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Summary
Very late antigens VLA-1, VLA2, VLA-3, and VLA6, belonging to the 01 subfamily of integrins,
have been identified as receptors for different binding domains oflaminin (LM). We have detected
VLA-6, but not VLA-1 and VLA-2 on a subset (50-70%) of fresh peripheral blood CD3 - ,
CD16+, CD56+ human natural killer (NK) cells by immunofluorimetric and biochemical
analysis . Binding assays performed on LM-coated plates showed that 10-15% of NK cells
spontaneously adhere to LM, and this adhesion is mediated by VLA-6 . Activation of NK cells
through CD16 triggering or by phorbol ester results in a rapid increase of adhesion to LM,
which is still mediated by VLA-6 . The enhanced adhesiveness is not associated with changes
in (31 LM receptor expression, while it correlates with changes in the phosphorylation status
ofcx6 subunit . The expression of VLA6 on NK cells and the modulation of its avidity by activating
stimuli may be relevant for NK cell migration and tissue location during inflammation or immune
response.

NK cells are a heterogenous population of CD3 - ,
CD16 `, CD56+ large granular lymphocytes (LGL)'

capable of lysing a broad range of neoplastic, normal, and
virus-infected cells in a non-MHC-restricted or antibody-
dependent manner (antibody-dependent cell-mediated cyto-
toxicity [ADCC]) (1) . CD16 is a low affinity receptor for the
Fc fragment of IgG (Fc-yRIII) (2) and represents one of the
most important signal transduction structures capable of ac-
tivating the NK cell functional program (1) . NK cells mainly
circulate in the peripheral blood, and also can be found under
physiologic and inflammatory conditions in several nonlym-
phoid tissues, including lung interstitium (3), intestinal mucosa
(4), and liver (5) . This recirculation pattern indicates that
they interact with endothelial cells, as well as with several
extracellular matrix (ECM) components .

Laminin (LM) is a member of an expanding family ofmul-
tidomain ECM glycoproteins and one of the major basement
membrane components (6) . Most cell-surface LM receptors
belong to the integrin superfamily (7) . In the (31 integrin
family, four heterodimers have been implicated as LM

1 Abbreviations used in this paper: ECM, extracellular matrix ; LGL, large
granular lymphocytes ; LM, laminin ; LMR, laminin receptors ; TPA, 12-
O-tetradecanoylphorbol-13-acetate .
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receptors : a101(VLA-1) ; u201(VLA-2) ; a301(VLA-3) ; and
x6(31 (VLA-6) (8) . The more specific LM receptor is VLA-6,
which was first identified on platelets (9), but it is also present
on monocytes, lymphocytes, and thymocytes (8) . Among the
LM-binding integrins expressed on leukocytes, only VLA-6
appears to be a functional receptor, and its avidity is rapidly
enhanced by short-term cell activation (10, 11) .

Previous observations indicate that both human and ro-
dent NK cells express LM, and this molecule may play a role
in their cytotoxic functions (12, 13) .

Here, we investigated: (a) the expression of LM receptors
belonging to the (31 family on fresh human NK cells, iden-
tifying those which mediate adhesion to LM; (b) the modu-
lation of LM receptor expression and function by stimuli
known to trigger NK cells such as CD16 crosslinking or
phorbol esters ; and (c) the mechanisms that can regulate LM
receptor function .

Materials and Methods
Antibodies andAdhesive Proteins.

	

The following mouse mAbwere
used : anti-CD3 (Leu4), anti-CD16 (Leu11c), anti-CD56 (Leu19),
and anti-CD14 (LeuM3), were purchased from Becton Dickinson
& Co., (Milpitas, CA) ; AIA5, against the /31 chain of VLA, was
kindly provided by Dr. M . Hemler (Dana-Farber Cancer Institute,
Boston, MA) (8) ; J143 and M-KID2 (14), both specific for VLA-3,
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were gifts from Dr. C. E. Klein (Department of Dermatology,
University ofUlmOberer Eselsberg, Germany) and Dr. P. G. Natali
(Cancer Institute, Regina Elena, Rome, Italy), respectively;
antiVLA-1 was purchased from T Cell Sciences Inc. (Cambridge,
MA); anti-cat was from Telios Pharmaceuticals Inc. (San Diego,
CA); and anti-CD16 (B73 .1 and 3G8) and anti-MHC I (W6/32),
were kindly provided by Dr. G. Trinchieri (Wistar Institute, Philadel-
phia, PA). The following rat mAb were used : GoH3 (9), specific
for the a6, was a gift from Dr. A. Sonnenberg (Laboratory ofthe
Netherlands Red Cross, AD, Amsterdam) ; and 439-9B (15) (anti-
04) was kindly provided by Dr. A. Sacchi (Cancer Institute, Re-
gina Elena) . A goat antiserum against the 01 subunit was provided
by Dr. G. Tarone (University of Turin, Italy) (16) .

