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INTRODUCTION 
 
Marfan syndrome (MFS) is a connective tissue disorder 
that affects multiple organ systems, including the 
cardiovascular, skeletal and ocular systems. It is mainly 
caused by mutations in the gene that encodes fibrillin-1 
(FBN1), the major component of extracellular microfibrils 
[1, 2]. Aortic root dilatation and aortic aneurysms or 
dissection are the major causes of death in MFS patients. 
It has been well documented that dysfunctional FBN1-
induced fragmentation of microfibrils leads to activation  

 

of transforming growth factor-beta (TGF-β) signaling, and 
that TGF-β is closely linked to the development of aortic 
aneurysms in patients with MFS [3, 4]. The underlying 
mechanism by which TGF-β mediates aneurysm 
formation is not fully understood, however.  
 
Vascular smooth muscle cells (VSMCs) are the major 
cell type in the tunica media of blood vessel walls and 
are key players in the regulation blood pressure and 
flow. VSMCs also maintain the matrix components of 
the media, and their dysfunction results in remodeling 
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ABSTRACT 
 
Formation of aortic aneurysms as a consequence of augmented transforming growth factor β (TGF-β) signaling 
and vascular smooth muscle cell (VSMC) dysfunction is a potentially lethal complication of Marfan syndrome 
(MFS). Here, we examined VSMC senescence in patients with MFS and explored the potential mechanisms that 
link VSMC senescence and TGF-β. Tissue was harvested from the ascending aorta of control donors and MFS 
patients, and VSMCs were isolated. Senescence-associated β-galactosidase (SA-β-gal) activity and expression of 
senescence-related proteins (p53, p21) were significantly higher in aneurysmal tissue from MFS patients than in 
healthy aortic tissue from control donors. Compared to control-VSMCs, MFS-VSMCs were larger with higher 
levels of both SA-β-gal activity and mitochondrial reactive oxygen species (ROS). In addition, TGF-β1 levels were 
much higher in MFS- than control-VSMCs. TGF-β1 induced VSMC senescence through excessive ROS generation. 
This effect was suppressed by Mito-tempo, a mitochondria-targeted antioxidant, or SC-514, a NF-κB inhibitor. 
This suggests TGF-β1 induces VSMC senescence through ROS-mediated activation of NF-κB signaling. It thus 
appears that a TGF-β1/ROS/NF-κB axis may mediate VSMC senescence and aneurysm formation in MFS 
patients. This finding could serve as the basis for a novel strategy for treating aortic aneurysm in MFS. 
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of the aortic wall [5]. For example, VSMC dysfunction 
reportedly plays an important role in development and 
progression of aortic aneurysms [6, 7]. Inducible by 
various stressors, cellular senescence is irreversible 
proliferative arrest that is closely associated with 
diverse age-related diseases, including those of the 
cardiovascular system [8, 9]. VSMC senescence has 
been shown to contribute to aortic aneurysm formation 
through release of proinflammatory cytokines and other 
matrix-degrading molecules [10]. Ablation of the 
antisenescence gene SIRT1 in VSMCs promotes aortic 
aneurysm formation induced by Ang II in Apoe−/− mice, 
while overexpression of SIRT1 in VSMCs has the 
opposite effect. This suggests that VSMC senescence 
contributes to the pathogenesis in aortic aneurysm [11], 
though its involvement in aneurysm formation in MFS 
patients remains largely unknown. 
 
Although the potential mechanisms underlying cellular 
senescence are not yet fully understood, it is known that 
elevated levels of reactive oxygen species (ROS) are 
associated with the induction of cellular senescence [10, 
12]. NF-κB activation also appears to signal induction 
of cellular senescence in various cell types, including 
VSMCs [13, 14]. Moreover, increasing ROS levels can 
activate NF-κB signaling to release senescence-
associated secretory phenotype (SASP) factors, which, 
in turn, further stimulate cellular senescence [15]. 
However, it remains to be determined whether TGF-β 
induces VSMC senescence via ROS/NF-κB signaling in 
MFS patients. In the present study, therefore, we 
examined the involvement of TGF-β1 and ROS/NF-κB 
signaling in VSMC senescence in MFS patients.  
 
