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Identifying quantitative trait loci for the general combining ability of yield-
relevant traits in maize
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Maize is the most important staple crop worldwide. Many of its agronomic traits present with a high level of
heterosis. Combining ability was proposed to exploit the rule of heterosis, and general combining ability
(GCA) is a crucial measure of parental performance. In this study, a recombinant inbred line population was
used to construct testcross populations by crossing with four testers based on North Carolina design II. Six
yield-relevant traits were investigated as phenotypic data. GCA effects were estimated for three scenarios
based on the heterotic group and the number of tester lines. These estimates were then used to identify quan‐
titative trait loci (QTL) and dissect genetic basis of GCA. A higher heritability of GCA was obtained for each
trait. Thus, testing in early generation of breeding may effectively select candidate lines with relatively supe‐
rior GCA performance. The GCA QTL detected in each scenario was slightly different according to the link‐
age mapping. Most of the GCA-relevant loci were simultaneously detected in all three datasets. Therefore,
the genetic basis of GCA was nearly constant although discrepant inbred lines were appointed as testers. In
addition, favorable alleles corresponding to GCA could be pyramided via marker-assisted selection and made
available for maize hybrid breeding.
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Introduction

Maize is a staple allogamous crop. It generally has high
heterosis for yield-relevant traits. This property enables
maize to contribute significantly to global food and animal
feed supply and bioenergy production. Discovery of the
heterosis phenomenon prompted the development of hybrid
varieties (Darwin 1876, East 1908, Shull 1908). Hybrids
with yield potential and pathogen and insect pest resistance
superior to those of their parents can be developed by
crossing two inbred lines derived from different heterotic
groups. Therefore, dissection of the genetic architecture of
hybrid performance is pivotal in the formulation of efficient
breeding strategies.

Hybrid value is statistically decomposed into general
combining ability (GCA) and specific combining ability
(SCA). The former indicates the average hybrid perfor‐
mance of the parental line and reflects additive allelic
effects in quantitative genetics, mainly including additive
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and epistatic gene action effects. The latter is defined as the
values for certain combinations relative to the expected per‐
formance based on parental GCA effects. Its allelic effects
involve only dominant and epistatic gene action (Griffing
1956a, 1956b, Sprague and Tatum 1942). Evaluation of the
GCA effects of parental lines plays an important role in
commercial maize breeding. High GCA effects suggest that
the candidate line has high breeding value and better per‐
formance as the more favorable alleles are pyramided.
Hence, GCA estimation is a key step in the assessment of
the performance of parental lines. The objective is the cre‐
ation of potential high-yield hybrids based on the heterotic
group theory. In maize, hybrid performance is closely cor‐
related with the GCA effects (Fischer et al. 2008). Never‐
theless, the GCA is of genetically complex. It really
requires enormous amount of labors, time and resources to
evaluate the GCA effects of lines in conventional breeding
program. Hence, further elucidation for the quantitative
trait loci (QTL) of GCA are imperative for implementing
marker-assisted selection (MAS).

Exploration of the QTL relevant to the GCA could lead
to the enhancement of elite inbred line selection efficiency.
In general, both association- and linkage mapping can dis‐
sect the genetic architecture of complex quantitative traits.
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In earlier studies, biparental (Liu et al. 2015c, Qi et al.
2013, Wang et al. 2017, Zhou et al. 2017, 2018), multi‐
parental (Giraud et al. 2017), and natural (Chen et al. 2019,
Riedelsheimer et al. 2012) populations were used to detect
the QTL related to the GCA effects. The use of only a few
testers decreases the estimation accuracy of the GCA
effects (Giraud et al. 2017). Increasing the number of
testers may not necessarily improve the detection power of
QTL mapping for GCA effects. On the other hand, it may
have an impact on the effect and position of QTL (Li et al.
2013). Relatively few major QTL related to GCA effects
could be identified in multiple populations. They may have
been retained in the processes of crop improvement and
domestication (Chen et al. 2019). The favorable QTL al‐
leles of the GCA effects vary among heterotic groups.
Functional loci corresponding to certain groups may be
used in MAS for elite lines (Giraud et al. 2017). Recurrent
selection can be implemented to improve the GCA effects
by pyramiding favorable alleles during population improve‐
ment (Lv et al. 2012, Qi et al. 2013). Thus, integrating
MAS with recurrent selection may be preferable for the
accumulation of favorable genes and the selection of elite
inbred lines with good performance in breeding programs.
In this way, time and labor may be saved and cost-benefit
balance can be achieved.

In the present study, we dissected the genetic basis of
GCA in order to furnish useful suggestions to plant breed‐
ers regarding the acceleration of the breeding process and
the selection of elite lines with superior GCA performance.
Based on North Carolina mating design II, 194 recombi‐
nant inbred lines (RILs) were used to construct testcross
populations of four elite inbred lines. The datasets in this
study consist of phenotypic data for six complex traits and
genotypic data from a 55K single-nucleotide polymorphism
(SNP) array. The aims of this study were to (1) evaluate the
GCA effects using various tester combinations; (2) explore
the genetic basis of GCA and detect its associated candi‐
date genes; and (3) present several viable proposals to plant
breeders for the improvement of maize breeding efficiency.

Materials and Methods

Plant materials
A biparental population consisting of 194 recombinant

inbred lines was derived by crossing Zheng58 and HD568
(Liu et al. 2018, 2019). According to the North Carolina
mating design II, the testers Zheng58, HD568, B73, and
Mo17 were used to construct testcross populations by
crossing with RILs for the estimation of GCA effects.
These testers are elite Chinese inbred lines belonging to the
Reid, Sipingtou, Reid, and Lancaster subgroups, respec‐
tively (Liu et al. 2015b, Wang et al. 2017). Zheng58 and
B73 are typical inbred lines originating from the Iowa Stiff
Stalk Synthetic (SS) heterotic group (Liu et al. 2015a,
Zhang et al. 2016).

Experimental management and trait measurement
The testcross populations were grown in Henan Province

(35.3° N, 113.9° E), China in 2015 and 2016 and in Jilin
Province (43.5° N, 124.8° E), China in 2016. The field
scheme had a completely randomized design and was per‐
formed in two replicates. Two-row plots were planted and
harvested as grain trials. Six yield-relevant traits were
investigated per location and included plant height (PH,
cm), ear height (EH, cm), ear length (EL, mm), ear diame‐
ter (ED, mm), row number (RN), and hundred-kernel
weight (HKW, g). The phenotypic value of HKW was
adjusted to 140 g kg–1 grain moisture.

