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Abstract

Cytosine DNA methylation is an important epigenetic modification termed as the fifth base that functions in diverse
processes. Till now, the genome-wide DNA methylation maps of many organisms has been reported, such as human,
Arabidopsis, rice and silkworm, but the methylation pattern of bird remains rarely studied. Here we show the genome-wide
DNA methylation map of bird, using the chicken as a model organism and an immunocapturing approach followed by high-
throughput sequencing. In both of the red jungle fowl and the avian broiler, DNA methylation was described separately for
the liver and muscle tissue. Generally, chicken displays analogous methylation pattern with that of animals and plants. DNA
methylation is enriched in the gene body regions and the repetitive sequences, and depleted in the transcription start site
(TSS) and the transcription termination site (TTS). Most of the CpG islands in the chicken genome are kept in unmethylated
state. Promoter methylation is negatively correlated with the gene expression level, indicating its suppressive role in
regulating gene transcription. This work contributes to our understanding of epigenetics in birds.
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Introduction

DNA methylation is a stable epigenetic modification found in most

of the eukaryotes that plays a crucial role in many biological

processes, including gene expression regulation, gene imprinting and

transposon silencing in mammals and plants [1,2,3]. In mammals,

cytosine DNA methylation occurs mostly at the CpG dinucleotides

except for the CpGs in CpG islands [4]. DNA methylation is

unevenly distributed in the genome, the heterochromatin region,

transposons and repetitive sequences are usually hypermethylated,

and the 59 and 39 flanking regions of genes are methylated at a

relatively low level compared with the gene body regions [3,5,6].

Although many genome-wide DNA methylation profiles and their

functional analysis have been reported, there is little knowledge about

the DNA methylation patterns in birds [5,6,7,8,9].

There are many approaches to decipher a genome-wide DNA

methylation profile, including methylated DNA immunoprecipi-

tation-sequencing/chip (meDIP-seq/chip), bisulfite-sequencing

(bis-seq) and some enzyme digestion based techniques. MeDIP

uses an antibody which can specifically recognizes methylated

cytosines and pulls down the methylated fractions, MeDIP-chip

was used to provide the first comprehensive DNA methylation

map of an entire Arabidopsis thaliana genome [3].

The gold standard to determine the DNA methylome is

genome-wide bisulfite sequencing, which firstly converts all the

unmethylated cytosines into uracil while left the methylated

cytosines unchanged by sodium bisulfite under denaturing

conditions, which can be distinguished subsequently by sequencing

[10]. Despite its high resolution, genome-wide bis-seq remains a

high cost and time-consuming method for DNA methylome study.

Many studies showed that meDIP combined with high-throughput

sequencing or chip could be considered as a method that can

reflect the relative methylation state of a genome [3,11,12].

The chicken (Gallus gallus) is an important animal model that

bridges the mammals and vertebrates in evolution and has long been

used as a model species for the study of embryology, immunology,

behavior and reproduction [13]. The red jungle fowl is believed to be

the ancestor of the domestic chicken, and chicken are thought to have

been domesticated about 8,000 years ago, in South-East Asia [14,15].

Among numerous chicken breeds raised by many years of adaptation

and breeding, the avian broiler shows good performance on growth,

muscle yield, feed efficiency and disease resistance, making it a

common chicken breed for meat production [16].

To study the global DNA methylation patterns in the chicken

genome, we generated the DNA methylomes of the red jungle fowl

and avian broiler by meDIP-seq using Illumina Genome Analyzer

II. Liver and muscle tissue were selected for methylation analysis

due to their biological and economical importance. Our results

provided the first insight into DNA methylation landscape in birds.

Results

Global mapping of DNA methylation in chicken
To decipher the genome-wide DNA methylome of the chicken,

we dissected liver and muscle tissues from 7-day-old chickens, we

immunoprecipitated sheared genomic DNA with an antibody
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which specifically recognizes 5-methylcytosine and sequenced the

enriched methylated DNA of the liver and muscle tissue of the red

jungle fowl and the avian broiler (RJF liver, RJF muscle, AA liver

and AA muscle with Illumina Genome Analyzer II. MeDIP-Seq

reads were aligned using Maq [17] and only the uniquely mapped

reads were used in scanning the methylation peak (regions with

sequencing tags more than 10 and p value,1025) with MACS

[18]. A range of 17,202,074 to 27,501,760 raw reads were

generated for the four samples respectively and more than 85% of

the reads were mapped and about 65% of the reads in each

sample were uniquely mapped to the chicken genome in each

sample (Table 1).

