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Dementia with Lewy bodies (DLB) is characterized by the transient fluctuating cognition

and recurrent visual hallucinations, which may be caused by disorders of the intrinsic

brain network dynamics. However, little is known regarding the dynamic features of

the brain network behind these symptoms in DLB. In the present study, the intra- and

inter-brain network dynamics were explored on a time scale in 17 DLB and 20 healthy

controls (HC) applying a sliding-windowmethod followed by k-means clustering analysis.

To further evaluate the impact of network dynamics on brain performance, the local

and global efficiency of the brain network was calculated. Compared with HC, the

dynamic functional connectivity variation matrix in DLB patients was represented by

a mixed change of intra-network increase and inter-network decrease. DLB patients

devoted more time to a negative connectivity pattern, which represents a state of

functional separation. Furthermore, the local efficiency of DLB patients was significantly

lower compared with HC. These observations indicate an altered dynamic variability

and disorders to the time allocation of state sequences in DLB, which might result in

a disturbance of the intricate brain network dynamic properties, thereby leading to a

lack of integration and flexibility and an ineffective brain function. In conclusion, dynamic

functional connectivity analysis could identify differences between DLB and HC, providing

evidences for DLB diagnosis and contributing to the understanding of the widespread

clinical features and complex treatment strategies in DLB patients.

Keywords: dementia with Lewy bodies, dynamic functional connectivity, k-means clustering, sliding-window, local

efficiency

INTRODUCTION

Dementia with Lewy bodies (DLB) is a growing concern worldwide, accounting for up to 15% of
dementia cases (1). It is characterized by four core clinical features: fluctuating cognition, recurrent
visual hallucinations, rapid eye movement sleep behavior disorder, and spontaneous parkinsonism
(2). Multiple magnetic resonance imaging (MRI) studies revealed that the dysfunction of several
brain connection networks is pertinent to the impairments in DLB. Fluctuating cognition
and recurrent hallucinations, indicating transient abnormal brain functions, suggest that the
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connection disorders among brain’s intrinsic networks may be
dynamic. Studies on DLB, especially regarding fluctuation and
recurrence, should focus more on the dynamic brain network
properties enabled by time courses for a better understanding of
its characteristics.

Recently, resting-state functional MRI (rs-fMRI) has
become of increasing popularity in the exploration of the
pathophysiological DLB mechanism employing various
means. For instance, some studies delineated local functional
connectivity (FC) patterns using seed region analysis, and found
that the connectivity of default mode network (DMN), frontal-
parietal network (FPN), sensorimotor network (SMN)-related
brain regions (3, 4), and visual network (VIS) (5) of DLB were
disrupted. In addition, functional brain network analysis based
on independent component analysis (ICA) technique highlighted
some disconnections within and between specific resting-state
networks (RSNs), including DMN (6), SMN (7), and FPN (8),
and the correlation between some connections and the frequency
and severity of cognitive fluctuations. Furthermore, Peraza et al.
(9) revealed altered network connectivity accompanied with
frontal, parietal, and occipital lobes lower clustering coefficient
in DLB patients by the graph theory, quantifying abnormal
network characteristics. Generally, these findings provide an
evidence regarding differences in functional brain network
connectivity between DLB individuals and Parkinson’s disease
dementia or Alzheimer’s disease, implying that the alterations in
brain network organization play a potentially important role in
comprehending the etiology of the core symptoms in DLB.

Nevertheless, static correlation between intra- and inter-
networks is based only on the hypothesis that FC activity among
different brain areas remains constant throughout the whole
scanning process and the conventional methods mentioned
above use static correlation (10, 11). However, several findings
reported that the FC of human brain is not invariable (12, 13),
showing a certain dynamic as time goes on, regardless of whether
it is in the task state or under anesthesia (14). Since DLB
is characterized by fluctuant and recurrent clinical symptoms,
static functional measures cannot completely reflect the dynamic
neural activity; thus, these traditional methods have recently
faced challenges (14, 15). Dynamic functional connectivity (DFC)
brain network analysis using the sliding-window method has
been used to evaluate the relevant FC variations directly by
dividing the whole scanning time series into many segments
of the same size and observe the evolution of FC over time.
This method offers a promising way for assessing the dynamic
temporal organization of the resting state brain activity and
brings fresh insights into the brain network fluctuation caused
by brain disorders. Therefore, a great number of neuropsychiatric
studies on major depressive disorder (16), schizophrenia (17, 18),
epilepsy (19), and mild cognitive impairment (20), have been
carried out. Despite the fact that DFC measurements have been
increasingly used to investigate the way the brain is affected
by the disease, neuroimaging investigations of DFC in DLB
patients remain scarce. A recent work (21) applied the Product
Hidden Markov Models (HMM) to compare the DFC changes
between DLB and healthy participants, and a set of visual-related
RSNs and FPN have been identified. However, this work mainly