Estimating GCA effects and heritability
The phenotypic values of the testcrosses in multiple

environments were used to estimate the variance compo‐
nents. The total variance of the hybrid values was decom‐
posed into the variances in the general and specific
combining abilities (GCA and SCA) following a linear
mixed model (Giraud et al. 2017, Zhou et al. 2018):

yijkl = μ+el + rk l + gi' + g j'' + sij + g'e il + g''e jl + se ijl

+εijkl,

where yijkl is the phenotypic value of the testcross between
the ith individual and the jth tester in the lth environment
with the kth replicate, the lth environment refers to one of
the three environments, μ is the overall mean, el is the fixed
effect of the lth environment, rk(l) is the fixed effect of the kth

replicate within the lth environment, giʹ is the GCA effect of
the ith individual, gjʹʹ is the GCA effect of jth tester, sij is the
SCA effect of the testcross between the ith individual and
the jth tester, (gʹe)il is the GCA-by-environment interaction
effect between the ith individual and the lth environment,
(gʹʹe)jl is the GCA-by-environment interaction effect
between the jth tester and the lth environment, (se)ijl is the
SCA-by-environment interaction between the lth environ‐
ment and the testcross composed by crossing the ith individ‐
ual and the jth tester, and εijkl is the residual effect. All
variance components were estimated by the restricted max‐
imum likelihood method using the lme4 v. 1.1-21 package
in R (Bates et al. 2015). A model comparison with the like‐
lihood ratio test was performed to test the significance of
the variance component estimates (Stram and Lee 1994).
To evaluate the gene effects in the inheritance of a target
trait in the testcross population, the ratio of the variances
between GCA and SCA was calculated. Heritability of
GCA values was estimated as follows (Riedelsheimer et al.
2012):

ℎGCA
2 = σGCAL

2 /

σGCAL
2 + σSCA

2 /t + σGCAL×E
2 /e + σSCA×E

2 /te + σε
2/ter ,

where σGCAL
2  is the GCA variance of the lines, σGCAL×E

2

is the interaction variance between the GCA of the lines
and the environment, σSCA

2  , σSCA×E
2  , and σε

2 are the SCA,
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SCA-by-environment interaction, and residual variance
components, respectively, and t, e, and r are the numbers of
testers, environments, and replicates, respectively. Based on
the information of the heterotic group of testers mentioned
in the section of Plant materials, the phenotypic data of the
testcrosses were analyzed in three scenarios to compare the
GCA effects and detect the difference of genetic basis when
the testers were derived from distinct heterotic groups. Fur‐
thermore, the implication of results can be used to provide
several suggestions for practical breeding programs. In the
first case, the GCA effects were evaluated for the dataset
derived from the testcross population using the inbred lines
Zheng58 and B73 as testers. For the second dataset, HD568
and Mo17 were chosen as the testers. In the third scenario,
all testers were used to estimate the GCA effects of the
RILs. The abovementioned datasets were simply named
Z58&B73, HD568&Mo17, and ALL, respectively.

Clustering tree construction and correlation analysis
To construct the clustering tree, the GCA effects of the

yield-relevant traits were standardized with zero mean and
unit variance. The Euclidean distances among the GCA
effects of the six agronomic traits were calculated using the
standardized values. The clustering tree was plotted with
the hclust function in the stats v. 3.6.0 package of R. The
process of clustering tree construction was based on Pan et
al. (2017). The GCA effects of each trait estimated in ALL
dataset were used to construct the clustering tree. The cor‐
relation coefficients (r) and the P-values of the significance
tests were calculated with the cor and cor.test functions in
the stats v. 3.6.0 package in R, respectively.

Bin map construction and QTL mapping
The RILs were genotyped by the maize 55K SNP array

(Xu et al. 2017). Qualified markers with missing rates
<0.10 and heterozygous allele rates <0.05 were retained
and then assessed with a chi-square test to screen out mark‐
ers with segregation distortion (P < 0.05). The bin markers
were aligned and determined by the sliding-window
approach described in previous studies (Huang et al. 2009,
Liu et al. 2019, Zhou et al. 2016). The genetic map was
plotted by the Kosambi mapping method and with the
mstmap function in the ASMap v. 1.0-4 package of R
(Taylor and Butler 2017). QTL mapping of the GCA effects
was performed by the composite interval mapping method
and with the R/qtl v. 1.44-9 package in R (Arends et al.
2010). Using 1,000 permutation tests and setting P < 0.05, a
logarithm of the odds (LOD) values ranged from 3.37 to
3.58 for different situations were designated as threshold to
identify QTL for the GCA effects. A drop of 1.5 from the
peak LOD value was defined as the confidence interval for
one QTL. The genomic locations consisting of multiple
QTL with overlapped confidence intervals were detected in
this study, which might be recognized as essential genomic
regions affecting GCA effects in maize. Candidate genes
within the confidence intervals were detected and queried

in the maize genetics and genomics database (MaizeGDB;
https://www.maizegdb.org/).

Results

Correlation analysis and construction of the hierarchical
clustering tree

Here, the distribution and range of yield-relevant traits in
each population were illustrated in Supplemental Fig. 1,
and then the correlation coefficients between RILs and
hybrids within each testcross population in multiple envi‐
ronments were calculated, showing a relatively higher
correlation at significant level in most situations (Supple‐
mental Table 1). Furthermore, the GCA effects of each
RIL were estimated for three scenarios in which different
testers were selected to construct testcross populations. The
aim was to assess the effects of various tester combinations.
A correlation analysis was performed to evaluate the rela‐
tionships of the GCA effects derived from the different
datasets. The GCA effects estimated for the Z58&B73 and
HD568&Mo17 datasets were closely correlated with those
obtained for the ALL dataset. In all cases, P-values were
remarkably lower than 0.01 (Supplemental Fig. 2). The
correlation coefficients for the GCA values estimated for
these three datasets were in the range of 0.88–0.96 for the
six agronomic traits. Maximum r was estimated for RN
after comparing the GCA effects between the Z58&B73
and ALL datasets. In addition, r was relatively high for the
association of the GCA effects between the Z58&B73 and
HD568&Mo17 datasets and was in the range of 0.59–0.78.
The lower r limit of 0.59 was determined for EL and ED
(Supplemental Fig. 2). The correlation coefficients of the
GCA effects between all pairs of traits were evaluated in
each dataset. The GCA effects of PH were positively corre‐
lated with those of EH (P < 0.01). The r values for the GCA
of ED and RN in the three datasets were positive and sig‐
nificant (P < 0.01). The r was in the range of 0.72–0.84 for
the association between PH and EH and 0.61–0.72 for the
correlation between ED and RN (Supplemental Fig. 3).
However, the GCA of RN was negatively and significantly
correlated with the estimated GCA for HKW (P < 0.01),
and the r ranged from –0.38 to –0.54 for the three datasets
(Supplemental Fig. 3). The GCA estimate of EL was posi‐
tively correlated with those for PH and EH. However, the r
was relatively low. The hierarchical clustering analysis
classified the GCA effects of the six yield-relevant traits
into three groups. PH and EH were included in one group,
RN, ED, and HKW appeared in a second, and EL was clas‐
sified in its own group (Fig. 1).

Analysis of variance (ANOVA) and comparison of GCA
effects among various datasets

ANOVA was performed using different datasets. The
total hybrid variance was decomposed into seven variance
components. Significant GCA variances of the RILs were
verified at P < 0.01 for all six traits in all three datasets and
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was based on the likelihood ratio test. However, P-value of
GCA variance of the testers in the different datasets were
greater than 0.05 when the hybrid values for ED were ana‐
lyzed. The significance test of the interaction between the
combining ability and environments in ALL dataset indi‐
cated that P-values were basically less than 0.01, except
SCA-by-environment interaction in ED (Table 1). For the
variance components of the GCA and SCA effects, ratios
larger than one were obtained for all traits in all datasets
except EL in Z58&B73 dataset. The ratio ranged from 0.83
in EL to 34.15 in RN. Comparatively low ratios were calcu‐
lated for ED relative to other traits in the three datasets
(Table 1). The heritability of GCA ranged from 0.64 for EL
in the HD568&Mo17 dataset to 0.87 for EH in the
Z58&B73 dataset. Compared to the other yield-relevant
traits, ℎGCA

2  for EL was low in all three datasets (Table 1).
On the other hand, the distribution plot of the GCA effects
in the RIL population was drawn based on the results
obtained from all three datasets (Fig. 2A, 2B). The GCA
estimates for the RILs mostly gathered around 0, especially
for the PH in the HD568&Mo17 dataset. Only a few RILs
had larger values associated with positive or negative GCA
effects (Fig. 2A). Moreover, parallel distribution of the
GCA effects was detected for HKW in the different
datasets (Fig. 2B). Most RILs had concordant GCA effects
between the Z58&B73 and HD568&Mo17 datasets. This
finding was consistent with the results in the correlation
analysis (Fig. 2C, 2D). Highly significant linear relation‐
ship of GCA effects between these two datasets was shown
for PH and HKW in both plots (Fig. 2C, 2D).