RESULTS 
 
Increased VSMC senescence in aortic aneurysmal 
tissue from MFS patients 
 
We aimed to determine whether there is a link between 
VSMC senescence and formation of aortic aneurysms in 
patients with MFS. Hematoxylin/eosin (HE)-stained 
aortic tissue sections from patients with MFS displayed 
the typical characteristics of aneurysm, including 
increased dilation and degeneration of the medial layer 
of the aorta (Figure 1A).  
 
We next examined cellular senescence within the aortic 
aneurysm of MFS patients. Western blotting revealed that 
levels of the cellular senescence markers p53 and p21 
were significantly higher in aortic tissue from MFS 
patients than control donors (Figure 1B). Likewise, 
staining revealed that senescence-associated β-
galactosidase (SA-β-gal) activity was also significantly 
elevated in MFS patients, and that the increased SA-β-gal 
positivity was mainly localized to medial VSMCs (Figure 

1C). The further assess the involvement of VSMC 
senescence in aortic aneurysms in MFS patients, we 
double stained aortic tissue samples for the VSMC marker 
α-SMA and the cellular senescence marker p53. We 
found that the numbers of α-SMA+p53+ double-positive 
cells were markedly higher in tissues from MFS patients 
than control donors (Figure 1D). Collectively, these 
findings suggest that VSMCs are senescent in aortic 
aneurysmal tissue from MFS patients.  
 
VSMCs isolated from MFS patients exhibit cellular 
senescence 
 
To further examine VSMC senescence in MFS patients, 
we first isolated VSMCs from aortic tissue from MFS 
patients and control donors. Both control-VSMCs and 
MFS-VSMCs expressed α-SMA and calponin (Figure 
2A), indicating that VSMCs had been successfully 
isolated. As shown in Figure 2B, control-VSMCs had a 
healthy spindle shape, whereas MFS-VSMCs were 
greatly enlarged and flattened (Figure 2B). In addition, the 
frequency of SA-β-gal positivity was significantly higher 
among MFS-VSMCs than control-VSMCs (Figure 2C). 
By contrast, numbers of ki-67-positive cells was 
dramatically lower in MFS-VSMCs than control-VSMCs 
(Figure 2D). Levels of p53 and p21 were higher in MFS-
VSMCs than control-VSMCs (Figure 2E). Because a key 
feature of senescent cells is the SASP, we used ELISAs to 
measure the levels of SASP factors in medium 
conditioned by MFS- and control-VSMCs. We found that 
MFS-VSMCs secreted higher levels of IL-6, IL-8, TNF-α 
and INF-γ than control-VSMCs (Figure 2F). MFS-
VSMCs thus exhibit the characteristic features of cellular 
senescence.  
 
TGF-β1 induces cellular senescence of VSMCs in 
MFS 
 
To investigate whether TGF-β1 can induce VSMC 
senescence, we first measured TGF-β1 concentrations in 
serum and aortic tissue from control donors and MFS 
patients. Compared with control donors, the level of TGF-
β1 was markedly upregulated in both the serum and aortic 
tissue from MFS patients (Figure 3A). Moreover, western 
blotting showed that TGF-β1 levels were higher in MFS-
VSMCs than control-VSMCs (Figure 3B). To determine 
whether TGF-β1 induces senescence of VSMCs, we 
treated control-VSMCs with 50 ng/ml TGF-β1 for 48 h. 
Subsequent Western blotting showed that TGF-β1-treated 
control-VSMCs exhibited elevated levels of TGF-β1, p53 
and p21, and that this effect was blocked by TGF-β1 
knockdown using targeted siRNA (Figure 3C). TGF-β1 
treatment also upregulated SA-β-gal activity in control-
VSMCs, and that effect, too, was suppressed by TGF-β1 
knockdown (Figure 3D). Collectively, these data suggest 
that VSMC senescence is induced by TGF-β1. 
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TGF-β1 induces VSMC senescence through ROS 
generation 
 