focused on the Product HMM from a modeling perspective, and
less attention was paid on exploring the pathological mechanism
of this disease. Thus, further investigations are needed to reveal
the DFC characteristics of DLB, to deepen our knowledge in the
underlying etiology, therefore providing important clues on the
potential biomarkers for clinical diagnosis and treatment.

Hence, in the present study, sliding-window DFC analysis
and exploratory k-means clustering technique were employed
to systematically evaluate FC pattern dynamics in DLB patients.
Our aim was to evaluate if the variability of DFC in DLB was
significantly changed compared with HC both intra- and inter-
network. In addition, a further aim considering the cognitive
impairment was to evaluate if the temporal distribution among
states of DLB subjects was aberrant, showing a less flexible
state transition.

MATERIALS AND METHODS

Participants and Assessment
A total of 17 DLB patients (mean age, 71.88 ± 5.69 years; range,
60–82 years; 13 male) and 20 healthy subjects (mean age, 67.80±
7.19 years; range, 56–77 years; 9 male) as controls were recruited
from the Affiliated Brain Hospital of Nanjing Medical University
fromMay 2015 to February 2019. HCs were selected by matching
patients in gender and age. Clinical diagnosis was performed
by two independent neurology experts, using McKeith’s criteria
for probable DLB (1). All patients suffered from two or more
core DLB symptoms. Motor symptoms were evaluated by the
Unified Parkinson’s Disease Rating Scale-Part III (UPDRS-III)
and the severity of disease was obtained by the Hoehn and
Yahr (H-Y) score. All participants underwent cognitive condition
assessments by the Mini-Mental State Examination (MMSE)
and Montreal Cognitive Assessment (MoCA). Subjects who had
MRI contraindications, a history of focal brain lesions, other
neurological or psychiatric diseases, and severe medical illness
were excluded from both groups. The study was approved by
the Human Participants Ethics Committee of the Affiliated Brain
Hospital of Nanjing Medical University, China, and each subject
enrolled in this study provided written informed consent.

Image Acquisition
All MRI scans were obtained from a 3.0 Tesla MRI scanner
(Siemens, Verio, Germany) at the Department of Radiology of
the Affiliated Brain Hospital of Nanjing Medical University,
Nanjing, China. Resting-state functional images were collected
by an 8-channel head coil and a gradient-echo T2-weighted
echo planar imaging (EPI) sequence according to the following
parameters: resolution = 3 × 3 × 3 mm3; time points = 140;
repetition time (TR) = 2,000ms; echo time (TE) = 30ms; field
of view (FOV) =240 × 240mm; flip angle = 90◦; matrix = 64
× 64; slice number = 30; thickness = 3mm; slice gap = 0mm.
High-resolution T1-weighted images were acquired using three-
dimensional fast spoiled gradient-echo (3D FSPGR) sequence in
a sagittal orientation for each subject (resolution = 1 × 1 × 1
mm3; TR= 2530ms; TE= 3.34ms; flip angle= 7◦; slice number
= 128; thickness = 1.33mm; slice gap = 0mm; matrix = 256 ×
256). During the scanning, participants were explicitly instructed
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to be relaxed, to close their eyes, to not think of anything, and
to remain still and awake (confirmed by all subjects immediately
after the scanning). Additionally, the head of all participants was
fixed and earplugs were used in order to reduce the impact of
head motion and noise.

