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Abstract
Disinhibition is an important symptom in neurodegenerative diseases. However, the clin-

ico-anatomical underpinnings remain controversial. We explored the anatomical correlates

of disinhibition in neurodegenerative disease using the perspective of grey and white matter

imaging. Disinhibition was assessed with a neuropsychological test and a caregiver infor-

mation-based clinical rating scale in 21 patients with prefrontal syndromes due to beha-

vioural variant frontotemporal dementia (n = 12) or progressive supranuclear palsy (n = 9),

and healthy controls (n = 25). Cortical thickness was assessed using the Freesurfer soft-

ware on 3T MRI data. The integrity of selected white matter tracts was determined by the

fractional anisotropy (FA) from Diffusion Tensor Imaging. Disinhibition correlated with the

cortical thickness of the right parahippocampal gyrus, right orbitofrontal cortex and right

insula and the FA of the right uncinate fasciculus and right anterior cingulum. Notably, no

relationship was seen with the thickness of ventromedial prefrontal cortex. Our results sup-

port an associative model of inhibitory control, distributed in a medial temporal lobe-insular-

orbitofrontal network, connected by the intercommunicating white matter tracts. This recon-

ciles some of the divergences among previous studies, but also questions the current con-

ceptualisation of the “prefrontal” syndrome and the central role attributed to the

ventromedial prefrontal cortex in inhibitory control.

Introduction

Disinhibition is considered a cardinal feature in the prefrontal syndrome, [1–3]. More specifi-
cally, the classical clinico-anatomical correlate of disinhibition is the orbitofrontal cortex
(OFC) [1–3]. This appears to apply also to neurodegenerative diseases, where disinhibition is
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associated with OFC atrophy [4–6]. However, a number of studies in these conditions imply
considerably larger areas involved in behavioural inhibition including the temporal lobe, amyg-
dala, hippocampus, caudate, insula and other parts of the prefrontal cortex (PFC) than the
OFC [7–10]. Studies not finding any correlate to the OFC, have questioned the “OFC model”
in its entirety [9]. The studies mentioned above have all correlated disinhibition to imaging of
the grey matter, while similar approaches using white matter neuroimaging with Diffusion
Tensor Imaging (DTI) are just emerging [11]. DTI is a method that gives the opportunity to
describe the anatomy of white matter fibre bundles in vivo and to quantify changes in these
tracts as a consequence of pathology [12]. In the context of correlative neuroanatomy, this
enables a structural connectivity approach as a supplement to the cortical locationalist
approach [13], which potentially can yield better models. In some conditions, the white matter
imaging perspective has been able to literally bridge apparent discrepancies in assessments of
cortical function. Psychopathy, for example, has been alternately associated with aberrations in
the OFC and/or the right anterior temporal lobe, which may be reconciled by the findings of
loss of altered diffusion properties of the white matter fibre bundle connecting these regions,
i.e. the uncinate fasciculus [14].

In the current study we used a mixed cohort of patients with prefrontal syndromes with a
diagnosis of either behavioural variant frontotemporal dementia (bvFTD) or progressive
supranuclear palsy (PSP). These disorders were chosen since they have overlapping cognitive
and behavioural deficits, with a variable extent of prefrontal syndrome severity [15–19], and
are biologically similar with overlapping topography, neuropathology and genetics [20–22]. In
bvFTD atrophy predominantly affects the prefrontal (including OFC), anterior temporal and
insular cortex [23] with corresponding affliction of the basal ganglia [24], with the emergence
of corresponding symptoms: apathy, disinhibition, dysphasia, loss of insight and executive def-
icits [25]. In PSP, the pathology always affects the brainstem and basal ganglia and to a variable
extent the prefrontal cortex, resulting in a prefrontal-subcortical syndrome [6, 16, 22]. This is
dominated by apathy but includes disinhibited behaviours, albeit being less frequent [15, 26].
As bvFTD/PSP represent a continuum of neurodegeneration of the prefrontal-subcortical sys-
tems corresponding to a varying degree of disinhibition, a mixed bvFTD/PSP cohort is favour-
able compared with the bvFTD and Alzheimer´s disease (AD) cohorts (two considerably more
diverse disorders) when used in correlational studies of neurodegenerative disease [11, 27].

The primary aim of this study was to explore the neuroanatomical basis of disinhibition. To
this purpose,measurements of cortical thickness and white matter integrity of fibre bundles
leading to/from the OFC were correlated with results of a neuropsychological test of disinhibi-
tion and quantifications of behavioural disturbance using caregiver-based information.We
hypothesised that by examining the correlation of behavioural measures to grey and white mat-
ter, we could provide an explanation for the conflicting results in previous grey matter only
correlation studies. Also, direct comparisons of grey and white matter atrophy between the two
prefrontal syndromes in our cohort (bvFTD and PSP) are rare and as such constituted a sec-
ondary aim of the study.