The technical reproducibility was assessed by two independent

meDIP experiments and sequencing performances for RJF muscle.

Each sample was sequenced by Solexa for one lane: the correlation

coefficient (Pearson’s r) of these two samples was 0.97 (p,0.0001),

which indicates our approach is highly reproducible (Fig. 1A). We

carried out bis-seq for 8 randomly selected regions in the chicken

genome, and the bis-seq results were feckly consistent with the

meDIP-seq results (Fig. 1B, Fig S1 and Fig S2). These results

indicated that our methylation data obtained by meDIP-seq was

reliable.

Distribution of DNA methylation around the transcription
start sites (TSS)

First we analyzed the distribution of DNA methylation in the

2 kb region upstream of the transcription start sites, the gene body

and the 2 kb region downstream of the transcription termination

site. Generally, gene body regions show a higher level of DNA

methylation than the 59 and 39 flanking regions of genes [3]. The

genome region around TSS is crucial for gene expression

regulation. In chicken, DNA methylation level decreased dramat-

ically before the TSS and increased sharply towards the gene body

regions and stayed at a plateau until the 39 end of the gene body

(Fig. 2). Previous studies have demonstrated that DNA methyla-

tion in the gene body regions impeded transcription elongation in

Neusprora crassa, Arabidopsis thaliana and mammalian cells [5,19,20].

The hypermethylation of the gene body regions in the chicken

genome further indicates that this is probably a mechanism for

regulation of gene expression that is conserved among species.

DNA methylation in CpG islands and repetitive
sequences

CpG islands were reported to be relatively lowly methylated [8].

We first evaluated the total number of the CpG islands in the

chicken genome with the criteria of length .200 bp, G+C content

.50% and CpG observed to expected .0.6 [21]. A total number

of 20224 CpG islands were identified in the chicken genome.

Subsequently, we estimated the methylation status of the CpG

islands: CpG islands that overlapped with the methylation peaks

were termed as methylated CpG islands. Of all the CpG islands in

the chicken genome, about 9.1% were methylated in AA liver,

7.3% in AA muscle, 5.7% in RJF liver and 13.1% in RJF muscle

of the CpG islands were methylated in the chicken genome

(Table 2). Overall, most CpG islands were unmethylated in

chicken, CpG islands in the RJF-liver were least likely to be

methylated, with the greatest proportion of methylated CpG

islands in RJF muscle. The 59 end of the gene is important for the

gene expression regulation and the methylation of the 59 end is

usually suppressive for gene expression. Our results showed that

about 10 percents of the methylated CpG islands were in this

region in the chicken genome.

The density of interspersed repeats is less than 9% in chicken

genome, which is much lower than that in mammalian genomes

[22]. In accordance with this phenomenon, less than 10% of the

uniquely mapped meDIP-seq reads in chicken belonged to the

repeat sequences annotated by UCSC (Fig. S3). The predominant

type of interspersed repeat in the chicken genome, chicken repeat

1 (CR1), accounted for about 60% of the total methylated repeat

sequences (Table S1).

Promoter DNA methylation and gene expression level
Most of the promoter regions are associated with CpG islands

and are lowly methylated. Promoter DNA methylation always

causing a compact chromatin structure and is recognized as

repressive signal for gene transcription. By RNA-seq we got the

gene expression profiles for each of RJF liver, RJF muscle, AA

liver and AA muscle. In the present study we divided genes into

ten groups based on expression levels, from the lowest 10% and to

the highest 10%. Here we defined the genomic regions 2 kb

upstream and downstream of the TSS as the proximal promoter,

and used the p value of the methylation peaks for the

measurement of methylation level. We observed that gene

expression level is negatively correlated with DNA methylation

in the proximal promoter regions in the AA liver (Fig. 3), AA

muscle, RJF liver (AA liver, r = 20.90, p,0.01; AA muscle,

r = 20.73, p,0.05; RJF liver, r = 20.72, p,0.05), while there was

a little undulation in RJF muscle (r = 20.43, p = 0.2).

Distribution of highly methylated regions and
methylated genes enrichment in chicken genome

MeDIP-seq is more suitable for analysis for DNA methylation

status of the regions that are heavily methylated in the genome.