Data Processing
Image preprocessing was performed using Data Processing &
Analysis for (Resting-State) Brain Imaging (DPABI Version
2.3 http://rfmri.org/dpabi) implemented in MATLAB 2014a
(MathWorks, Natick, MA). The preprocessing steps were
as follows: reduction of the first 10 volumes of each rest
session, slice timing, realignment to the middle image for head
motion correction, registration to mean functional image; spatial
normalization (3 × 3 × 3 mm3) to standard space (Montreal
Neurological Institute, MNI) using Diffeomorphic Anatomical
Registration Through Exponentiated Lie algebra (DARTEL);
segmentation of anatomical images into gray matter (GM), white
matter (WM), and cerebrospinal fluid (CSF); removal of the
WM signals, CSF signals, and Friston 24-parameter; smooth with
6mm full-width half-maximum (FWHM) kernel, regressing out
linear and quadratic trends and band-pass filter (0.01–0.08Hz).
This preprocessing order was in accordance with the standard
protocol as described in Yan et al. (22). Subjects with headmotion
>2.0◦ and 2mm were excluded.

ROI Generation and Definition of
Functional Brain Networks
The complexity of time-varying DFC represents the main
difference from static FC and the recruitment of more areas in the
relevant networks could offer more comprehensive information.
As shown in a previous study (23), after preprocessing, the 264
spherical regions of interest (ROIs) with a diameter of 5mm
were defined around coordinates defined by Power et al. (24).
Then, the mean time courses of the 264 ROIs were extracted.
According to previous studies, these functional regions form
13 brain networks, including DMN, SMN, cingulo-opercular
network (CON), auditory network, VIS, memory retrieval,
FPN, salience network (SAN), subcortical network (SC), ventral
attention network (VAN), dorsal attention network (DAN),
cerebellum network, and uncertain networks. This definition of
brain network facilitates the study of FC within and between
networks. Since the function of the “Uncertain” network is not
specific, we mainly paid attention to the other 12 brain networks
consisting of 236 seed sites.

Dynamic Functional Network Connectivity
Construction
The 236 available ROIs were used to analyze DFC using
DynamicBC toolbox (www.restfmri.net/forum/DynamicBC).
Since there was no formal consensus on window length, dynamic
functional network connectivity (dFNC) was constructed using
the sliding-window Pearson’s correlation method with a length
of 20 TRs (40 s) and a step size of 1TR, as previously performed
(25), resulting in 111 windows. In each window, we computed
Pearson correlation coefficients between the time series of each
pair of the 236 ROIs. As a result, we obtained a 236× 236 matrix

of Pearson correlation coefficients between any pair of ROIs
to construct the brain network FC matrix for each window.
Then, Fisher’s r-to-z transformation was used to transform
the unweighted individual correlation matrices into z-score
matrices without thresholding, so as to improve normality.
These Fisher’s z-transformed correlation matrices were used
to further calculate the variation of DFC. The static functional
network connectivity was also calculated based on the whole
time series.

Functional Connectivity Variation
To characterize dynamics variability, the dynamic functional
connectivity variation (dFCV) matrix was subsequently
evaluated as the standard deviation of the Fisher’s z-transformed
Pearson’s correlation coefficients across all of the windows
for each participant. In this method, DFC stability could be
quantitatively estimated and compared between different groups.
The original FCV matrices were then Fisher z-transformed and
were statistically compared.

k-means Clustering
To identify dFNC patterns reoccurring across temporal matrices,
k-means clustering was employed on all the dynamic correlation
matrices to divide the dFNC into discrete clusters. The k-
means algorithm aggregates information with similarities into
“k” groups, ensuring that the sum of squares within clusters
is minimal. During the clustering estimation, the correlation
distance metric was chosen because it is more sensitive to the
dFNC pattern, regardless of magnitude (26). Cluster analysis of
a series of k values ranging from 2 to 10 was then performed
based on all subjects. To obtain the optimal number of cluster
centroids, we used the silhouette values, Calinski–Harabasz
values and Davies–Bouldin values. The evaluation results showed
that (silhouette) optimal k= 2, (Calinski–Harabasz) optimal k=
2, (Davies Bouldin) optimal k = 2, and (mean) optimal k = 2,
where (mean) optimal k = 2 is the value obtained by rounding
the first three (2, 2, 2) simple average backwards. Finally, we
gave the result of optimal k = 2. For each available cluster,
a cluster centroid was generated, representing the FC for this
cluster capturing all features. Therefore, two most frequent states
of DFC were identified and further statistical analysis was carried
out between patients and HC.