Next, we tested whether TGF-β1 induces cellular 
senescence of VSMCs through ROS generation. We 
first examined ROS generation in aortic tissue from 
control donors and MFS patients using DHE staining. 
Compared with control donors, ROS levels were 
significantly elevated in aortic tissue from MFS 
patients (Figure 4A). In addition, Mito-sox staining 
revealed that mitochondrial ROS levels were much 
higher in MFS-VSMCs than control-VSMCs (Figure 
4B). We also observed that that both ROS generation 
(Figure 4C) and SA-β-gal activity (Figure 4D) were 
greatly enhanced in control-VSMC treated with TGF-
β1. This suggests TGF-β1-induced ROS generation 
likely contributes to the development of VSMC 
senescence. Consistent with that idea, Mito-tempo, a 
mitochondria-targeted antioxidant, effectively 
inhibited ROS production (Figure 4C) and 
diminished SA-β-gal activity (Figure 4D) in TGF-β1-

treated control-VSMCs. These data indicate that 
TGF-β1 induces VSMC senescence at least in part 
via ROS generation. 
 
ROS-activating NF-κB is involved in TGF-β1-
induced VSMC senescence  
 
Because NF-κB is known to promote cellular senescence 
and SASP secretion [16], we investigated whether TGF-
β1 induces VSMC senescence through ROS-mediated 
activation of the NF-κB signaling pathway. We first used 
immunofluorescent staining to examine the nuclear 
translocation of p65-NF-κB, an index of NF-κB 
activation, in control- and MFS-VSMCs. We observed 
that translocation of p65-NF-κB from the cytoplasm to the 
nucleus was greater in MFS- VSMCs than control-
VSMCs (Figure 5A), indicating greater NF-kB activation 
in MFS-VSMCs. Levels of phosphorylated (p)p65-NF-κB 
were also significantly higher in MFS- than control-
VSMCs (Figure 5B). In addition, TGF-β1 treatment 
upregulated expression of p-p65-NF-κB, p53, and

 

 
 

Figure 1. VSMCs exhibit senescence in aortic aneurysm tissue from MFS patients. (A) Representative images of HE stained 
sections of ascending aorta from control donors and aortic aneurysm from MFS patients. Note the degeneration of the medial layer 
of the aortic wall in MFS patients. The box shows the location of the magnified region. Scale bar=200 μm. (B) Western blot and 
quantitative analysis of p53 and p21 levels in the ascending aorta of control donors and MFS patients. (C) Representative images 
and quantitative analysis of SA-β-gal staining in the ascending aorta from control donors and MFS patients. The box shows the 
location of the magnified region. Scale bar=200 μm. (D) Representative images and quantitative analysis of p53 (red) and α-SMA 
(green) staining in the ascending aorta from control donors and MFS patients. Scale bar=50 μm. Data are expressed as the 
mean±SEM; n=6. ***p<0.001. 
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p21 (Figure 5C) and enhanced SA-β-gal activity (Figure 
5D) in control-VSMCs. All these effects significantly 
inhibited by Mito-tempo or the NF-κB inhibitor SC-154 
(Figure 5C, 5D). This suggests TGF-β1 mediates NF-
κB activation through ROS generation, which in turn 
promotes VSMC senescence. Mito-Tempo or SC-154 
also inhibited the TGF-β1-induced increases in IL-6, IL-
8, TNF-α and INF-γ release from control-VSMCs 
(Figure 5E). These results show that TGF-β1 induced 
the SASP via a ROS/NF-κB pathway in VSMCs. 
 
DISCUSSION 
 
There were several major findings of the current study 
(Figure 6). First, VSMCs within aortic aneurysms in 
MFS patients exhibited cellular senescence in vitro and 
in vivo. Second, upregulated TGF-β1 levels lead to 
VSMC senescence by promoting mitochondrial ROS 
generation. Third, induction of VSMC senescence and 
SASP secretion is mediated via a ROS-activated NF-κB 

signaling pathway. Based on these results, we conclude 
that TGF-β1 induces VSMC senescence via the 
ROS/NF-κB signaling pathway in patients with MFS.  
 