FITC-conjugated goat F(ab')2 fragment anti-mouse or anti-rat
Ig, rabbit F(ab')2 fragment anti-goat Ig, and affinity-purified rabbit
antiserum against rat, mouse, or goat Ig, were purchased from
Cappel Laboratories (Cooper Biomedical Inc., Malvern, PA). LM,
both from a murine Engelbreth-Holm-Swazm (EHS) sarcoma
(Gibco Laboratories, Grand Island, NY) and from human placenta
(Calbiochem Corp ., San Diego, CA) was used in adhesion assays.

Purification ofHuman NK Cells.

	

Highly enriched populations
of NK cells from peripheral blood were purified by discontinuous
Percoll gradient centrifugation (Pharmacia Fine Chemicals, Upp-
sala, Sweden) as previously described (17) . In several experiments,
contaminating Tcells were eliminated by panning with anti-CD5
mAb, or by rigorous immunomagnetic negative selection with a
cocktail of mAb against CD3 and CD14 antigens . The resulting
NK cell populations were more than 90% CD16', CD56',
CD3 - , and CD14- , as assessed by cytofluorimetric analysis .

Cell-surface Staining and Cytofluorimetric Analysis.

	

Single- and
two-color immunofluorescence were performed as previously de-
scribed (17) . Stained cells were analyzed on a FACScano cyto-
fluorimeter (Becton Dickinson & Co.) . Fluorescence intensity is
expressed in arbitrary units on a logarithmic scale .

Adhesion Assay.

	

Adhesion assay was performed as previously
described (17) . Briefly, "Cr-labeled purified human NK cells (5 x
104) were allowed to adhere to protein-coated surface for 2 h at
37°C . After removal ofunattached cells, adherent cells were solu-

m

7
z

v

w

w
¢

CpD28
rl

1252

bilized with 1% SDS and bound radioactivity was quantitated in
a gamma-counter.

In some experiments, "Cr-labeled NK cells were pretreated
with 12-O-tetradecanoylphorbol-13-acetate (TPA) (10 ng/ml) or
with anti-CD16 mAb or its F(ab') 2 fragments for different times
at 37°C . For inhibition of cell adhesion, binding assay was per-
formed in the presence ofdifferent concentrations of anti-0l, anti-
u6, or anti-MHC I antibodies .

'251 Cell-surface Labeling.

	

Highly purified human NK cells (50
x 106) were surface labeled by lactoperoxidase-catalyzed iodina-
tion as previously described (17) .

32P Radiolabeling.

	

Cells were washed in phosphate-free MEM
containing 30 mM Hepes and 1% dialyzed FCS and starved for
1 h at 37°C . Cells were resuspended at 50 x 106/ml, incubated
with 2 mCi/ml [32p]orthophosphate for 4 h at 37°C, and then
stimulated with the desired agent for the indicated times. Stimula-
tion was terminatedby adding ice-cold wash buffer (0 .4 mM EDTA-
Na2 , 10 mM Na4P207, 10 mM NaF, 0.1 mM Na3VO4 in PBS, pH
7.4), pelleting cells for 5 min at 500 g, and resuspending them
in ice-cold lysis buffer containing 1% /3-octylglucoside, 1 mM
CaCl2, 1 MM MgC12, 0.1% NaN3 , 1 mM PMSF, 10 U/ml
aprotinin, 10 ltg/ml leupeptin, 10 mM NaF, 150 mM NaCl, and
10 mM iodoacetamide for 30 min at 4°C.