State Analysis
The temporal indexes derived from each participant’s transition
state vector, which represents the change of state assignments
over time, were explored. More specifically, we focus on three
main measures of each subject, including (a) mean dwell time
of each state, which refers to the average number of consecutive
windows belonging to one state before changing to the other
state; (b) frequency of each state, which refers to the number
of windows per state; and (c) total number of transitions, which
refers to the total number of conditions that the clustering state
convert from one to another.
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Topological Properties of Static Functional
Connectivity
To better understand the disease effects on the resting state fMRI,
graph metrics for the static connectivity were also computed.
Individual correlation matrices were converted into binarized
matrices according to a predefined sparsity threshold (0.01–
0.50, with an increment of 0.01). Network sparsity, defined as
the fraction of the total number of existing edges divided by
the maximum possible number of edges, was used to enable
all networks to have the same number of edges. This threshold
selection was based on the criteria proposed by previous studies
(27, 28), which could assure that the thresholded networks
were estimable for small-worldness and had sparse properties
with as few spurious edges as possible. Global efficiency and
local efficiency, which are two key topological properties, were
employed using the graph theoretical network analysis toolbox.
Global efficiency computed the average inverse shortest path
length of all network nodes, as a measure of global integration,
quantifying the parallel information transfer (29). Local efficiency
estimated the information exchange capability of subnetwork,
as an assessment of local connection efficiency, measuring the
fault tolerance of networks (29). Since each correlation matrix
was thresholded repeatedly over a wide range of sparsity, the
area under the curve (AUC) for each network metric was
computed to be taken as a summarized scalar for the topological
characterization of the brain networks. The statistical analysis
was performed between DLB and HC subjects to compare the
static network features.

Statistical Analysis
The Fisher z-transformed FCVmatrices were compared between
patients and HC using two-sample t-test using the graph
theoretical network analysis toolbox (p < 0.005). Analyses were
performed using age and sex as covariates. Since data distribution
was not normal, non-parametric Mann–Whitney test was used to
compare the dwell time of each state, frequency of each state and
total number of transitions between patients and controls using
a threshold of p < 0.05. Besides, statistical analysis to evaluate
local efficiency, global efficiency, age and clinical assessment
was conducted using two sample t-test, while statistical analysis
to evaluate significant differences in the number of males and
females between the two groups was conducted applying the
Chi-square test.

RESULTS

Demographic and Clinical Information of
the Subjects
Demographic and clinical information of the participants is
summarized in Table 1. No significant differences were found in
gender and age between patients andHC. As expected, theMMSE
and MoCA scores were lower in the DLB group (p= 0.000).

FCV
Disease-related alterations in dFCV compared with the HC are
shown in Figures 1A,B. All changes in the DLB group indicated
that most of the increased DFC variations are located within

TABLE 1 | Demographic and clinical information of the subjects.

DLB (n = 17) HC (n = 20) χ2/T p-value

Gender (male/female) 13/4 9/11 3.776a 0.052

Age (years) 71.88 (5.69) 67.80 (7.19) 1.891b 0.067

MMSE 19.06 (4.81)* 29.05 (0.89) 8.435b 0.000

MoCA 13.35 (5.44)* 27.20 (1.15) 10.297b 0.000

Disease duration (years) 2.68 (1.57) — — —

Hoehn and Yahr (H–Y) score 2.50 (1.10) — — —

UPDRS-III (motor) 17.06 (7.66) — — —

Numbers are expressed as mean (standard deviation). The asterisk (*) represents

significant inter-group differences.
a
χ2 value of chi-square test.

bt value of two-sample t tests.

DLB, Dementia with Lewy body; HC, healthy control; MMSE, Mini Mental State

Examination; MoCA, Montreal Cognitive Assessment; UPDRS-III, Unified Parkinson’s

Disease Rating Scale-Part III.

the networks (DMN, SMN, VIS, FPN, SA, SC, and DA), and
few intra-network FCV showed a decrease within the DMN and
SC. Inter-network changes were characterized by decreased DFC
variations, especially between several subnetwork pairs related
to DMN, VIS, and FPN, and between SMN and FPN. Besides,
some subnetwork regions exhibited mixed changes including
both increase and decrease.