Despite the recent advances in pharmacological therapy 
and surgery, aortic aneurysm or dissection remains a 
potentially lethal complication of MFS. This is in large 
part because their pathogenesis remains unclear. The 
pathological changes in the tunica media of the aortic 
wall are closely associated with aortic aneurysm or 
dissection [17]. This layer is mainly composed of elastic 
fibers and VSMCs, which suggests VSMC dysfunction 
likely underlies aortic aneurysm or dissection in MFS 
patients. Consistent with that idea, alteration of the 
VSMC phenotype reportedly contributes to aortic 
aneurysm formation or dissection in MFS [1, 18]. It has 
been reported that VPO1 promotes VSMC phenotypic 
switching through activation of the HOCl/ERK1/2 
signaling pathway with consequent development of aortic 
aneurysm [19]. The XBP1u-FoxO4-myocardin axis

 

 
 

Figure 2. VSMCs isolated from the ascending aorta of MFS patients exhibit cellular senescence. (A) Representative images of 
immunofluorescent staining for α-SMA and calponin in control- and MFS-VSMCs. Scale bar=50 μm. (B) Representative light micrographs of 
control- and MFS-VSMCs. Cell size is expressed relative to control. Scale bar=100 μm. (C) Representative images and quantitative analysis of 
SA-β-gal staining in control- and MFS-VSMCs. Numbers of SA-β-gal-positive cells are expressed as percentages of the total numbers of 
control- or MFS-VSMCs. Scale bar=100 μm. (D) Representative images and quantitative analysis of immunofluorescent ki-67 staining in 
control- and MFS-VSMCs. Numbers of ki-67-positive cells are expressed as percentages of the total numbers of control- or MFS-VSMCs. Scale 
bar=100 μm. (E) Western blotting and quantitative analysis of p53 and p21 levels in control- and MFS-VSMCs. (F) Concentrations of IL-6, IL-8, 
TNF-α and INF-γ in medium conditioned by control- or MFS-VSMCs. Data are expressed as the mean±SEM. n=3. ***p<0.001. 
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is essential for maintaining the VSMC phenotype and 
blocking signaling leading to VSMC phenotypic 
transition [20]. VSMC senescence is another major 
cause of VSMC phenotypic changes [21]. Senescent 
VSMCs release matrix metalloproteinase-9 (MMP9) 
and secret various SASP factors, including multiple 
inflammatory cytokines and ECM-degrading proteins, 
which leads to disruption of tissue structure and reduced 
function [22, 23]. In the present study, α-SMA+p53+ 
double positivity and SA-β-gal activity confirmed the 
presence of senescent VSMCs within the medial layer 
of aortic aneurysm tissue from MFS patients. Moreover, 
VSMCs isolated from MFS patients exhibited increased 
cell size, reduced proliferative capacity (ki-67 
positivity), and enhanced SA-β-gal activity. Notably, 
MFS-VSMCs secreted high levels of the classic SASP 
cytokines including IL-6 and IL-8. Nonetheless, the 
potential mechanisms underlying MFS-VSMC 
senescence have not yet been clarified. 
 
Although the pathogenesis of MFS is not fully 
understood, it is known that FBN1 gene mutation, the 
leading cause of MFS, results in TGF-β activation [24]. 
Indeed, high circulating levels of TGF-β are detected in 

MFS patients, suggesting TGF-β plays a crucial role in 
MFS [25]. We also observed elevated TGF-β1 levels in 
serum and aneurysmal tissue from MFS patients, and 
recent studies indicate that excessive TGF-β can lead to 
senescence in several cell types [26, 27]. For example, 
elevated TGF-β in corneal endothelial cells induces 
senescence through upregulation of mitochondrial ROS 
generation, and a mitochondrial ROS scavenger was 
able to reverse that effect [28]. In the present study, 
TGF-β1 levels were much higher in MFS- than control-
VSMCs, suggesting TGF-β1 contributes to MFS-VSMC 
senescence. Consistent with that idea, TGF-β1 greatly 
increased SA-β-gal activity in control-VSMCs, and 
TGF-β1 knockdown using siRNA significantly 
inhibited that response. TGF-β1 also enhanced ROS 
generation in VSMCs, and that effect was blocked by 
Mito-tempo, which suggests TGF-β1 induces VSMC 
senescence by stimulating ROS generation.  
 