Bin marker assignment and linkage map construction
The maize 55K SNP array was used to identify the geno‐

Fig. 1. Hierarchical clustering of GCA effects of six yield-relevant
traits. Scale: Euclidean distance estimated on the basis of standardized
GCA effects data for yield-relevant traits.

types of all lines. Then 15,474 SNP markers with hetero‐
zygous allele rates <0.05 and missing rates <0.10 were
retained. A total of 12,318 SNPs in these markers con‐
formed to a chi-square test without segregation distortion.
The sliding-window approach determined and assigned
2,081 bins that were diversely distributed on chromosomes
1–10 (Supplemental Table 2, Fig. 3A). The average physi‐
cal distance between adjacent bin markers in each chromo‐
some ranged from 0.80 Mb to 1.73 Mb (Supplemental
Table 2). The overall length of the physical map was
2,036.5 Mb and the average genomic physical distance
between adjacent bins was 0.98 Mb. The maximum and
minimum physical bin lengths were 53.72 Mb and 5.09 Kb
and were identified on chromosomes 10 and 7, respectively
(Supplemental Table 2). Twenty bin markers with physical
lengths >10 Mb that can be recognized as linkage blocks
were located mainly at the centromeric or pericentromeric
regions of each chromosome. Few bins were situated in the
regions covered by low-density SNPs (Supplemental
Table 3). All bin markers were used to construct the link‐
age map in the ASMap package of R. The length of the
genetic map was 1,526.7 cM (Supplemental Table 4,
Fig. 3B). The average genetic distance between adjacent
bins was 0.7 cM and the maximum genetic length was
5.3 cM. The unit length in the genetic map was equivalent
to 1.33 Mb in the physical map in the present study (Sup‐
plemental Table 4). To compare the orders of the bin
markers between the physical and linkage maps, a
collinearity plot was drawn using marker location data. The
plot illustrated excellent collinearity between the bin mark‐
ers and the reference maize B73 genome (Supplemental
Fig. 4).

QTL mapping of the GCA effects of yield-relevant traits
Forty-one QTL related to the GCA effects were detected

in the ALL dataset and there were 5–9 QTL per agronomic
trait (Fig. 4, Supplemental Table 5). The phenotypic vari‐
ances explained (PVE) by the QTL were in the range of
3.12–16.54%. The QTL qPHA8, qEHA1-3, qELA4, and
qRNA3 explained over 10% of the phenotypic variation in
the GCA effects of the target traits (Supplemental
Table 5). For the Z58&B73 dataset, 34 QTL were associ‐
ated with GCA estimates of yield-relevant traits and there
were 4–7 QTL per trait (Fig. 4, Supplemental Table 6).
These QTL individually explained from 2.64% to 17.34%
of the phenotypic variation of the GCA effects in each trait.
The PVEs of the QTL qPHZ1-3, qEHZ1-3, qEDZ2, qRNZ4,
and qHKWZ7 were all greater than 10% (Supplemental
Table 6). In the HD568&Mo17 dataset, 33 QTL were iden‐
tified for the GCA effects and there were 3–7 QTL per trait
(Fig. 4, Supplemental Table 7). The PVE of the QTL were
in the range of 2.19–15.99% and four QTL individually
accounted for over 10% of the phenotypic variation in the
GCA effects (Supplemental Table 7). There were 28
genomic locations consisting of overlapped confidence
intervals between multiple QTL that were detected among
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the yield-relevant traits in at least one of the three datasets,
which were denoted as LOC1-LOC28 in order of their
positions on the genome (Table 2). Ten of these genomic
locations were simultaneously identified in all three
datasets (Table 2). QTL mapping disclosed that 86 QTL in
all GCA-relevant loci formed these genomic locations
(Table 2, Supplemental Tables 5–7). In addition, LOC4,
whose confidence intervals encompassed qEHA1-2,
qEHZ1-2, and qPHZ1-2, were located on chromosome 1 and
the PVEs of these QTL were all greater than 10%. For the
QTL hotspots LOC19 and LOC27, six QTL were identified
in each overlapped genomic region (Table 2). The favorable
alleles corresponding to LOC19 were entirely derived from
the male parent (Table 2, Fig. 4). According to the maize
genetics and genomics database (https://www.maizegdb.
org/), the candidate genes, such as GRMAM2G403620,
GRMZM2G082087, and GRMZM2G001541, were de‐

tected within the genomic region of LOC5, 15, and 17 that
contained multiple GCA-relevant QTL. These predicted
candidate genes were potentially related to the GCA effects
of PH, EL, and RN, respectively.

Contribution of pyramiding favorable alleles
The GCA effects of HKW were used to represent and

depict the contribution of accumulating favorable alleles.
Nine QTL were identified for the GCA effects of HKW
when four inbred lines were used as testers to construct the
testcross populations. Seven favorable alleles were derived
from the female parent of Zheng58 while the others origi‐
nated with the male parent of HD568 (Supplemental
Table 5). Bins with peak LOD in the confidence interval of
each QTL were selected to represent those alleles. The
genetic effects of these QTL ranged from –0.38 to 0.38 and
accounted for 3.55–8.08% of the phenotypic variation in

Table 1. Variance of each component and heritability of GCA for yield-relevant traits