Immunoprecipitation and SDS-PAGE Analysis .

	

Lysates from 12. I
or 32 P-radiolabeled cells were immunoprecipitated and analyzed by
SDS-PAGE on 7% polyacrylamide gels as previously described (17) .

Results
Expression of LM Receptors (LMR) Belonging to the VLA

Family by Fresh Human NK Cells. Human peripheral blood
NK cells were stained with a panel of mAb directed against
al (TS 2/7), a2 (PlE6), 00143 or M-KID2), a6 (GoH3),
and /31 (AlA5), or a polyclonal anti-/31 antiserum. The im-
munofluorimetric analysis shows that LGL, displaying an NK
phenotype (CD16+, CD56', CD3- , CD14-), express (31
as previously described (17), and a portion of them, the a6
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Cell Activation Enhances VLA-6-mediated NK Cell Adhesion to LM

Figure 1.

	

Expression of VLA-6
on fresh human NK cells . Expres-
sion ofVLA subunits was evaluated
by immunofluorescence and flow
cytometric analysis . Anti-CD16,
anti-CD56, anti-CD3, and anti-
CD14 mAb were used to determine
the NK phenotype. (Dotted areas)
Negative controls.
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subunit (50-70%) . Although they do not express detectable
levels ofcx1 and cx2, a small amount of0 was found in some
donors (Fig . 1) . It has been reported that a6 subunit can
associate with both (31 and ,Q4 (18) . We therefore analyzed
the expression of (34 subunit on NK cells . As shown in Fig.
2, no detectable levels of (34 were observed on CD56+ NK
cells, whereas all of them expressed (31, and a6 was present
on a subset . These data indicate that ot6 is present on NK
cell surface as x6/31 (VLA-6), but not as c16O4 heterodimer.

Biochemical Characterization ofVLA-6 Expressed on Human
NK Cells. Cell lysates from 1zII_radiolabeled highly puri-
fied human NK cells were immunoprecipitated with anti-/31
and anti-cx6 mAb (Fig . 3) . As we have previously shown (17),
immunoprecipitation with anti-/31 mAb resulted in a dou-
blet migrating at 150 and 110 kD under nonreducing condi-
tions, and at 150/130 kD under reducing conditions . Anti-
c& mAb immunoprecipitated two proteins migrating at 140
and 110 kD under nonreducing conditions corresponding to
the a6 and (31 subunits, respectively. Both proteins migrated
at 130 kD under reducing conditions.

Adhesion of NK Cells to LM Is Mediated by VLA-6.

	

To
determine whether VLA-6 present on NK cells is a functional

Figure 3 .

	

Immunochemical analysis ofVLA-6 expressed on human NK
cells. 125 1-labeled human NK cell lysate was immunoprecipitated with con-
trol rabbit anti-mouse Ig (lanes 1 and 5), AlA5 (anti-/31) mAb (lanes 2
and 6), control rabbit anti-rat Ig (lanes 3 and 7), or GoH3 (anti-a6) mAb
(lanes 4 and 8), and analyzed by SDS-PAGE under nonreducing (NR) and
reducing (R) conditions .
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CD561 NK cells express
a601, but not a604 integrin . Percoll-
enriched human NK cells were stained
with anti-(31, anti-a6, or anti-/34 mAb
(green fluorescence, x-axis) and anti-
'D56 (Leu 19) mAb (red fluorescence,
y-axis) .

receptor, we analyzed the ability of NK cells to bind to LM-
coated surfaces . "Cr-labeled human NK cells were incubated
on LM-coated plates for 2 h at 37°C in the presence of different
doses of GoH3 (anti-cx6) mAb, or a saturating dose of anti-
01 antiserum . 10-15% of highly purified NK cells bound
specifically to different doses of LM (1-50 N.g/ml) and not
to BSA (Fig. 4 A), and this adhesion was completely blocked
by anti-01 antiserum and, in a dose-dependent manner, by
anti-a6 mAb . Control antibodies such as anti-MHC I
(W6/32) mAb were not inhibitory (Fig. 4 B) . These data
indicate that NK cells adhere to LM and that this adhesion
is mediated by VLA-6.