Previous studies showed that NF-κB activation triggers 
cellular senescence [29, 30]. In addition, NF-κB 
stimulates the pro-inflammatory arm of the SASP, 
leading to secretion of proinflammatory cytokines  
[31]. Membrane-bound CD40L promotes lung

 

 
 

Figure 3. TGF-β1 induces cellular senescence in VSMCs. (A) TGF-β1 concentrations in serum from control donors and MFS patients was 
measured using an ELISA. n=6. (B) Western blotting and quantitative analysis of TGF-β1 levels in control- and MFS-VSMCs. n=3. (C) Western 
blotting and quantitative analysis of TGF-β1, p53 and p21 levels in control-VSMCs left untreated or treated with  TGF-β1 or TGF-β1 combined 
with control-siRNA or TGF-β1-siRNA. n=3. (D) Representative images and quantitative analysis of SA-β-gal staining in control-VSMCs left 
untreated or treated with TGF-β1 or TGF-β1 combined with control-siRNA or TGF-β1-siRNA. n=3. Numbers of SA-β-gal-positive cells are 
expressed as percentages of the total cells. Data are expressed as the mean±SEM. *p<0.05, ***p<0.01, ***p<0.001. 
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adenocarcinoma cell senescence and stimulates SASP 
through activation of NF-κB, while NF-κB knockdown 
partially those effects [16]. Here, we found that 
translocation of p65-NF-κB to the nucleus and its 
phosphorylation were greatly increased in MFS-VSMCs 
compared to control-VSMCs. This suggests NF-κB 
activation may be associated with VSMC senescence. 
ROS can activate NF-κB to induce cellular senescence 
and the SASP, while NF-κB activation stimulates ROS 
generation, thereby forming a ROS/NF-κB loop to 
induce cellular senescence [31]. We also found that 
inhibiting ROS formation or NF-κB signaling 
attenuated TGF-β1-induced VSMC senescence and 
blocked induction of the SASP. This suggests TGF-β1 

induces VSMC senescence and triggers the SASP in 
part via a ROS/NF-κB signaling pathway.  
 
There were several limitations to the present study. 
First, the dose of TGF-β1 was adapted from our earlier 
study [32]; whether TGF-β1-induced VSMC senescence 
is a dose-dependent effect has not been determined. 
Second, the mechanisms underlying TGF-β1-induced 
mitochondrial ROS generation were not demonstrated. 
Previous studies have shown that disrupting the 
mitochondrial dynamic balance leads to ROS generation 
[33]. Whether TGF-β1 stimulates ROS generation by 
modulating mitochondrial dynamics in VSMCs remains 
to be investigated. Third, whether TGF-β1 also induces

 

 
 

Figure 4. TGF-β1 induces cellular senescence in VSMCs through elevation of ROS. (A) Representative images and quantitative 
analysis of DHE staining in the ascending aorta of control donors and MFS patients. ROS levels were analyzed and expressed relative to 
control. Scale bar=200 μm. n=6. (B) Representative images and quantitative analysis of Mito-sox staining of control- and MFS-VSMCs. ROS 
levels were analyzed and expressed relative to control. n=3. Scale bar=100 μm. (C) Representative images and quantitative analysis of Mito-
sox staining in control-VSMCs left untreated or treated with TGF-β1 or TGF-β1 combined with Mito-tempo. ROS levels was analyzed and 
expressed relative to control. n=3. Scale bar=100 μm. (D) Representative images and quantitative analysis of SA-β-gal staining in control-
VSMCs left untreated or treated with TGF-β1 or TGF-β1 combined with Mito-tempo. n=3. Scale bar=100 μm. Numbers of SA-β-gal-positive 
cells are expressed as percentages of the total cells. Data are expressed as the mean±SEM. ***p<0.001. 
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Figure 5. TGF-β1 induces cellular senescence in VSMCs through activation of ROS/NF-κB signaling. (A) Representative images of 
p65-NF-κB staining in control- and MFS-VSMCs. Scale bar=50 μm. (B) Western blotting and quantitative analysis of p-p65-NF-κB and p65-NF-
κB levels in control- and MFS-VSMCs. (C) Western blotting and quantitative analysis of p-p65-NF-κB, p65-NF-κB, p53 and p21 levels in 
control-VSMCs treated with TGF-β1, TGF-β1+Mito-tempo or TGF-β1+SC-154. (D) Quantitative analysis of SA-β-gal staining in control-VSMCs 
treated with TGF-β1, TGF-β1+Mito-tempo or TGF-β1+SC-154. (E) Concentrations of IL-6, IL-8, TNF-α and INF-γ in medium conditioned by 
control-VSMCs treated with TGF-β1, TGF-β1+Mito-tempo or TGF-β1+SC-154. Data are expressed as the mean±SEM. n=3. ***p<0.001. 