Comb. of testersa Sourceb PHc EH EL ED RN HKW

Zheng58&B73 σGCAL
2 110.06** 48.44** 44.36** 1.36** 0.45** 1.98**

σGCAT
2 1281.88** 424.97** <0.01 1.6 2.35 12.04**

σSCA
2 64.98** 16.11** 53.31** 1.04** 0.14** 1.20**

σGCAL×E
2 3.79 3.53** 7.98** <0.01 0.02 0.06

σGCAT×E
2 8.17** 0.16 14.6** 1.02** 0.33** 0.04*

σSCA×E
2 11.55** 4.09* 12.2** 0.15 0.09** 1.11**
σε

2 51.99 33.88 66.73 4.97 0.61 2.31
σGCA

2 σSCA
2 21.42 29.39 0.83 2.83 19.67 11.65

ℎGCA
2 0.84 0.87 0.69 0.74 0.86 0.80

HD568&Mo17 σGCAL
2 52.53** 29.10** 49.47** 1.22** 0.28** 2.56**

σGCAT
2 1012.72** 154.55** 912.73** <0.01 2.55 3.85*

σSCA
2 51.78** 15.95** 69.04** 0.76** 0.08** 1.40**

σGCAL×E
2 4.8 <0.01 12.88** 0.35* 0.10** 0.1

σGCAT×E
2 8.54** 2.73** 5.09** 1.90** 0.40** 0.35**

σSCA×E
2 22.44** 14.17** 15.83** 0.06 <0.01 1.28**
σε

2 60.2 33.93 105.49 5.27 0.68 3.51
σGCA

2 σSCA
2 20.57 11.52 13.94 1.6 34.15 4.56

ℎGCA
2 0.74 0.82 0.64 0.70 0.78 0.80

All testers σGCAL
2 79.02** 37.40** 49.00** 1.29** 0.38** 2.21**

σGCAT
2 842.68** 206.57** 342.73** 0.39 1.66** 5.40**

σSCA
2 61.5** 17.75** 59.29** 0.93** 0.11** 1.35**

σGCAL×E
2 5.56** 2.94** 10.22** 0.21** 0.05** 0.13*

σGCAT×E
2 9.88** 2.40** 8.95** 1.23** 0.25** 0.23**

σSCA×E
2 14.77** 7.04** 13.93** 0.05 0.05** 1.14**
σε

2 56.62 34.92 85.26 5.13 0.64 2.88
σGCA

2 σSCA
2 14.99 13.74 6.61 1.81 18.52 5.63

ℎGCA
2 0.79 0.83 0.68 0.71 0.84 0.79

a The datasets based on different combination of testers were used to perform analysis of variance. Zheng58&B73: the inbred lines Zheng58 and
B73 were assigned as testers; HD568&Mo17: the inbred lines HD568 and Mo17 were assigned as testers; All testers: total of 4 inbred lines
were used as testers.

b Variance components. σGCAL
2  : general combining ability variance of lines; σGCAT

2  : general combining ability variance of testers; σSCA
2  : specific

combining ability variance; σGCAL×E
2  : general combining ability of lines by environment interaction variance; σGCAT×E

2  : general combining
ability of testers by environment interaction variance; σSCA×E

2  : specific combining ability by environment interaction variance; σε
2 : residual

variance; σGCA
2 σSCA

2  : the ratio between variance of general combining ability and specific combining ability; ℎGCA
2  : heritability of general

combing ability.
c PH: plant height; EH: ear height; EL: ear length; ED: ear diameter; RN: row number; HKW: hundred-kernel weight. Significance levels:

* P < 0.05; ** P < 0.01.
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the GCA effects of HKW (Supplemental Table 5, Supple‐
mental Fig. 5). Two RILs containing nine and zero favor‐
able alleles, respectively, showed the highest (2.39) and
lowest (–3.59) average GCA effects of HKW, respectively.
In addition, the amount of difference between various
aggregates of favorable alleles increased ranging from 0.4
to 5.98 as the accumulation of favorable alleles. However,
only one RIL in 194 lines had nine favorable alleles with
positive effects. Moreover, the average GCA effects
decreased as the number reduction of favorable alleles.

Most of the lines in the RIL population had 3–6 favorable
alleles and their corresponding average GCA effects ranged
from –0.81 to 1.07 (Table 3).

Discussion

Modern maize breeding generally involves the selection of
commercially available inbred lines and the development of
potentially valuable hybrid combinations. In the first stage,
the evaluation of testcross hybrids was used to assess the

Fig. 2. Comparison of GCA effects estimated in different datasets. (A) and (B) Distribution of GCA effects of plant height and hundred-kernel
weight estimated in each dataset. (C) and (D) Comparison of GCA effects of plant height and hundred-kernel weight calculated in Z58&B73 and
HD568&Mo17 datasets. ALL: four inbred lines used as testers; Z58&B73: inbred lines Zheng58 and B73 assigned as testers; HD568&Mo17:
inbred lines HD568 and Mo17 assigned as testers.

Fig. 3. Recombination bin map and genetic map of RIL population. (A) Recombination bin map of RIL population. Red: Zheng58 genotype;
blue: HD568 genotype. (B) Genetic map of RIL population. Chr.: chromosome.
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performance of new inbred lines in each heterotic group,
aiming at estimating the GCA effects of candidate lines as
it is vital to the selection of parental lines. Elite lines with
high GCA estimates may increase the likelihood of generat‐
ing superior commercial hybrids by crossing with excellent
inbred lines derived from complementary heterotic groups.
Hence, dissection of the genetic basis of the GCA effects
greatly contributes to the improvement of parental lines and
the development of superior hybrid combinations.

The GCA effects of each RIL were estimated using the
phenotypic data of testcross populations constructed on the
basis of different tester groups. There were significantly
strong linear correlations between the GCA estimates based
on two testers and those obtained using four testers (Sup‐
plemental Fig. 2). However, a previous study reported that
the accuracy of the estimation of the GCA effects could be
diminished by the use of only one or two lines from the
complementary group as testers (Giraud et al. 2017). In
contrast, the present study revealed that the GCA effects
may be estimated with reasonable accuracy by using only
two tester lines compared to using four testers (Supple‐
mental Fig. 2). As for the different conclusion between the
previous and present studies, it may be attributed to the dif‐

ferent program of genetic mating design. The former study
adopted the incomplete factorial design to produce experi‐
mental hybrids. However, the NC II design was imple‐
mented in the present study. Therefore, testcross trials on
two tester lines may be practical for breeding programs
constrained by limited budgets. In addition, the difference
of GCA values of several individuals between datasets with
two testers was obtained in this study (Fig. 2C, 2D). This
phenomenon was likely attributed to at least two factors.
The first is that the comparatively large standard error of
GCA effects of each RIL was likely obtained when the esti‐
mation based on only two hybrids derived from two testers.
Secondly, these testers were derived from different het‐
erotic groups and possessed distinctly heritable alleles that
regulated and controlled a series of good characters. Conse‐
quently, the testcross hybrids with distinct performance
were created by these testers (Liu et al. 2015a, 2015b,
Wang et al. 2017, Zhang et al. 2016), and then GCA was
defined as the average performance of a parent in hybrid
combinations (Sprague and Tatum 1942), which would be
varied by the hybrid performance (Lv et al. 2012). The out‐
put of the clustering analysis of the GCA effects between
yield-related traits was consistent with the results of the

Fig. 4. QTL distribution of GCA of yield-relevant traits identified in each dataset. PH: plant height; EH: ear height; EL: ear length; ED: ear
diameter; RN: row number; HKW: hundred-kernel weight. Hexagram size is commensurate with phenotypic variance explained by individual
QTL (PVE). QTL with PVE >10 are shown. Boxes represent QTL position and confidence interval. Box width refers to confidence interval
length in genomic regions. ADD: additive effect value. X-axis denotes genetic positions across maize genome (Mb). Heatmap under x-axis
shows density of GCA-relevant QTL across genome. The asterisks denote the genomic locations that consist of at least three GCA related QTL.
Z58&B73: inbred lines Zheng58 and B73 assigned as testers; HD568&Mo17: inbred lines HD568 and Mo17 assigned as testers; ALL: four
inbred lines used as testers.
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correlation analysis of GCA estimates among agronomic
traits (Fig. 1, Supplemental Fig. 3). Thus, the same or
associated genetic factors regulated the GCA effects of
these traits. On the other hand, the GCA values for RN had
a significant negative relationship with those for HKW
(Supplemental Fig. 3). Balancing the genetic improvement
of correlated target traits is essential for the selection of
candidate lines with superior comprehensive performance
in practical breeding programs. For this reason, the genetic
architecture of the GCA effects requires further investiga‐
tion so that breeding efficiency may be enhanced.