State Connectivity Patterns and Clustering
Indexes
The (mean) optimal value of k is 2. Thus, two representative
states were identified for all obtained sliding windows from the
clustering analysis and the centroids of the two dFNC states,
indicating the median of all subjects for each state, as shown in
Figure 2. The percentages located at the top of each centroid
represent the occurrence of each state to total time series. In
state 1, the whole network displayed slight negative connectivity,
and slight positive connectivity intra-networks. State 2 showed
moderate positive connectivity within and between most inter-
networks, while the connectivity was negative between DMN and
others. Additionally, based on the k-means algorithm results, the
dwell time and frequency of each state and the total number
of transitions were characterized, and the relevant indexes of
connectivity states are shown in Figure 3 (Table 2). Inter-group
differences observed in the dwell time revealed that the average
dwell time of state 2 in the DLB group was significantly shortened
compared with normal volunteers (p = 0.040). Although no
significant difference in dwell time of state 1 or total transition
times between the two groups was found, the DLB patients
showed an increasing trend in state 1 dwell time and a decreasing
trend in the total transition time.

Topological Properties of Static Functional
Connectivity
Using the graph theory analysis, significant differences between
groups were observed in the local efficiency (Table 3, Figure 4).
The DLB group had a significantly lower local efficiency than
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FIGURE 1 | Dynamic functional network connectivity characteristics. Illustration of the statistical analysis results of the dFCV between DLB and HC. (A) Depicts the

dFCV difference matrix. Red dots represent an increase of variation in the DLB group, while blue dots represent a decrease of variation in the DLB group. (B) A 3D

visualization of the results in (A) (p < 0.005).

FIGURE 2 | Centroids of the two dFNC states. In state 1, the whole network displayed slight negative connectivity and slight positive connectivity intra-networks.

State 2 showed moderate positive connectivity within and between most inter-networks, while the connectivity was negative between DMN and others.

FIGURE 3 | Clustering index characteristics. Group comparison of state dwell time, occurrence frequency, and number of total transitions. The upper and lower

boundaries of the box-plot represent the maximum and minimum values, the upper and lower boundaries of the box body represent the upper and lower quartiles,

respectively, and the short line in the box body represents the median. p-value results from Mann–Whitney test. See Table 2 for detailed information on statistics.
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TABLE 2 | Clustering indexes of each group.

DLB (n = 17) HC (n = 20) Ua p-value

Dwell time of state 1 54 (21.38, 111) 33.08 (17.79, 108.75) 126.00 0.170

Dwell time of state 2 3 (0, 10.90)* 11.33 (1.38, 29.75) 104.00 0.040

Frequency of state 1 108 (61.5, 111) 79.5 (52.25, 108.75) 123.00 0.143

Frequency of state 2 3 (0, 49.5) 31.5 (2.25, 58.75) 123.00 0.143

Number of total

transitions

2 (0, 4.5) 3 (0.25, 4) 142.00 0.380

Numbers are expressed as median value (Percent 25, Percent 75).
aU value of the Mann–Whitney test. The asterisk (*) represents significant inter-

group differences.

TABLE 3 | Static brain network properties of each group.

DLB (n = 17) HC (n = 20) Test statisticsa p-value

Global efficiency 0.274 (0.010) 0.272 (0.006) 0.893 0.378

Local efficiency 0.344 (0.012)* 0.355 (0.010) 3.074 0.004

Numbers are expressed as mean (standard deviation).
at value of two-sample t-tests. The asterisk (*) represents significant inter-group

differences. DLB, Dementia with Lewy body; HC, healthy control.

HC, whereas no significant findings were obtained regarding
global efficiency.

DISCUSSION

In the present study, the features of the dynamic time-varying
FC in DLB patients were explored in view of a large-scale
brain network derived from rs-fMRI using the sliding-window
method. Our observations primarily demonstrated that the
dFCV matrix of the DLB group presented a mixed change
characteristic. Specifically, DLB patients displayed increased
intra-network variability mainly involving DMN, SMN, VIS,
FPN, and decreased dFCV between DMN, VIS, FPN, and
between SMN and FPN. Subsequently, k-means algorithm
identified two representative states among all subjects, and the
dwell time of state 2 in DLB group was significantly decreased
compared to healthy volunteers. Furthermore, the evidence
provided by the supplementary graph theory analysis showed
that the topological property of DLB was affected with lower
local efficiency when compared with healthy volunteers. These
findings suggest that theDLB groupwas characterized by a widely
aberrant dFCV and altered functional connection patterns, thus
offering a new perspective and ideas in understanding DLB.