Activation ofNK Cells by CD16-crosslinking or Phorbol Esters
Increases Adhesion to LM We have investigated whether
stimuli able to trigger several NK cell functions can modu-
late their adhesion to LM. "Cr-labeled NK cells were
treated for different times at 37°C with TPA (10 ng/ml) or,
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Figure 4 .

	

VLA-6 mediates adhesion of human NK cells to LM . (A)
adhesion to different doses of LM ; (B) adhesion to 10 pg/ml of LM in
the presence of anti-/31 antiserum or different doses of GoH3 (anti-a6)
mAb. As control W6/32 (anti-MHC I) mAb was used. Data are pre-
sented as the mean of quadruplicate determinations after subtracting the
mean of cell adhesion to BSA . Percentage of cell adhesion to BSA was
routinely <4% .



Figure 5 .

	

Activation ofNK cells by CD16-crosslinking or TPA enhances
NK cell binding to LM . (A) s 1Cr-labeled human NK cells were treated
for 10 min with TPA (10 ng/ml) or with saturating doses of B73 .1 or
3G8 mAb or its F(ab')2 fragments and assayed for adhesion to LM (10
jug/ml) (/) . (B) Timecourse of TPA (~3)- or B73 .1 (F- I)-mediated stimu-
lation of NK cell adhesion to LM ; C (M) represents the adhesion of un-
stimulated cells. Data are presented as the mean ofquadruplicate determi-
nations after subtracting the mean of cell adhesion to BSA.

in a more physiologically relevant manner, with anti-CD16
mAb. As shown in Fig . 5 A, activation of NK cells with
TPA or by crosslinking of CD16 antigen with saturating doses
of B73.1 or 3G8, two mAb directed against different epi-
topes ofthis molecule, resulted in enhanced adhesion to LM.
Similar results were observed when NK cells were stimulated

Figure 6.

	

VLA-6 mediates activation-dependent adhesion of NK cells
to LM . 5 ICr-labeled human NK cells were stimulated for 10 min at 37°C
with TPA (10 ng/ml) (/) or B73 .1 mAb (®) and then assayed for adhe-
sion to LM in the presence of anti-,(31 antiserum, anti-a6 (GoH3), or anti-
MHC I (W6/32) mAb; untreated cells (0) . Data are presented as the
mean of quadruplicate determinations after subtracting the mean of cell
adhesion to BSA.
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with 3G8 F(ab')2 fragments . Enhanced adhesion was already
observed 10 min after treatment and remained at the same
levels over the stimulation period (30 min) (Fig. 5 B) .

VLA-6 Mediates Activation-dependent Adhesion to LM

	

To
investigate whether increased adhesion to LM induced by NK
cell activation was mediated by VLA-6, we performed the
binding assay in the presence ofanti-c16 or anti-01 antibodies.
Both anti-a6 and anti-01 antibodies but not control mAb
(anti-MHC I) completely blocked adhesion ofTPA- or B73.1-
stimulated NK cells to LM (Fig. 6) . These data indicate that,
as for constitutive adhesion to LM, the increased LM binding
of stimulated NK cells is exclusively mediated by VLA-6 .

Activation-dependent Adhesion to LM Is Not Associated with
Changes in the Expression of/31 LMR. To understand the
mechanisms responsible for the enhanced adhesion of NK
cells to LM, we evaluated whether the expression of01 LMR
was affected upon NK cell activation . As shown by double-
immunofluorescence and cytofluorimetric analysis, treatment
with TPA (20 ng/ml for 10 min at 37°C) or anti-CD16 mAb
(data not shown) did not affect cell surface expression of (31
and fx6 subunits (Fig . 7), nor did it induce a1, a2, and 0
subunits (data not shown) .

Activation-dependent Adhesion to LM Correlates with Changes
in the Phosphorylation Status ofa6 Subunit. We have analyzed
whether stimulation of NK cells with TPA or anti-CD16
mAb could induce changes in the phosphorylation status of
VLA-6 . 32P-labeled NK cells were stimulated with TPA or
anti-CD16 mAb for different times (5-20 min), and cell ex-
tracts were immunoprecipitated with anti-c16 or anti-,131 an-
tibodies and analyzed by SDS-PAGE under nonreducing con-
ditions . Both TPA and anti-CD16 (Fig. 8 A), but not
anti-CD56 (Fig . 8 B) induced phosphorylation of a 140-kD
protein corresponding to the ab subunit . TPA-induced phos-
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Figure 7 .