Previous research illustrated that GCA directly reflects
breeding value of a parent line which include gene actions
with additive, dominance, and epistatic effects (Reif et al.
2007, Wassimi et al. 1986). GCA variance comprises the
variance components of additive and additive-by-additive
interactions (Griffing 1956a, 1956b, Verhoeven et al.
2006). The GCA effect is heritable and may be transmitted

from early to later generations (Bernardo 1991, Jenkins
1935, Lonnquist 1950). In the present study, the heritability
of the GCA effects of each yield-relevant trait was compar‐
atively high (Table 1). It can illustrate that the additive
genetic effects held a large proportion of whole variance in
comparison with the non-heritable components, which
could be a stably heritable portion from early to advanced
generations. Therefore, selection for the GCA effects of
yield-related traits can be performed early in line develop‐
ment and this strategy may be used to exclude lines with
low GCA effects from the breeding population. In this
manner, early generation selection can effectively save
more labor and time than selection process performed in
later generations. However, the ratios of the variance of
GCA and SCA for each agronomic trait were calculated
according to the ANOVA which generally serves to identify
optimal breeding strategies for hybrid selection (Table 1).
If the magnitude of the SCA is markedly higher than those

Table 2. Summary of genomic locations consisting of multiple QTL with overlapped genomic region

Locationa Chr.b Intervalc

(Mb)
Physical lengthd

(Mb) No. of QTL Integrated QTLe

LOC1 1 17.66–23.23 5.57 3 qPHA1, qPHZ1-1, qEHA1-1
LOC2 1 74.73–77.15 2.42 2 qHKWA1-1, qHKWH1-1
LOC3 1 87.45–97.82 10.37 2 qEDA1, qEDH1
LOC4 1 104.81–123.22 18.41 3 qEHA1-2, qEHZ1-2, qPHZ1-2
LOC5 1 150.78–157.91 7.13 5 qELZ1-1, qEHA1-3, qELA1, qPHZ1-3, qEHZ1-3
LOC6 1 221.24–247.55 26.31 4 qHKWA1-2, qEHA1-4, qHKWH1-2, qEHZ1-4
LOC7 2 4.88–6.48 1.60 4 qPHA2-1, qPHH2, qELZ2, qELA2-1
LOC8 2 83.17–113.39 30.22 2 qHKWA2, qHKWH2
LOC9 2 189.22–194.63 5.41 4 qEDA2, qEDZ2, qPHA2-2, qPHZ2
LOC10 2 209.5–213.10 3.60 2 qRNH2-2, qRNA2-2
LOC11 3 28.65–31.34 2.69 2 qHKWZ3, qHKWA3
LOC12 3 50.75–61.24 10.49 4 qRNH3, qELH3-1, qRNA3, qRNZ3
LOC13 3 179.01–180.32 1.31 2 qEDA3, qEDH3
LOC14 3 218.01–219.85 1.84 4 qPHA3, qEHA3, qELH3-2, qELA3, qELZ3
LOC15 4 35.76–62.54 26.78 3 qELH4, qELA4, qELZ4
LOC16 4 190.86–197.67 6.81 2 qHKWA4, qHKWZ4
LOC17 4 197.67–219.99 22.32 3 qRNZ4, qRNH4, qRNA4
LOC18 4 234.86–237.69 2.83 2 qEDA4, qEDH4
LOC19 5 31.66–46.08 14.42 6 qELH5-1, qHKWH5, qPHZ5, qELA5, qELZ5, qHKWA5
LOC20 6 100.69–111.25 10.56 2 qEHZ6, qEHH6
LOC21 7 23.69–30.58 6.89 3 qRNA7, qRNZ7-1, qEDZ7
LOC22 7 108.84–119.15 10.31 2 qPHA7, qPHH7
LOC23 7 121.35–123.7 2.35 2 qHKWA7-1, qHKWH7-1
LOC24 7 164.75–165.99 1.24 4 qHKWZ7, qHKWA7-2, qHKWH7-2, qRNZ7-2
LOC25 8 163.51–164.76 1.25 4 qEDZ8, qPHA8, qPHZ8, qPHH8
LOC26 9 17.64–20.47 2.83 2 qEHA9, qEHH9
LOC27 10 140.00–140.97 0.97 6 qRNA10, qHKWA10, qRNH10, qHKWH10, qEDZ10, qRNZ10
LOC28 10 143.7–144.75 1.05 2 qPHA10, qPHH10

a The name of genomic locations consisting of multiple QTL with overlapped genomic region.
b Chr.: the chromosome number.
c Interval: physical range of flanking markers.
d Physical length: physical distance between flanking markers.
e The name of each QTL consists of information regarding the abbreviation of trait, combination of testers (A: all testers; Z: Zheng58 and B73

were assigned as testers; H: HD568 and Mo17 were assigned as testers), and the chromosome number.
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of the GCA effects, then more resources are required to
identify the best hybrid combinations, and the tester selec‐
tion is crucial in the GCA evaluation of new inbred lines
(Giraud et al. 2017). High ratios were obtained for almost
every trait in the various datasets except for EL in the
Z58&B73 dataset as the GCA variance of testers was very
low. Large ratios imply that additive gene effects predomi‐
nate whereas smaller ratios show that dominance and
epistatic gene action effects prevail (Bhullar et al. 1979,
Griffing 1956b). Several studies provided evidence illus‐
trating that SCA effects usually explained lower than 20%
of the phenotypic hybrid variation for the target traits. In
practice, it may even be less than 10% (Parisseaux and
Bernardo 2004, Schrag et al. 2006, 2009, 2010, Technow
et al. 2014, Zhou et al. 2018). In this case, hybrid perfor‐
mance can be predicted on the basis of the GCA effects of
both parents (Christie and Shattuck 2010, Gowda et al.
2012, Reif et al. 2007). This strategy could be useful in the
selection of potential combinations for hybrid breeding.
Earlier studies disclosed that the GCA effects vary among
testers (Li et al. 2013, Lv et al. 2012). Nevertheless, the
results of the present study indicated that inbred lines with
comparatively higher GCA estimates may be selected
according to the testcross regardless of the heterotic groups
to which the testers belong.

For the linkage map constructed with the ASMap v. 1.0-4
package in R, the bin markers were evenly distributed on
the genetic map (Fig. 3). Moreover, the scatterplot illus‐
trated excellent collinearity between the physical and link‐

Table 3. Favorable alleles identified for GCA of hundred-kernel
weight using Zheng58, B73, HD568, and Mo17 as testers

Type
No. of allelesa

No. of
linesb

Ave.
GCA

effectsc

Combined
groupd

Ave.
GCA

effectsePositive Negative

1 9 0 1 2.39 13 2.09a

2 8 1 3 1.99
3 7 2 9 2.09
4 6 3 32 1.07 32 1.07b

5 5 4 52 0.35 52 0.35c

6 4 5 39 –0.15 39 –0.15c

7 3 6 34 –0.81 34 –0.81d

8 2 7 16 –1.48 16 –1.48d

9 1 8 7 –2.64 8 –2.76e

10 0 9 1 –3.59
a The number of favorable alleles with positive effect.
b The number of lines with different genotype.
c The average effects of general combining ability for the individuals

that contain different numbers of favorable alleles.
d Constructing the groups to perform the multiple comparisons. The

datasets of type 1 to 3 were integrated into one group as these sets
had a few individuals respectively. Similarly, the datasets of type 9
and 10 were combined into a group.

e The average effects of general combining ability for different
groups. The different letters denote significant difference based on
multiple comparison with method of Tukey test at significance level
of 0.01.