Distribution of dFCV Changes in DLB
Patients
Evidence was found regarding some pathophysiological activities
of nerve cells associated with the changes of FC. These
findings could reflect the intrinsic mechanism under different
conditions. The dFCV of DLB patients increased within
networks and decreased between networks compared with the
normal control group, the former group showing different

profiles of intra- and inter-networks. The intra- and inter-
network variability characterizes the alterations with time of
functional connectivity within and between brain networks.
Generally speaking, less fluctuation of variability suggests a
higher correlation of function construction among all sliding
windows, signifying a lack of flexibility to change. Significant
fluctuation of variability implies that the function construction
is poorly correlated among different sliding windows, indicating
an unstable state (30). Dramatic increase or decrease in dFCV
may be associated with potentially pathological neuropsychiatric
activities related to cognitive activities (31, 32), mental activities
(26, 33), and sensorimotor activities (34). Our results indicated
a significantly higher instability within network connectivity
and significant lower flexibility between network connectivity in
DLB patients, which reflects distinct patterns of functional intra-
and inter-network damage, deepening our understanding on the
pathological mechanism of DLB.

Normally, each network module is equipped with specific
functions, and the functional connection between network
modules can be understood as the organic integration of different
functions. Any abnormal function of either within and between
brain network will affect the normal execution of specific
functions undertaken by brain networks, leading to clinical
symptoms in DLB patients. The increase of dynamic FCV within
DMN, SMN, VIS, and FPN in the DLB group implies that
the connection state is aberrant and more unstable. DMN is
related to cognitive processing including episodic memory and
making plans (35). VIS is associated to visual perception (36)
and visual-constructive processing (37). FPN is responsible for
the execution control of attention (38, 39). Since DLB individuals
complain mainly about attention (40), motor (2), and visual
(40) impairments and these dysfunctions are roughly consistent
with the functions of DMN, SMN, VIS, and FPN, respectively,
we therefore speculate that the occurrence of these symptoms
could be related to the functional instability of the networks
mentioned above. Besides, these abnormal networks and the
brain regions involved were also reported in previous imaging
studies of DLB. Metabolism (41) and perfusion (42, 43) studies
found a decrease of neural activities in the frontal, parietal, and
occipital cortex areas. A large number of fMRI studies reported
a disrupted functional connectivity of DMN (5, 6), SMN (4),
VIS (5), and FPN (4, 8) in DLB patients. These studies further
support the reliability of our findings. Therefore, we have reason
to believe that these unstable intra-network connections could
provide a theoretical support for transient clinical features such
as spontaneous fluctuation in attention, cognition, and recurrent
visual hallucinations in DLB patients.

From the perspective of interconnection, large-scale brain
network pairs with a lower variability, encompassing DMN, VIS,
FPN and SMN, cannot be flexibly integrated, which may be
related to the poor cognitive, motor, visual, sleep, and emotional
impairments in DLB patients in general, resulting in a complex
treatment strategy and no ideal therapeutic effect. Furthermore,
previous works have been carried out to illustrate the neural basis
of DLB, with substantial evidence suggesting widespread WM
lesions (44, 45) and structural atrophy (46). Besides, a previous
work indicated inconsistent regional homogeneity of neural
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FIGURE 4 | Topological properties of static functional connectivity. The comparison between HC and the DLB group with respect to the local and global efficiency.

p-value results from two-sample t-tests. See Table 3 for detailed information.

activities (47) and an abnormal graph model of information
communication between distant and close brain regions in DLB
participants (9). A large number of structural damage and
functional changes may be the neural basis of dysfunctional
dynamics of intra- and inter-network connectivity in DLB.
Taken together, these inter-group differences within and between
networks consistent with clinical impairments suggest that the
temporal dynamic characteristics of brain networks could reflect
DLB dysfunction-related neural phenomena.

Clustering Indexes Alterations in DLB
Participants
DFC study covering the whole brain in non-task state (48)
revealed that the human brain is in a dynamic transition
process between diverse FCs, which are characterized by different
connectivity patterns (49) (commonly referred to as “state”).
The dynamic change of FC underlined that the organization
reconstruction takes place constantly, creating highly flexible and
adaptable systems without fundamentally structural alteration
(50, 51) and some recurring patterns can be finally identified
(52). These patterns may undergo changes with internal external
drivers, ranging from physiology (52, 53) to pathology. For
instance, with the development of DLB, the frequency, duration,
and flexible switching between distinct states may be affected in
the patient group.