	

TPA does not affect VLA-6 expression by NK cells. Percoll-
enriched human NK cells were stimulated for 10 min at 37 °C with TPA
(20 ng/ml) and then stained with anti-(31 or anti-ce6 mAb (green fluores-
cence, x-axis) and with anti-CD56 (Leu 19) mAb (red fluorescence, Y-axis) .



phorylation was already observed at 5 min and persisted until
20 min after stimulation, whereas that induced by CD16 en-
gagement declined after 10 min . Low levels of u6 phos-
phoprotein were present in untreated controls. In these ex-
perimental conditions, no phosphorylation of u6-associated
(31 subunit was observed.

Discussion
The present study provides the first evidence that fresh

human peripheral blood NK cells express VLA-6 which
mediates their adhesion to LM. It is also shown that trig-
gering of CD16 antigen or TPA enhances this adhesion and
is capable of increasing u6 phosphorylation .
VLA-6 was identified on 50-70% of CD3 - , CD16+,

CD56+ NK cells by immunofluorimetric and biochemical
analysis. ct6 on NK cells was only associated with ,(i1 but
not with (34, as indicated by the absence of detectable levels
of /34 .
The pattern of expression of (31 LMR on NK cells parallels

that observed in resting PBL, which have heterogeneous ex-
pression of VLA-6, a small amount ofVLA-3, and no detect-
able levels of VLA1 and VLA-2 (8, 10) .
Our results also show that 10-15% of NK cells spontane-

ously adhere to LM and that VLA-6 mediates this adhesion .
Similarly, low levels ofVLA6-mediated adhesion to LM was
observed in fresh memory human CD4+ T cells (10) . En-
hancement ofNK cell adhesiveness to LM is induced within
a few minutes of stimulation with TPA or CD16 crosslinking,
and it remains at the same level over a period of 30 min. This
adhesion is still mediated by VLA6 as shown by mAb blocking
experiments .
CD16 triggering-dependent NK cell adhesion to LM is

reminiscent of that observed for T lymphocytes stimulated
through the TCR/CD3 complex or CD2 antigen (10) . In-
deed, CD16 on NK cells is a physiologically relevant struc-
ture, whose engagement results in kinase activation, increased
levels of intracellular calcium, inositol phosphate generation,
and activation of lytic machinery and lymphokine produc-
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Effect of TPA or anti-
CD16 mAb treatment on the phos-
phorylation status of VLA-6 . 32p-

labeled NK cells were stimulated with
TPA (80 ng/ml) (A) or saturating
doses of anti-CD16 (B73 .1) (A and
B) oranti-CD56 mAb (B) for different
times (5-20 min) . Cell extracts were
immunoprecipitated with control Ig
(C), or A1A5 (anti-/31), orGoH3 (anti-
a6) mAb and analyzed by SDS-PAGE
under nonreducing conditions . (NT)
Untreated cells.

tion (19-21) . Our results suggest that VLA-6 and CD16 are
coupled by intracellular signaling pathways, i.e ., CD16 triggers
a cascade of biochemical events or second messenger produc-
tion that lead to increased VLA6 adhesive function.
The rapid enhancement of NK cell adhesion to LM upon

activation occurs without changes in the levels ofcell surface
expression ofVLA6 and the other (31 LMR (data not shown),
as previously described for activated T lymphocytes (10), sug-
gesting that a qualitative alteration of integrin is more likely
responsible for enhanced adhesiveness . In an attempt to
elucidate the biochemical changes occurring after CD16- or
TPA-induced cell activation, we observed an increase in the
phosphorylation status of a6 . a6 phosphorylation is already
evident after 5 min of stimulation and declines differently
depending on the activating agent . Indeed, TPAinduced phos-
phorylation persists for at least 20 min whereas that induced
by CD16 declines after 10 min of stimulation . Constitutive
low levels of a6 phosphorylation were observed, suggesting
that NK cell activation may quantitatively rather than quali-
tatively affect c16 phosphorylation status . In these experimental
conditions, no phosphorylation of (31 subunit was observed.
The mechanisms involved in the regulation of activation-