age maps in terms of the bin order (Supplemental Fig. 4).
Therefore, this linkage map is suitable for QTL mapping of
RIL populations. The positions and effects of the QTL for
the GCA effects of yield-relevant traits differed among the
three datasets as different inbred lines were used as testers
in each case (Fig. 4, Supplemental Tables 5–7). However,
several genomic locations consisting of overlapped confi‐
dence intervals between multiple QTL were identified
among the three datasets (Table 2). Certain GCA-relevant
loci were detected and may be fixed in this population
regardless of the testers selected to estimate the GCA
effects. In addition, previous study already illustrated that
group-specific GCA QTL were already fixed in the dis‐
crepant heterotic group (Giraud et al. 2014, 2017), which
could support the abovementioned point. The QTL for the
GCA effects of PH, EH, and RN in the present study had
been previously identified elsewhere (Qi et al. 2013, Zhou
et al. 2018). It can imply that certain GCA QTL detected in
multiple populations may be fixed during crop improve‐
ment and domestication (Chen et al. 2019, Liu et al.
2015c). Fixed and stable GCA QTL may be used in the
development of markers to perform MAS for the selection
of inbred lines with high GCA. This approach can acceler‐
ate the maize breeding process.

According to the MaizeGDB database, several candidate
genes for the GCA effects of yield-relevant traits were
detected in the present study. The candidate gene with gene
model identification GRMAM2G403620 (rs2) located in
the genomic region of LOC5 and was correlated with the
GCA effects of PH, EH, and EL. This gene is expressed in
the lateral primordia and encodes the Myb-domain protein
(Timmermans et al. 1999). Its mutation results in the
ectopic expression of the knox genes in the floral and leaf
primordia and several defective phenotypes including leaf
twisting, dwarfism, and aberrant vascular patterns
(Schneeberger et al. 1998). Two candidate genes related to
the GCA effects of EL and RN were detected within the
LOC15 and LOC17, respectively. The gene model identifi‐
cation of the first candidate was GRMZM2G082087
(opr8). This gene is associated with jasmonic acid (JA)
biosynthesis in maize. JA is a phytohormone that regulates
plant adaptation to abiotic and biotic stress. It has biologi‐
cal activity in several events including reproductive devel‐
opment, root growth, and leaf senescence (Huang et al.
2017, Yan et al. 2012, 2014). The other candidate gene reg‐
ulates RN and has the gene model identification
GRMZM2G001541 (KRN4). This gene controls the expres‐
sion level of Unbranched3 (UB3) which is the SBP-box
gene that regulates quantitative variation in RN (Liu et al.
2015d). UB3 also participates in cytokinin biosynthesis and
signaling. Mutation in UB3 results in elevated cytokinin
levels and increased row numbers (Du et al. 2017). In con‐
clusion, QTL related to GCA effects may be closely corre‐
lated with genes regulating various traits per se. Further,
improvement of these traits per se may enhance the GCA
effects.
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Integrating recurrent selection with MAS in GCA
improvement may be preferable for maize breeding pro‐
grams (Chen et al. 2019, Giraud et al. 2017, Lv et al. 2012,
Qi et al. 2013). This approach can rapidly pyramid favor‐
able alleles in fewer selection cycles, thereby saving labor,
time, and costs. Development of various sequencing tech‐
niques has dramatically lowered genotyping costs. As a
result, genomic selection (GS) that shortens cycle time and
accelerates breeding may be implemented in modern maize
breeding (Beyene et al. 2015, Crossa et al. 2014, Desta and
Ortiz 2014, Guo et al. 2019, Jonas and de Koning 2013,
Voss-Fels et al. 2019, Xu et al. 2020, Zhang et al. 2015).
The use of GS to select lines with high GCA effects and
predict hybrid values is a promising and powerful comple‐
mentary strategy. Nevertheless, multiparental populations
can still be used to elucidate the genetic basis of GCA.
There are at least three points to illustrate its advantage: the
first is that QTL detection in multiparental populations is
more powerful and more effective than QTL detection
using biparental populations (Bardol et al. 2013, Blanc et
al. 2006, Foiada et al. 2015, Kump et al. 2011); the second
point is that GCA and SCA components of hybrid values
can be estimated without bias using multiparental lines that
are developed without selection from the original popula‐
tions and represent the gamut of genetic diversity for each
population; the last is that multiparental populations can be
designed to approximate or simulate the populations rou‐
tinely constructed by breeders (Giraud et al. 2017). Finally,
future research should aim to further elucidate the genetic
basis of GCA and integrate multiple novel techniques with
a view towards expediting the maize breeding process and
developing the next generation of superior maize hybrids.

Author Contribution Statement

First, C. Huang and H. Wang proposed the original idea and
supervised the research project. Second, experimental
materials were provided by the lab of C. Huang. Pheno‐
typic and genotypic data were investigated by X. Liu, and
completed with the assistance of X. Hu, K. Li, Z. Liu, Y.
Wu, and G. Feng. Third, the analyses of data were per‐
formed by X. Liu and H. Wang. Then, X. Hu, K. Li, Z. Liu,
Y. Wu, and G. Feng provided some valuable suggestions.
This paper was written by X. Liu and H. Wang with support
from C. Huang. All authors discussed the results and con‐
tributed to the final manuscript.

Acknowledgments

Authors would like to thank anonymous reviewers for their
valuable comments and suggestions that improved the
manuscript significantly, and Dr. Yunbi Xu, Institute of
Crop Sciences, Chinese Academy of Agricultural Sciences
(CAAS) for technical assistance. This study was supported
by the National Key Research and Development Program
of China (Grant No. 2017YFD0101201), the Agricultural

Science and Technology Innovation Program at CAAS, and
the National Basic Research Program of China (973 Pro‐
gram) (Grant No. 2014CB138200).

Literature Cited

Arends, D., P. Prins, R.C. Jansen and K.W. Broman (2010) R/qtl:
high-throughput multiple QTL mapping. Bioinformatics 26: 2990–
2992.

Bardol, N., M. Ventelon, B. Mangin, S. Jasson, V. Loywick, F.
Couton, C. Derue, P. Blanchard, A. Charcosset and L. Moreau
(2013) Combined linkage and linkage disequilibrium QTL map‐
ping in multiple families of maize (Zea mays L.) line crosses high‐
lights complementarities between models based on parental
haplotype and single locus polymorphism. Theor. Appl. Genet.
126: 2717–2736.

Bates, D., M. Mächler, B. Bolker and S. Walker (2015) Fitting linear
mixed-effects models using lme4. J. Stat. Softw. 67: 1–48.

Bernardo, R. (1991) Correlation between testcross performance of
lines at early and late selfing generations. Theor. Appl. Genet. 82:
17–21.

Beyene, Y., K. Semagn, S. Mugo, A. Tarekegne, R. Babu, B. Meisel,
P. Sehabiague, D. Makumbi, C. Magorokosho, S. Oikeh et al.
(2015) Genetic gains in grain yield through genomic selection in
eight bi-parental maize populations under drought stress. Crop Sci.
55: 154–163.

Bhullar, G.S., K.S. Gill and A.S. Khehra (1979) Combining ability
analysis over F1–F5 generations in diallel crosses of bread wheat.
Theor. Appl. Genet. 55: 77–80.