There were, in total, 25974 HMRs in AA-liver, 23965 HMRs in

AA-muscle, 20654 HMRs in RJF-liver and 47349 HMRs in RJF-

muscle. Using the 59 and 39 sequence information annotated for

the chicken genome in UCSC and defining intergenic regions as

sequences between the annotated 39 and 59 ends of the genes, we

observed that 1.2% to 1.5% of the HMRs were at the 59 end of

genes, 0.7% to 1.2% of the HMRs were at the 39 end, 3.7% to

5.7% of the HMRs were in the exons and 9.5% to 11.4% of the

Table 1. MeDIP-Seq Illumina GA data.

Total meDIP-Seq data
Percentage of mapped
reads in total reads

Percentage of unique
mapped reads

Percentage of unmapped
reads

AA liver 20,445,577 85.47% 63.94% 14.53%

AA muscle 18,203,752 88.52% 67.43% 11.48%

RJF liver 27,501,760 89.38% 67.66% 10.62%

RJF muscle 17,202,074 87.73% 65.51% 12.27%

doi:10.1371/journal.pone.0019428.t001

DNA Methylome of Chicken
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HMRs were in the introns in the four samples, most of the HMRs

fell into the intergenic regions (Table 3).

As a tool for gene expression regulation, DNA methylation is an

important epigenetic marker that shows stability and flexibility

between different generations. To investigate the function

distribution of the methylated genes, we performed the gene

ontology analysis (p,0.01) for the methylated genes in each of AA

liver, AA muscle, RJF liver and RJF muscle. Methylated genes

were defined as genes overlapped with HMRs in promoter regions

and gene body. In AA liver, the methylated genes were enriched in

Figure 1. Global mapping of DNA methylation in chicken. A. Scatter plot showing the correlation between two independent meDIP-Seq
experiments with RJF muscle used for DNA methylation assay. B. Snapshot of meDIP-Seq data from genome-wide DNA methylation analysis. The
DNA methylation signal is shown with the sequencing tags number along the chromosome. Gene region is shown with the red boxes. Methylation
patterns of selected high methylated region and low methylated region were detected by bisulfite sequencing.
doi:10.1371/journal.pone.0019428.g001
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the functions of zinc ion and metal ion binding, protein

phosphorylation, etc (Table S2). In AA muscle the methylated

genes were enriched in gamma-aminobutyric acid secretion,

neuronal action potential propagation, synaptic transmission, etc

(Table S2). In RJF liver, methylated genes enriched in actomyosin

structure organization, phospholipase inhibitor activity, and

tropomyosin binding, etc (Table S2), while in RJF muscle

methylated genes showed enrichment in protein phosphorylation,

calcium ion binding and so on (Table S2).

Discussion

Here we report the use of meDIP-seq to determine the genome-

wide DNA methylation patterns in liver and muscle tissues of the

red jungle fowl and the avian broiler. Our results indicated that

the chicken shows analogous DNA methylation patterns to those

of mammals and plants [3,8,23]. In the chicken, the repetitive

sequences are hypermethylated while most of the CpG islands

remain hypomethylated, gene body regions show a much higher

level of DNA methylation than the 59 and 39 flanking regions.

Genomic imprinting is a germline specific epigenetic modifi-

cation which caused allelic specific expression pattern of parental

genes [24]. Imprinted genes are found in eutherian mammals,

marsupials and flowering plants but there is no report of this

phenomenon in birds [25]. The genes Mpr/Igf2r, Igf2, Ascl2/

Mash2 and Ins2 have been shown to be imprinted in mammals

but were all found to be expressed biallelically in birds

[24,26,27,28]. In the present study we tried to find any indication

of imprinting in chicken, we analyzed the putative differentially

methylated regions (DMRs) because the majority of imprinted

genes identified so far have differentially methylated alleles

[25,29], and as expected, we did not identify any experimentally

demonstrable DMRs in the chicken genome (data not shown).

Our results further indicated the absence of genomic imprinting

in birds and the uniqueness of gene imprinting in viviparous

animals and plants.