dependent integrin receptor functions are still unclear. In-
creased avidity for counter ligands as a result of cell activa-
tion is a behavior common to many integrin receptors (7) .
Nevertheless, the molecular basis of enhanced integrin func-
tion is largely unknown . Quantitative changes in cell surface
integrin expression appear not to be particularly relevant, as
indicated by the failure to demonstrate increased receptor levels
accompanying increased binding in many different systems
(10, 11, 22) and also in our study. Therefore qualitative changes,
i.e., posttranslational modifications ofeither a and/or /3 inte-
grin subunits, as well as of other integrin-associated mole-
cules such as cytoskeleton components, are likely to occur.
Among the possible posttranslational modifications, phos-
phorylation appears to be a good candidate as a mechanism
regulating integrin receptor functions because of its revers-
ible nature. Cytoplasmic domains of a and a subunits have
been shown to be substrates of kinase activities . Neverthe-



less, changes in integrin avidity are not always associated with
their phosphorylation, and in some cases they appear to be
induced instead by nonproteic components (23, 24) .

In regard to (3 subunits, (31 has been shown to be phos-
phorylated under certain conditions, but the functional sig-
nificance of this phosphorylation remains unclear (25, 26) .
With respect to 02, serine phosphorylation can be disso-
ciated from phorbol ester-stimulated binding of LFA-1 to in-
tercellular adhesion molecule 1 (ICAM-1) (27) .

Phosphorylation of integrin ot chains too, has been de-
scribed . In the 02 family, all three a subunits are constitu-
tively phosphorylated in PMN and monocytes (28), but this
phosphorylation does not appear to play, at least for «L, any
functional role. In the VLA family, a subunit phosphoryla-
tion correlates with the high avidity state of integrin receptor.
Phosphorylation of the cytoplasmic domain of cx6 subunit
and its association to increased adhesion to LM has been ob-
served in our study and in activated murine macrophages (11) .
c16 phosphorylation suggests an important functional role
of a subunit cytoplasmic domain in affinity regulation ofinte-
grin receptors. Supporting this idea, recent evidence show
that affinity of cilIbO3 is modulated by the cytoplasmic do-
main of celIb subunit (29) . Indeed, its truncation resulted
in increased affinity for fibrinogen similar to that observed
after exogenous platelet activation . Overall, it can be hypothe-
sized that a sequence in the cytoplasmic domain ofot subunit
may maintain integrin receptor in a low affinity conforma-
tion, likely interacting with an intracellular moiety with
"repressor" activity. Modification of this interaction, which
can be induced by cytoplasmic domain truncation or phos-
phorylation, as shown in our study and by Shaw et al . (11),
may then result in induction of a high affinity state .
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On the basis of the molecular alterations, several mecha-
nisms including cytoskeleton association, interaction with
other intracellular moieties, receptor clustering, and exposure
of activation epitopes may underlie the increased integrin
avidity.
Some of these mechanisms could explain how phosphory-

lation of a6, induced by CD16 engagement or TPA treat-
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tion per se for the high avidity state of the receptor.

Overall, our results suggest that expression of VLA-6 on
NK cells appears to be particularly relevant for their migra-
tion, tissue localization, and functions . VLA-6-mediated NK
cell adhesion to LM is likely to be critical for migration through
basement membranes where LM is a major constituent . In
this regard, LM has been found to facilitate NK cell migra-
tion in response to several chemotactic stimuli (30) . The
activation-dependent increase in VLA-6-mediated NK cell
adhesion to LM may be relevant to temporarily immobilize
NK cells at the site of ongoing inflammatory or immune
responses, and prevent them from escaping into the circulation .
Whether or not VLA-6/LM adhesion pathway can also

be implicated in NK-target cell interaction is unclear. LM
has been shown to deliver a costimulatory signal that en-
hances C133-induced T lymphocyte proliferation (10), and
it has been suggested to facilitate antigen-specific T cell in-
teraction (10) . The role of LM-like molecules in NK-mediated
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