Blanc, G., A. Charcosset, B. Mangin, A. Gallais and L. Moreau
(2006) Connected populations for detecting quantitative trait loci
and testing for epistasis: an application in maize. Theor. Appl.
Genet. 113: 206–224.

Chen, J., H. Zhou, W. Xie, D. Xia, G. Gao, Q. Zhang, G. Wang, X.
Lian, J. Xiao and Y. He (2019) Genome-wide association analyses
reveal the genetic basis of combining ability in rice. Plant
Biotechnol. J. 17: 2211–2222.

Christie, B.R. and V.I. Shattuck (2010) The diallel cross: design, anal‐
ysis, and use for plant breeders, In: Plant Breeding Reviews, John
Wiley & Sons, Ltd. pp. 9–36.

Crossa, J., P. Pérez, J. Hickey, J. Burgueño, L. Ornella, J. Cerón-
Rojas, X. Zhang, S. Dreisigacker, R. Babu, Y. Li et al. (2014)
Genomic prediction in CIMMYT maize and wheat breeding pro‐
grams. Heredity (Edinb.) 112: 48–60.

Darwin, C.R. (1876) The effects of cross and self-fertilization in the
vegetable kingdom. John Murray, London.

Desta, Z.A. and R. Ortiz (2014) Genomic selection: genome-wide
prediction in plant improvement. Trends Plant Sci. 19: 592–601.

Du, Y., L. Liu, M. Li, S. Fang, X. Shen, J. Chu and Z. Zhang (2017)
UNBRANCHED3 regulates branching by modulating cytokinin
biosynthesis and signaling in maize and rice. New Phytol. 214:
721–733.

East, E.M. (1908) Inbreeding in corn. Conn. Agric. Exp. Stn. Rep.
1907: 419–428.

Fischer, S., J. Möhring, C.C. Schön, H.-P. Piepho, D. Klein, W.
Schipprack, H.F. Utz, A.E. Melchinger and J.C. Reif (2008)
Trends in genetic variance components during 30 years of hybrid
maize breeding at the University of Hohenheim. Plant Breed. 127:
446–451.

Foiada, F., P. Westermeier, B. Kessel, M. Ouzunova, V. Wimmer, W.
Mayerhofer, T. Presterl, M. Dilger, R. Kreps, J. Eder et al. (2015)

BS Breeding Science
Vol. 71 No. 2 Liu, Hu, Li, Liu, Wu, Feng, Huang and Wang

226



Improving resistance to the European corn borer: a comprehensive
study in elite maize using QTL mapping and genome-wide predic‐
tion. Theor. Appl. Genet. 128: 875–891.

Giraud, H., C. Lehermeier, E. Bauer, M. Falque, V. Segura, C.
Bauland, C. Camisan, L. Campo, N. Meyer, N. Ranc et al. (2014)
Linkage disequilibrium with linkage analysis of multiline crosses
reveals different multiallelic QTL for hybrid performance in the
flint and dent heterotic groups of maize. Genetics 198: 1717–1734.

Giraud, H., C. Bauland, M. Falque, D. Madur, V. Combes, P. Jamin,
C. Monteil, J. Laborde, C. Palaffre, A. Gaillard et al. (2017)
Reciprocal genetics: identifying QTL for general and specific
combining abilities in hybrids between multiparental populations
from two maize (Zea mays L.) heterotic groups. Genetics 207:
1167–1180.

Gowda, M., C.F.H. Longin, V. Lein and J.C. Reif (2012) Relevance of
specific versus general combining ability in winter wheat. Crop
Sci. 52: 2494–2500.

Griffing, B. (1956a) Concept of general and specific combining abil‐
ity in relation to diallel crossing systems. Aust. J. Biol. Sci. 9:
463–493.

Griffing, B. (1956b) A generalised treatment of the use of diallel
crosses in quantitative inheritance. Heredity (Edinb.) 10: 31–50.

Guo, T., X. Yu, X. Li, H. Zhang, C. Zhu, S. Flint-Garcia, M.D.
McMullen, J.B. Holland, S.J. Szalma, R.J. Wisser et al. (2019)
Optimal designs for genomic selection in hybrid crops. Mol. Plant
12: 390–401.

Huang, H., B. Liu, L. Liu and S. Song (2017) Jasmonate action in
plant growth and development. J. Exp. Bot. 68: 1349–1359.

Huang, X., Q. Feng, Q. Qian, Q. Zhao, L. Wang, A. Wang, J. Guan,
D. Fan, Q. Weng, T. Huang et al. (2009) High-throughput geno‐
typing by whole-genome resequencing. Genome Res. 19: 1068–
1076.

Jenkins, M.T. (1935) The effect of inbreeding and of selection within
inbred lines of maize upon the hybrids made after successive gen‐
erations of selfing. Iowa State Coll. J. Sci. 3: 429–450.

Jonas, E. and D.-J. de Koning (2013) Does genomic selection have a
future in plant breeding? Trends Biotechnol. 31: 497–504.

Kump, K.L., P.J. Bradbury, R.J. Wisser, E.S. Buckler, A.R. Belcher,
M.A. Oropeza-Rosas, J.C. Zwonitzer, S. Kresovich, M.D.
McMullen, D. Ware et al. (2011) Genome-wide association study
of quantitative resistance to southern leaf blight in the maize
nested association mapping population. Nat. Genet. 43: 163–168.

Li, L., C. Sun, Y. Chen, Z. Dai, Z. Qu, X. Zheng, S. Yu, T. Mou,
C. Xu and Z. Hu (2013) QTL mapping for combining ability in
different population-based NCII designs: a simulation study. J.
Genet. 92: 529–543.

Liu, H., X. Wang, M.L. Warburton, W. Wen, M. Jin, M. Deng, J. Liu,
H. Tong, Q. Pan, X. Yang et al. (2015a) Genomic, transcriptomic,
and phenomic variation reveals the complex adaptation of modern
maize breeding. Mol. Plant 8: 871–884.

Liu, C., Z. Hao, D. Zhang, C. Xie, M. Li, X. Zhang, H. Yong, S.
Zhang, J. Weng and X. Li (2015b) Genetic properties of 240 maize
inbred lines and identity-by-descent segments revealed by high-
density SNP markers. Mol. Breed. 35: 146.

Liu, C., G. Song, Y. Zhou, X. Qu, Z. Guo, Z. Liu, D. Jiang and D.
Yang (2015c) OsPRR37 and Ghd7 are the major genes for general
combining ability of DTH, PH and SPP in rice. Sci. Rep. 5: 12803.

Liu, L., Y. Du, X. Shen, M. Li, W. Sun, J. Huang, Z. Liu, Y. Tao, Y.
Zheng, J. Yan et al. (2015d) KRN4 controls quantitative variation
in maize kernel row number. PLoS Genet. 11: e1005670.

Liu, X., H. Wang, H. Wang, Z. Guo, X. Xu, J. Liu, S. Wang, W. Li, C.

Zou, B.M. Prasanna et al. (2018) Factors affecting genomic selec‐
tion revealed by empirical evidence in maize. Crop J. 6: 341–352.

Liu, X., H. Wang, X. Hu, K. Li, Z. Liu, Y. Wu and C. Huang (2019)
Improving genomic selection with quantitative trait loci and non‐
additive effects revealed by empirical evidence in maize. Front.
Plant Sci. 10: 1129.

Lonnquist, J.H. (1950) The effect of selection for combining ability
within segregating lines of corn. Agron. J. 42: 503–508.