 

 
 

Figure 6. Proposed mechanisms for TGF-β1-induced VSMC senescence. This study shows that TGF-β1 induces VSMC senescence 
through activation of ROS/NF-κB signaling, which leads to aortic aneurysm formation in MFS patients. 
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telomere shortening or abnormal autophagy to promote 
VSMC senescence requires further investigation. 
Fourth, whether current pharmacological strategies, 
such as atenolol or losartan administration, can mitigate 
the VSMC senescence in patients of MFS requires 
further investigation. Finally, NF-κB is not the only 
transcription factor with the ability to activate the 
SASP. Whether ROS can activate other transcription 
factors or signaling pathways to induce the SASP 
warrants further investigation. 
 
In summary, our study shows that excessive TGF-β1 
can induce VSMC senescence and initiate the SASP via 
the ROS/NF-κB signal pathway, leading to aortic 
aneurysm formation in patients of MFS. This study thus 
provides new insight into the potential pathogenesis of 
aortic aneurysm and provides a novel therapeutic target 
for MFS treatment.  
 
MATERIALS AND METHODS 
 
Isolation, culture and characterization of VSMCs 
 
Ascending aortic aneurysm tissue was harvested from 
MFS patients who underwent surgery to repair the 
lesion. Samples of healthy human ascending aortic 
tissue were collected from donors and served as the 
control group. All procedures were approved by the 
research ethics board of Guangdong Provincial People's 
Hospital. Written informed consent was obtained from 
each study subject. The demographic characteristics of 
the study patients were described in our previous study 
[32]. Human VSMCs were isolated from aortic tissues 
as previously described [1]. Briefly, after cleaning away 
adipose tissue and washing with PBS, the medial tissue 
was dissected from the adventitia and intima. Next, the 
media was cut into 1-2 mm3 pieces and transferred to 
10-cm poly-L-lysine coated culture plates and incubated 
for adhesion at 37°C for 1 h. Once attached to the plate, 
the medial pieces were gently cultured with Dulbecco’s 
modified Eagle medium (DMEM; Sigma-Aldrich) 
supplemented with 20% fetal bovine serum (FBS; 
Gibco) and 100 µg/mL penicillin and streptomycin. The 
medium was carefully changed every 3 days. VSMCs 
migrated out from the pieces within 1-2 weeks. The 
media pieces were then removed and the cells were 
collected and passaged. VSMCs were identified based 
on immunofluorescent staining with antibodies against 
alpha smooth muscle actin (a-SMA) and calponin. All 
VSMCs used in this study were at passage 2–3.   
 
HE staining 
 
Aneurysmal tissue from MFS patients and healthy 
aortic tissue from control donors were fixed with 10% 
formalin, embedded in paraffin, cut into 5-μm-thick 

sections, and mounted on slides. The sections were then 
stained with hematoxylin and eosin (HE) using the 
standard protocol. 
 
DHE staining  
 
ROS levels within aneurysmal tissue were determined 
through dihydroethidium (DHE) staining (Thermo 
Fisher Scientific, D1168). Briefly, the sections were 
first incubated with 10 μM DHE for 30 min at room 
temperature. They were then washed with PBS and the 
fluorescent signal was photographed in randomly 
selected areas using a motorized inverted microscope. 
The fluorescence intensity was analyzed using Image J 
software. 
 
