3.2 5.3 7.4 9.5 11.5 22.7 19.2
p3 0 0 0 0.4 0.4 0.4 0.44 0.48 2.2 0.2
p4 0 0 0 0 2,500 2,750 3,030 3,330 N/A 1,900

Table 5. Initial Start-Up Costs (including Retrofitting, CMO Nego-

tiation Fees, and Licences) in Relative Monetary Units.

Product

p1 p2 p3 p4

USP i1 32.5 32.5 32.5 32.5
i2 0 0 – –
CMO – – 7 7
Future 10 10 – 10

DSP i1 87.5 87.5 32.5 32.5
I2 0 0 – –
CMO – – 7 7
Future 10 10 – 10
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development. Also, when approaching a CMO they may
have superior technologies which can boost titres. Scenarios
were carried out to see how varying the titres for p3 and p4

by a 25% reduction and 50% increase could affect the
capacity requirement (Figure 6). These two products were
chosen because less was known about their manufacturing
processes as they were in early clinical trials. Products p1

and p2, conversely, were nearing the end of their trials;
hence, process parameters are known with greater certainty.
The reason the titre is varied from 225 to 150% is based
on the assumption that if there were to be titre changes/fluc-
tuations, it is more likely to be in the positive direction due
to ongoing research, improving cell lines or process design.
There is still the risk, however, that the process may not
scale well, and hence lower titres are also examined. Titre

variations of 620% are not uncommon when scaling up a pro-
cess.30 For example, a lower titre cell line may be selected if
it generates fewer host cell impurities or demonstrates more
consistent behavior. When the titre is lower than expected, a
much larger proportion of external capacity is required, both
in the form of a CMO and through building a new facility.
The choice of whether to go to a CMO or build a future facil-
ity is mainly influenced by cost and is discussed later on. Note
although, that under the base case conditions a CMO is the
preferred choice as there is much less capital investment
required, and the fixed overheads (which are the dominant
costs for in-house production) are no longer applied in the
same way as for in-house facilities. The CMO would still pass
on its fixed costs to its customers, but if manufacturing does
not span an entire year and the CMO has other clients, this
will amount to less than would have otherwise been spent in-
house. A CMO alone would not have been enough to meet
demand for the reduced titre scenario; hence, the future facil-
ity was required. With higher titres, the model pushes for a
greater proportion of in-house manufacturing (75%) as there
is now unused capacity in the existing facilities.

This case study includes a CMO in the list of available
facilities, and as such the costs of production there will be
different to the in-house production costs shown in Table 2.
The cost of production in a CMO can be up to three times

Table 6. Changeover Times between Products.

Product (p)

p1 p2 p3 p4

Product (p0) p1 7 7 7 14
p2 7 7 7 14
p3 7 7 7 14
p4 14 14 14 7

The units are in days, and represent the time taken to change from
product p0 to p.

Figure 3. Manufacturing schedule for the base case (a), 250% demand (b) and 150% demand scenario (c).
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greater than in-house manufacturing, depending on the scale
of production.4,22,31 In the base case, we have stated that the
CMO costs are 50% higher. However, this is only an
assumption, and hence the model was used to show what
would happen to the capacity plan if the CMO costs were to

Figure 4. Cost breakdown for different demand cases.

Base case is shown in (a), 50% decrease in demand in (b) and 50% increase in demand in (c).

Figure 5. Capital expenditure profiles for the base case, 50%
demand, and 150% demand.

Figure 6. Cost and utilization vs. titre variance.

The size of the bubbles represent the amount of extra capacity
required to meet the demand. This extracapacity could be
sourced from a CMO, or a future facility. The utilization per-
centage used for this figure relates to the USP only.

Figure 7. Utilization of CMO and future facility vs. ratio of
in-house to CMO manufacturing cost.

The utilization percentages displayed here are for the USP pro-
duction and are the average monthly utilization from the
moment the facility is used to the end of the 8 year capacity
plan.

Figure 8. Inventory profile for p1, including both USP and
DSP levels.

The optimization attempts to maintain strategic levels, but it
will always place more importance on meeting demand first.
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change. CMOs are naturally more expensive than in-house
production as they not only need to cover their costs but also
charge commission. The extra amount that is paid will be
dependent on the CMO’s experience, location and technology
it has to offer. Given that the CMO costs in this particular case
study are uncertain, an analysis was conducted to see how
much more expensive the CMO had to become before it
became cheaper to build a new facility and produce in-house.
Figure 7 shows that once the CMO becomes 50% more expen-
sive than in-house production, a future facility provides alter-
native means of meeting market demand at lower costs. The
utilization of the CMO decreases as the cost of the CMO
increases, but it never reaches 0% (even at 10 times the cost of
in-house production) because there is simply not enough
capacity in the existing facilities for the fermentation of p3

(which is being produced in the CMO). On top of this, the
future facility cannot produce p3, hence the fall in utilization
for the CMO is not as large as one would initially expect.