In the current study, we captured the inter-group differences
in the dwell time of state 2. The results showed a significantly
fewer state 2 average dwell time in the DLB group, together
with a trend of lower frequency. In addition, we provided
evidence that the DLB group had the tendency of longer dwell
time and higher occurrence frequency of state 1. In state 2,
almost all intra-networks and most inter-networks displayed
moderate positive connectivity, while DMN displayed a negative
connectivity pattern between networks. This connectivity pattern
may signify that the subjects are on the alert to gather information
from their surroundings (54). In state 1, the whole network
displayed a slight negative connectivity, with slight positive
connectivity located within networks. This pattern may mean
that the participants reduced the focus on the outside and are
in a resting state (54). DLB individuals allocate less time to a
state of positive connectivity and devote more time to negative
connectivity pattern than controls, which might suggest that

brain network connectivity of the DLB tends to be segregated,
while the brain network connectivity of the control might prefer
to be integrated during resting state. This may be relevant to the
presence of cognitive decline in general.

State conversions could be the foundation of segregation
and integration between different brain networks/subnetworks
or specific functional resources such as cognitive (55, 56) and
mental activities (26). As expected, DLB individuals switched less
frequently, whichmight indicate less response to the surrounding
information and might result in a slow thinking and intermittent
confusion, which are typical DLB features. Overall, the observed
slowing and disturbance of state dynamics in DLB suggest that
the brain of DLB patients might be in a less flexible and ineffective
functional state.

Topological Characteristics of Resting
Brain Network
DFC measures brain network properties well from a temporal
perspective. In order to comprehensively depict brain network
characteristics, we further complementarily analyzed the brain
network properties of spatial topology and found that the local
efficiency of the DLB group was significantly lower than that
of healthy controls. Local efficiency is an assessment of local
information exchange, measuring the fault tolerance of networks.
This supplementary analysis proved from another point of view
that DLB patients had abnormal network function. Time-based
DFC analysis revealed a loss of brain network flexibility in
DLB patients. From the perspective of space, we found that the
local fault tolerance in DLB patients was reduced. Reduced fault
tolerance means that the brain is less able to withstand failure
and recover from failure, which might be associated with DLB’s
abnormally rigid brain networks, thus leading to the cognitive
slowing. Interestingly, we found that the global efficacy of DLB
is normal, suggesting that these patients only had abnormal local
indicators while global indicators were not affected, whichmay be
related to functional compensation driven from mixed changed
within and between networks in respect of dynamic FCV.

LIMITATIONS

Several limitations of our study should be considered. First,
our sample size was relatively small and the statistical effect
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was consequently reduced, resulting in imaging results not
passing multiple comparative corrections. Nevertheless, efforts
are currently made to recruit more subjects, meaning that a larger
sample size will be used in our further study to prove the validity
of these findings. Second, DLB patients in our study received
medication and the potential impact of drugs on nervous
activity is difficult to be removed. However, dopaminergic drugs
have been proved to normalize brain functional connections
(57), implying that the statistical differences between groups
are not drug-related. Besides, a previous work reported that
the administration of memantine resulted in an increased
FC in Alzheimer’s disease subjects (58), but this drug was
not administered to any of the DLB patients in our cohort.
In addition, there are a variety of analytical approaches for
calculating matrices and make inference on their significance.
Based on this, we used the commonly accepted methods,
including using Fisher z transformation to improve the normality
and calculation of the AUC of each network metric as the sum
scalar of the topological characteristics of brain network to prove
the reliability of the results. Even if some output results could
not be fully explained, a data-driven model based on extracting
time series of brain networks for each DLB subject could be
considered as a promising research method for describing the
dynamics of resting state networks. The development of image
analysis and the combination of multimodal techniques may
be more helpful to reveal the disease characteristics accurately
and comprehensively.

CONCLUSION

Our exploratory experiments combining sliding-window and
clustering methods analyzed the dynamics of functional network
connectivity. In this work an increased intra-network variability
and decreased inter-network in DLB was reported, clearly
distinguishing DLB from HC and which might be associated
with transient clinical features such as fluctuating cognition
and recurrent visual hallucinations. Disturbances to the time
allocation of state sequences and a less dynamic brain in DLB

lead to a loss of integration and flexibility of the brain network,
which might be related to symptoms such as slow thinking
and intermittent confusion. Aberrant brain network dynamics of
DLB could be considered as a neuroimaging marker of various

clinical manifestations. The current study proves the power of
the dynamic neuroscience method in the exploration of brain
network activity of neurodegenerative diseases and deepens our
understanding of the pathophysiological mechanisms in DLB.
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