In conclusion, we have generated the first, to our knowledge,

DNA methylome for a bird species. We found meDIP-seq was

able to provide the DNA methylation landscape in chicken, and

the methylated genomic regions with meDIP–seq enrichment

could be validated by bis-seq. These DNA methylome maps will

be useful for further studies on epigenetic gene regulation in

chicken and other birds. Xu et al reported the overall methylation

differences between different tissues and strains of chicken [30],

which provided the first attempt to elucidate the DNA

methylation variations between chicken breeds with heteroge-

neous genetic background. But due to the lack of enough

biological replicates, it was hard for us to carry out comprehen-

sive analysis on methylation variations between different chicken

breeds. The epigenetic system existing in the chicken genome lays

a foundation for studying the involvement of epigenetic

modifications in chicken domestication,and more systemic

analysis of DNA methylation of different chicken breeds are

needed to elucidate this problem.

Materials and Methods

Animals
Two 7-day-old female chickens were utilized in this experi-

ment, one red jungle fowl and one avian broiler. The chickens

were fed with the same diet and sacrificed according to local

standards of animal welfare issues. The study was approved by

animal welfare committee of China Agricultural University with

approval number XK257. Liver and muscle tissues taken from

each animal were flash frozen in liquid nitrogen and then stored

at 280uC.

Figure 2. DNA methylation distribution in gene flanking and coding regions. DNA methylation profile in gene region was calculated by the
tags that were aligned on unique locus in genome. The gene region was defined as the whole regions that contained 2 kb region upstream of the
TSS, gene body from TSS to TTS and 2 kb region downstream of the TTS. In upstream and downstream 2 kb regions, the regions were split into 20
non-overlap windows and the average alignment depth was calculated for each window. In gene body, each gene was split into 20 equal windows
and the average alignment depth was calculated for each window. Y-axis is the average of normalized depth for each window.
doi:10.1371/journal.pone.0019428.g002

Table 2. Summary of methylated CpG islands in the liver and muscle tissue of the red jungle fowl and avian broiler.

Sample 59 end of a gene 39 end of a gene Exon Intron Intergenic Total methylated CGIs Total CGIs Methylated (%)

AA liver 168 63 239 251 1716 1850 20224 9.1

AA muscle 171 45 207 215 1371 1472 20224 7.3

RJF liver 128 30 150 158 1083 1156 20224 5.7

RJF muscle 362 69 430 461 2289 2657 20224 13.1

doi:10.1371/journal.pone.0019428.t002

DNA Methylome of Chicken
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DNA preparation and meDIP-seq
DNA was isolated by phenol-chloroform extraction. DNA was

sonicated at 40 w for 8 times with pause for 1 min on ice (Sonics,

VC130PB), and DNA fragments ranging from 200–350 bp were

retracted by gel excision with gel extraction kit (Qiagen,). The

recovered DNA was first 59 and 39 end blunting, phosphorylating

and repairing by T4 Polynucleotide Kinase and T4 DNA

Polymerase (NEB). After addition of an ATP in the 39 end, an

Illumina sequencing primer adapter was ligated to the DNA using

the Quick LigationTM Kit (Qiagen). DNA was recovered by

MinEluteH PCR Purification Kit (Qiagen) and used for meDIP.

Our meDIP method was modified from previous study [3]. For

each sample, we incubated 4 mg denatured DNA with 32 mg anti-

5-methylcytosine mouse monoclonal antibody (Calbiochem) in

400 ml IP buffer (10 mM Tris-HCl, pH 7.5, 280 mM NaCl,

1 mM EDTA) at 4uC for 5.5 hr. Then we added 100 ml

Dynabeads Protein G and Protein A (Dynal) to the mix and

incubated at 4uC for 5.5 hr. The following step was the same as in

the method described by Xiaoyu Zhang [3]. After meDIP, the

DNA was divided into three fractions: the unbound, washed and

bound fractions. DNA in the bound fraction from qualifying

meDIP experiment was PCR amplified with sequencing primers

Figure 3. Relationship between promoter DNA methylation and gene expression level in chicken. Genes were divided into 10 intervals
according to expression levels. DNA methylation level was measured by the log ratio of the p value of the methylation peaks, with each point
representing the mean expression level and the relative methylation level.
doi:10.1371/journal.pone.0019428.g003

Table 3. Distribution of HMRs in the chicken genome.

Total peak number 59 end of gene 39 end of gene exon intron intergenic

AA liver 25974 323 297 1489 2775 22534

AA muscle 23965 291 178 896 2280 21194

RJF liver 20654 325 248 1022 2191 18288

RJF muscle 47349 712 553 2387 5390 41482

doi:10.1371/journal.pone.0019428.t003

DNA Methylome of Chicken
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provided by Illimina using PhusionTM High-Fidelity PCR Master

Mix (Finnzymes) under the following conditions: 3 min at 98uC;

followed by 18 cycles of 98uC for 15 s, 65uC for 30 s, 72uC for

20 s; and a final extension for 5 min. PCR products were

recovered and used for Solexa sequencing.