Inventory profiles are useful to see whether the results are
what one would expect as they clearly show whether the tar-
gets are being met and if there is a lot of variation. Figure 8
shows the inventory profile for a perfusion-mode process, and
thus includes the upstream inventory level as well as the
downstream level. The figure also includes the strategic
inventory levels that should be maintained throughout the
capacity plan. As noted before, the levels may in reality
change over time, but this model assumes them to remain
constant. The figure quickly demonstrates to a manager that
the correct inventory levels are being maintained in the mid-
dle of the plan, but near the end the levels tend to drift down-
ward toward zero. This is actually owing to the fact that the
penalty applied for being under the strategic level in the
objective function is applied on a monthly basis, and thus
near the end there are fewer months available to penalize the
shortfall, hence being under the strategic level no longer has
such a detrimental effect on the objective function. It, there-
fore, becomes cheaper to have less product in storage.

Utilization graphs can also be used to detect if extra
capacity could be directed toward an existing facility with
low utilization, or whether a facility is deemed to be utilized
too much and hence raises risk concerns should there be any
unplanned downtime. Figure 9 shows how facility i2 is
almost at maximum capacity, with only small breaks in pro-
duction. The breaks in production are actually there on pur-

pose as there is an utilization cap of 75%. This provides
leeway should problems with failed batches occur. Facility i1
still has some available capacity, but not enough to meet all
demand, hence why the CMO is used in the base case.

Computational statistics

The optimization was performed on an Intel Xeon W3565
Quad-core 3.2GHz processor, with 6 GB random access
memory (RAM) running Microsoft Windows XP 64-bit. The
framework presented in this article uses the CPLEX 12.5.1
solver32 within the General Algebraic Modeling System
(GAMS) 24.1.333 to solve the MILP problem, and outputs
the solution to Microsoft Excel for analysis using Visual
Basic for Applications. All optimizations (full-scale and roll-
ing time horizon subproblems) were completed to within 5%
optimality.

Although, the case study outlined previously is relatively
small, in that it only consists of four products and four
facilities (each with upstream and downstream suites), the
problem itself is computationally difficult to solve. Table 7
shows how the number of variables and constraints in the
model increases substantially with increasing numbers of
products, facilities, and time periods. It should be noted that
these numbers would fluctuate depending on the individual
case. For example, if a product cannot be manufactured in a
certain facility, then a set of constraints and variables would
be eliminated. The statistics for the case study presented in
this article are represented by the bold highlighted case in
Table 8. It is clear that the model could become consider-
ably larger in size if just a few extra products or facilities
were added to the case study. Hence, as the problem size
increases it becomes more critical to adopt solution strat-
egies that make the problem tractable, such as a rolling time
horizon.

Figure 9. Monthly utilization charts for in-house facilities i1 (a) and i2 (b) for the base case.

The percentages are of all products aggregated together for the fermentation (USP). Note that i1 cannot be used for the first 2 years as during that
time another product (not modeled here) has been designated to it.

Table 7. Model Statistics for Various Numbers of Products (p),

Facilities (i), and Time Periods (t).

Case Constraints
Continuous
Variables

Discrete
Variables

2p, 2i, 48t 6,605 4,719 1,148
4p, 4i, 96t 33,183 25,037 5,184

8p, 8i, 192t 426,567 350,349 45,696

The case study presented in this paper is highlighted in bold.
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Table 8 shows a clear improvement in using a rolling time
horizon, both in terms of obtaining a better optimal solution
and also a reduction in CPU time. Obviously, by solving
multiple subproblems (each to a 5% optimality gap), the best
bound in the final subproblem will have accumulated a
divergence from the full scale problem, hence for compari-
son the best bound for the full scale problem is used for cal-
culating all the optimality gaps. The 3/1 rolling horizon
approach seems to offer the most in terms of computational
speed, whereas the 4/1 approach finds a better solution but at
the cost of extra computational effort. Compared to an opti-
mization of 3 h with the full scale model, the 4/1 rolling
horizon provides a better solution within much less time.