Senescence-associated β-galactosidase (SA-β-gal) 
staining 
 
VSMC senescence was assessed based on SA-β-gal 
staining according to the manufacturer’s protocol 
(Beyotime, C0602). Briefly, control VSMCs and MFS 
VSMCs were plated in a 6-well culture plate. Some of 
the control cells were treated for 48 h with 50 ng/ml 
TGF-β1 (PeproTech, 100-21) combined with 100 µM 
Mito-tempo (Santa Cruz, SC-221945) or with 1 μM SC-
54, a NF-κB inhibitor (Sigma-Aldrich, SML0557). The 
cells were then washed with PBS, fixed for 30 mins, 
and stained with SA-β-gal staining solution over night 
at 37°C (without CO2). After washing three times with 
PBS, the cells were randomly photographed.  
 
Mito-sox staining 
 
Mitochondrial ROS levels in VSMCs were measured 
based on Mito-sox staining. Briefly, VSMCs were 
cultured in 24-well plates before treatment. The VSMCs 
were next washed with PBS and incubated with 10 μM 
Mito-sox (Invitrogen, M36008) for 10 min at 37°C in 
the dark. The cells were then washed again with PBS, 
and the fluorescence signal was photographed in 
randomly selected areas using a motorized inverted 
microscope (Olympus, Hamburg, Germany). Finally, 
for each group, the fluorescence intensity in five 
selected microscope fields in three independent 
experiments were determined using Image J.   
 
TGF-β1 silencing using small-interfering RNA 
(siRNA)  
 
VSMCs were transfected with TGF-β1-siRNA (Santa 
Cruz, SC-44146) or control siRNA (Santa Cruz, SC-
37007) using a Lipofectamine RNAiMAX Reagent Kit 
(Invitrogen, 13778030) according to the manufacturer’s 
protocol. Western blotting was used to assess 
transfection efficiency 72 h after transfection. 
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Immunofluorescent staining 
 
For immunofluorescent staining, VSMCs were cultured 
on cover slips in 24-well plates, after which they were 
fixed in 4% PFA for 30 min and permeabilized in 0.1% 
Triton X-100 in PBS for 30 mins. The cells were then 
incubated with the following primary antibodies 
overnight at 4°C: anti-α-SMA (1:100, Abcam, ab5694), 
anti-calponin (1:100, Abcam, ab46794) and anti-ki-67 
(1:100, Abcam, ab15580). Thereafter, the cells were 
incubated with fluorescently-labeled secondary 
antibodies (1:1000) for 1 h at room temperature. The 
labeled VSMCs were washed with PBS and 
counterstained with 4′, 6-diamidino-2-phenylindole 
(DAPI), after which the fluorescent signal from 
randomly selected areas was photographed using a 
fluorescence microscope. 
 
Western blotting 
 
The proteins were extracted using RIPA buffer (CST, 
9806), after which their concentration measured using a 
BCA assay kit (Thermo, 231227). Aliquots of lysate 
containing 30 μg of protein were then subjected to 
SDS/PAGE, and the separated proteins were transferred 
to a PVDF membrane. After blocking with 5% fat-free 
milk in TBST, the membrane was incubated overnight 
at 4°C with the primary antibodies: anti-TGF-β1 
(Abcam, ab64715), anti-p53 (Abcam, ab26), anti-p21 
(Abcam, ab109199) and anti- GAPDH (CST, 2118). 
The membrane was then washed three times with TBST 
and incubated with secondary antibodies (1:3000, CST) 
for at least 1 h at room temperature and exposed in a 
dark room. 
 
Analysis of the secretory phenotype  
 
Conditioned medium from VSMCs was prepared as 
previously described [34]. The concentrations of SASP-
related cytokines, including IL-6, IL-8, INF-γ and TNF-
α, in the conditioned medium was assessed using 
ELISAs. Each experiment was repeated three times. 
 
Statistical analysis 
 
All statistical analyses were performed by Prism 5.04 
Software (GraphPad Software for Windows, San Diego, 
CA, USA). Data are presented as the mean±SEM. 
Comparisons between two groups was made using 
unpaired Student’s t-test and between multiple groups 
using one-way ANOVA followed by Bonferroni test. 
Values of p <0.05 were considered statistically significant. 
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