Public data used and Gene Ontology annotation
The chicken reference genome (galGal3), together with

annotation of repeats, was downloaded from the UCSC database

(http://hgdownload.cse.ucsc.edu/goldenPath/galGal3). Gene in-

formation was downloaded from the public FTP site of Ensembl

(ftp://ftp.ensembl.org/pub) in October 2008. The information

about GO terms was downloaded from the UniProtKB-GOA

database. We select random samples of Nf different genes at each

iteration and compute Fisher’s exact test p-values for over-

representation of the selected genes in all GO biological categories.

GO terms with p,0.05 were considerd as significant enriched.

MeDIP-Seq sequence alignments and data analysis
35 bp sequencing reads and resulting FASTQ files were aligned

to the chicken reference genome (galGal3) by the open-source

aligner the Mapping and Assembly with Qualities (MAQ). 2 bp

mismatches were allowed and retained uniquely mapped reads for

further analysis. The output of the MAQ was also converted to

browser extensible data (BED) files for viewing the data in the

UCSC genome browser. Model-based Analysis of ChIP-Seq

(MACS) to was used to scan the methylated peaks in the genome.

Subsequently, the genes with DNA methylation peaks were

employed for GO analysis.

Bisulfite-sequencing
DNA was sonicated to 500–1000 bp long and recovered by

MinEluteH PCR Purification Kit (Qiagen). 2 mg sonicated DNA

bisulfite treated with EZ DNA methylation-goldTM kit (Zymo

Research). To examine the methylation status of specific regions,

we carried out semi-nested PCR under the following conditions.

The first round of amplification comprised: 5 min at 94uC; 20

cycles of 94uC for 30 s, 50uC for 30 s and 72uC for 30 s, with a

final extension at 72uC for 5 min. The second round of

amplification comprised: 5 min at 94uC; 35cycles of 94uC for

30 s, appreciate Tm for 30 s and 72uC for 30 s, with a final

extension at 72uC for 5 min. The PCR products were gel-purified

using a Gel Extraction Kit (Qiagen), cloned into the pMDTM 19-T

Vector (Takara) and sequenced.

RNA-Seq
A piece of tissue was ground in liquid nitrogen, total RNA was

extracted with TRIZOLH Reagent (Invitrogen). 30 mg total RNA

was digested with RNase-Free DNase I (NEB) for 15 min at 37uC,

phenol-chloroform extraction and ethanol precipitation to remove

DNA contamination. The concentration and quality of RNA were

assessed by Agilent 2100. 2 ug total RNA was used in library

construction. The mRNAs were isolated and reverse transcribed

into double-stranded cDNA on magnetic beads covered with oligo

d(T), the cDNA was digested with Nla III and ligated to Illumina

adapter containing a recognition site of Mme I. Following Mme I

digestion, a second Illumina adapter was ligated. Tags closed to

the 39 terminus of the mRNA were enriched by a 15 cycles PCR.

The PCR products at 85 bp DNA band was excised and purified

for cluster generation and sequencing analysis. The sequences

obtained were mapped onto the refSeq database. Sequences

uniquely mapped to refseq genes were used for subsequent

analysis. All libraries were normalized to 1 M sequences according

to clean sequences.

The sequencing data from this study have been submitted to the

NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/

geo) under accession no. GSE21167, GSE21169 and GSE21170.

Supporting Information

Figure S1 Bis-seq results of 4 methylation peak regions.

(TIF)

Figure S2 Bis-seq results of 2 regions without methyl-
ation peak.

(TIF)

Figure S3 The component percentage of mapped
meDIP-seq reads. All of thuniquely mapped reads were

classified into four types: the reads that were uniquely mapped

into CpG islands (blue), genes bodies from transcript starting site

to transcript ending site (red), repeats which were annotated by

Repeat Masker and published on UCSC (green) , genome except

for CpG Islands, gene body and repeats.

(TIF)

Table S1 The component percentage of the uniquely
mapped reads in different repeat types.

(DOC)

Table S2 Gene ontology analysis results for proximal
promoter methylated genes

(DOC)
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