Concluding Remarks

This article has demonstrated how production plans for fed-
batch and perfusion bioprocesses can be optimized using
mathematical modeling by incorporating various costs and
time constraints, including sequence-dependent changeover
times. Both the upstream and downstream processes have been
incorporated into the model, and decoupled by the use of an
intermediate storage step, which allows greater flexibility for
perfusion processes. The results demonstrate how capacity
plans can be quickly determined for various scenarios, aiding
the manufacturer in deciding when to consider outsourcing
production, and the capital expenditure likely to be required.

The solutions acquired using this framework were
improved through a rolling time horizon solution procedure,
and the CPU time required was also substantially reduced.
Future work will include incorporating features to maintain
strategic inventory levels throughout the time horizon,
addressing multiple objectives, and reducing the optimality
gap even further by appropriate model reformulations.
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Notation

Indices

i; j = facility (alias)

p; p0 = product (alias)

t; h = time period (alias)

y = year.

Sets

I = facilities

Iowned = owned facilities

Ip = facilities which can produce product p
It = facilities which are available in period t
P = products

Pp = perfusion products

Pi = products which can be produced in facility i
T = time periods

Ty = time periods which are in year y
Y = years.

Scalars

H = time horizon(days)

R = rejection coefficient (%)

wcost = waste cost

sretrofit = retrofitting time

Parameters

ap0p = changeover time (days)

bp = ramp-up time (perfusion only)

dp = backlog penalty cost

�t = discount factor

fU
p = upstream product shelf-life

fD
p = downstream product shelf-life

gU
ip = upstream product batch cost

gD
ip = downstream product batch cost

ji = facility investment cost

kip = licence fees

kU
ip = retrofitting cost for upstream product

kD
ip = retrofitting cost for downstream product

qip = storage cost

qcarry
ip = carry of inventory cost

s
0

p = duration of first batch of a fed-batch process (days)

sp = perfusion culture duration (days)

sT
p = perfusion culture duration (time periods)

sbuild
i = time taken to build facility

sretrofit
i = time taken to retrofit facility

tp = product selling price

Dpt = product demand

Ipenalty
p = penalty applied when strategic inventory level is not

met

Imin;U
p = strategic inventory level

Imin;D
p = strategic inventory level

qcost
ij = cost to transport intermediate material from facility i to j
rU

ip = USP batch rate (batches/day)

rD
ip = DSP batch rate (batches/day)

Tmax;U
p = maximum production time available within time period

Tmax;D
p = maximum production time available within time period

ucost;U
i = upstream fixed cost

ucost;D
i = downstream fixed cost

xload
p = downstream lot sizes

xU
ip = upstream batch output

xD
ip = downstream batch output

Binary Variables

Fipt = 1 if there is a new perfusion culture

YU
ipt = 1 if product p is manufactured in period t in facility i

(upstream)

Table 8. Comparison between the Computational Results for the

Full Scale Problem and the Rolling Time Horizon.

Case Obj. Func. (min) Optimality Gap CPU sec

Full scale 3,389 13.1% 10,800
Rolling 3/1 3,467 15.1% 140
Rolling 4/1 3,327 11.5% 1,484

Note: In the full scale model all 8 years were planned for simultane-
ously. In the rolling time horizon approach, either 3 or 4 years were
being optimized whilst expanding the horizon by 1 year for each subpro-
blem. The time reported for the rolling horizon approach is the sum of
all subproblems. The optimality gaps shown for the rolling time horizons
are calculated based on the best bound from the full scale model. Each
subproblem was optimized to within 5% optimality.
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YD
ipt = 1 if product p is manufactured in period t in facility i

(downstream)

Integer Variables

BU
ipt = number of upstream batches

BD
ipt = number of downstream batches

Positive Variables

AU
ipt = 1 if upstream suite is available

AD
ipt = 1 if downstream suite is available

Aretrofit;U
ipt = 1 if upstream suite has been retrofitted

Aretrofit;D
ipt = 1 if downstream suite has been retrofitted

Afacility
it = 1 if facility has been built

IU
ipt = upstream inventory level

ID
ipt = downstream inventory level

Iunder;U
pt = upstream inventory amount under strategic level

Iunder;D
pt = downstream inventory amount under strategic level

Kit = 1 if investment for facility i took place in period t
LU

ipt = 1 if retrofitting for facility i took place in period t
LD

ipt = 1 if retrofitting for facility i took place in period t

Qijpt = flow of material from fermentation to purification

Sipt = sales.

TU
ipt = production time used

Wipt = waste amount

Y
0
ipt = 1 if new campaign starts

ZU
ip0pt = 1 if upstream changeover occurs from p0 ! p

ZD
ip0pt = 1 if downstream changeover occurs from p0 ! p

Dpt = demand not met

cost = total cost (to be minimized)
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