Lv, A., H. Zhang, Z. Zhang, Y. Tao, B. Yue and Y. Zheng (2012) Con‐
version of the statistical combining ability into a genetic concept.
J. Integr. Agric. 11: 43–52.

Pan, Q., Y. Xu, K. Li, Y. Peng, W. Zhan, W. Li, L. Li and J. Yan
(2017) The genetic basis of plant architecture in 10 maize recom‐
binant inbred line populations. Plant Physiol. 175: 858–873.

Parisseaux, B. and R. Bernardo (2004) In silico mapping of quantita‐
tive trait loci in maize. Theor. Appl. Genet. 109: 508–514.

Qi, H., J. Huang, Q. Zheng, Y. Huang, R. Shao, L. Zhu, Z. Zhang, F.
Qiu, G. Zhou, Y. Zheng et al. (2013) Identification of combining
ability loci for five yield-related traits in maize using a set of
testcrosses with introgression lines. Theor. Appl. Genet. 126: 369–
377.

Reif, J.C., F.-M. Gumpert, S. Fischer and A.E. Melchinger (2007)
Impact of interpopulation divergence on additive and dominance
variance in hybrid populations. Genetics 176: 1931–1934.

Riedelsheimer, C., A. Czedik-Eysenberg, C. Grieder, J. Lisec, F.
Technow, R. Sulpice, T. Altmann, M. Stitt, L. Willmitzer and A.E.
Melchinger (2012) Genomic and metabolic prediction of complex
heterotic traits in hybrid maize. Nat. Genet. 44: 217–220.

Schneeberger, R., M. Tsiantis, M. Freeling and J.A. Langdale (1998)
The rough sheath2 gene negatively regulates homeobox gene
expression during maize leaf development. Development 125:
2857–2865.

Schrag, T.A., A.E. Melchinger, A.P. Sørensen and M. Frisch (2006)
Prediction of single-cross hybrid performance for grain yield and
grain dry matter content in maize using AFLP markers associated
with QTL. Theor. Appl. Genet. 113: 1037–1047.

Schrag, T.A., J. Möhring, H.P. Maurer, B.S. Dhillon, A.E.
Melchinger, H.-P. Piepho, A.P. Sørensen and M. Frisch (2009)
Molecular marker-based prediction of hybrid performance in
maize using unbalanced data from multiple experiments with fac‐
torial crosses. Theor. Appl. Genet. 118: 741–751.

Schrag, T.A., J. Möhring, A.E. Melchinger, B. Kusterer, B.S. Dhillon,
H.-P. Piepho and M. Frisch (2010) Prediction of hybrid perfor‐
mance in maize using molecular markers and joint analyses of
hybrids and parental inbreds. Theor. Appl. Genet. 120: 451–461.

Shull, G.H. (1908) The composition of a field of maize. J. Hered.
os-4: 296–301.

Sprague, G.F. and L.A. Tatum (1942) General vs. specific combining
ability in single crosses of corn. Agron. J. 34: 923–932.

Stram, D.O. and J.W. Lee (1994) Variance components testing in the
longitudinal mixed effects model. Biometrics 50: 1171–1177.

Taylor, J. and D. Butler (2017) R package ASMap: efficient genetic
linkage map construction and diagnosis. J. Stat. Softw. 79: 1–28.

Technow, F., T.A. Schrag, W. Schipprack, E. Bauer, H. Simianer and
A.E. Melchinger (2014) Genome properties and prospects of
genomic prediction of hybrid performance in a breeding program
of maize. Genetics 197: 1343–1355.

Timmermans, M.C.P., A. Hudson, P.W. Becraft and T. Nelson (1999)
ROUGH SHEATH2: a myb protein that represses knox homeobox
genes in maize lateral organ primordia. Science 284: 151–153.

Verhoeven, K.J.F., J.-L. Jannink and L.M. McIntyre (2006) Using

Genetic dissection for general combining ability
Breeding Science
Vol. 71 No. 2 BS

227



mating designs to uncover QTL and the genetic architecture of
complex traits. Heredity (Edinb.) 96: 139–149.

Voss-Fels, K.P., M. Cooper and B.J. Hayes (2019) Accelerating crop
genetic gains with genomic selection. Theor. Appl. Genet. 132:
669–686.

Wang, H., Y. He and S. Wang (2017) QTL mapping of general com‐
bining abilities of four traits in maize using a high-density genetic
map. J. Integr. Agric. 16: 1700–1707.

Wassimi, N.N., T.G. Isleib and G.L. Hosfield (1986) Fixed effect
genetic analysis of a diallel cross in dry beans (Phaseolus vulgaris
L.). Theor. Appl. Genet. 72: 449–454.

Xu, C., Y. Ren, Y. Jian, Z. Guo, Y. Zhang, C. Xie, J. Fu, H. Wang, G.
Wang, Y. Xu et al. (2017) Development of a maize 55 K SNP
array with improved genome coverage for molecular breeding.
Mol. Breed. 37: 20.

Xu, Y., X. Liu, J. Fu, H. Wang, J. Wang, C. Huang, B.M. Prasanna,
M.C. Olsen, G. Wang and A. Zhang (2020) Enhancing genetic
gain through genomic selection: from livestock to plants. Plant
Commun. 1: 100005.

Yan, Y., S. Christensen, T. Isakeit, J. Engelberth, R. Meeley, A.
Hayward, R.J.N. Emery and M.V. Kolomiets (2012) Disruption of
OPR7 and OPR8 reveals the versatile functions of jasmonic acid
in maize development and defense. Plant Cell 24: 1420–1436.

Yan, Y., P.-C. Huang, E. Borrego and M. Kolomiets (2014) New per‐
spectives into jasmonate roles in maize. Plant Signal. Behav. 9:
e970442.

Zhang, X., P. Pérez-Rodríguez, K. Semagn, Y. Beyene, R. Babu, M.A.
López-Cruz, F.S. Vicente, M. Olsen, E. Buckler, J.-L. Jannink
et al. (2015) Genomic prediction in biparental tropical maize pop‐
ulations in water-stressed and well-watered environments using
low-density and GBS SNPs. Heredity (Edinb.) 114: 291–299.

Zhang, X., H. Zhang, L. Li, H. Lan, Z. Ren, D. Liu, L. Wu, H. Liu, J.
Jaqueth, B. Li et al. (2016) Characterizing the population structure
and genetic diversity of maize breeding germplasm in Southwest
China using genome-wide SNP markers. BMC Genomics 17: 697.

Zhou, H., D. Xia, J. Zeng, G. Jiang and Y. He (2017) Dissecting com‐
bining ability effect in a rice NCII-III population provides insights
into heterosis in indica-japonica cross. Rice (N Y) 10: 39.

Zhou, Z., C. Zhang, Y. Zhou, Z. Hao, Z. Wang, X. Zeng, H. Di, M. Li,
D. Zhang, H. Yong et al. (2016) Genetic dissection of maize plant
architecture with an ultra-high density bin map based on recombi‐
nant inbred lines. BMC Genomics 17: 178.

Zhou, Z., C. Zhang, X. Lu, L. Wang, Z. Hao, M. Li, D. Zhang, H.
Yong, H. Zhu, J. Weng et al. (2018) Dissecting the genetic basis
underlying combining ability of plant height related traits in
maize. Front. Plant Sci. 9: 1117.

BS Breeding Science
Vol. 71 No. 2 Liu, Hu, Li, Liu, Wu, Feng, Huang and Wang

228