Methods

Participants

Participants were from the Lund Prospective Frontotemporal Dementia Study (LUPROFS), a
longitudinal study of patients with any of the frontotemporal dementia spectrumdisorders.
Diagnostic workup included clinical examination, caregiver history with rating of behavioural
disturbances and general disease severity, standardized neurological examination, MRI accord-
ing to study protocol, and a comprehensive neuropsychological assessment. Selection criteria
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for the present study was a possible, probable or definite diagnosis of bvFTD or PSP according
to FTDC [28] or NINDS criteria [29], respectively, completed MRI and availability of the Hay-
ling neuropsychological test (described below) [30], which was part of an extended neuropsy-
chological test protocol. Among the bvFTD patients (n = 12), 9 had probable and 3 definite
bvFTD (genetic mutation carriers). Cerebrospinal fluid (CSF) was analysed for Alzheimer´s
Disease (AD) core biomarkers (amyloid-ß 1–42, tau and p-tau) and a CSF biomarker profile
indicative of AD [31], was used as an exclusion criterion [28]. Of the PSP patients (n = 9), 1
had possible and 8 probable PSP [29]. All patients except one were right-handed. Healthy con-
trols (n = 25) underwent clinical interview and examination, including neuropsychological
testing and MRI. Demographic and clinical data on the subjects are presented in Table 1.

Ethics statement

All participating subjects were informed of the study content in both oral and written form.
Informed consent was taken in written form from the study subjects. If there was a doubt that
a study subject had a compromised capacity to consent, informed consent was taken from the
study subject and the spouse, or the spouse only. Importantly, regardless from whom informed
consent was taken, the study subject always retained the right to decline or interrupt participa-
tion at any time. No formal assessment of the patients´ capacity to consent was performed.
This procedure for informed consent, as well as all other aspects of the study, are according to
the Helsinki declaration and were approved by the Regional Ethical ReviewBoard, Lund, Swe-
den (Permit number 617/2008).

Neuropsychological measure of disinhibition

The Hayling Sentence Completion Test, often referred to as just the Hayling test, is designed to
measure response initiation and inhibition of response by a sentence completion task [30]. In
the first part of the test, subjects are asked to complete a sentence with an appropriate word.
For instance, the examiner reads aloud “The rich child attended a private. . .”, where “school” is
a correct response. In the second part of the test, subjects are asked to complete a sentence with
a word that is not at all appropriate, thus requiring inhibiting of an automatic response. An

Table 1. Demographic and clinical data of subjects.

HC bvFTD PSP Across bvFTD vs. HC PSP vs. HC bvFTD vs. PSP

Number 25 12 9 - - - -

Sex 13M 12F 5M 7F 3M 6F n.s. - - -

Age 68 (35–82) 71.5 (57–77) 67 (58–76) n.s. - - -

Mini Mental Status Examination 30 (29–30) 26 (21–30) 28 (24–30) p < 0.001 p < 0.001 p = 0.004 n.s.

Education 14 (8–14) 9 (7–14) 11 (7–16) n.s. - - -

Frontotemporal Lobar Degeneration modified

Clinical Dementia Rating scale

n.a. 8.5 (2–15) 4 (0.5–10.5) - - - n.s.

Duration n.a. 2.5 (1–12) 4 (2–6) - - - n.s.

Frontal Behavioural Inventory1-10 n.a. 14 (6–21) 7 (2–17) - - - n.s.

Frontal Behavioural Inventory12-22 n.a. 9 (1–20) 5 (1–7) - - - p = 0.012

The Hayling test 4.5 (0–20) 23 (5–72) 7 (1–56) p = 0.001 p < 0.001 n.s. n.s.

Data are median values, with range. Age: age at examination in years, bvFTD: behavioural variant frontotemporal dementia, Duration: disease duration (in

years), Education: education (in years), Frontal Behavioural Inventory1-10 and Frontal Behavioural Inventory12-22: sum of items 1–10 and 12–22,

respectively, The Hayling test: total error score on the Hayling test, HC: healthy controls, n.a: not applicable, n.s.: not significant, PSP: progressive

supranuclear palsy.

doi:10.1371/journal.pone.0164122.t001
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example from this part of the test is: “London is a very lively. . .”, where “city” is an incorrect
answer, but “banana”, “pet”, or “shoe” are examples of correct answers. Errors in the second
part are recorded and form a total error score, in addition to time to complete for the first and
the second parts, which together are transformed into an overall score. The construct validity
of the Hayling test has been examined in a limited number of studies. In comparison with
other tests of executive functions, the Hayling test has shown positive correlations with the Six
Elements test and subsequent time in the Tower of London test in psychiatric patients with
clinical difficultiesof inhibition [32, 33]. In healthy controls, there is a positive correlation
between the Hayling test and the Stroop test regarding initiation whereas no association was
found regarding the inhibitory components [34, 35], indicating that these tests measure a dif-
ferent dimension of inhibitory capacity. The Hayling test has been used previously for patients
with bvFTD [11, 36], PSP [37] and appears to be more discriminative in bvFTD vs. AD com-
pared with the more commonly used Stroop test [38]. The latter findings also support that the
Hayling test does indeed reflect a different aspect of inhibition than the Stroop test. Patients
with bvFTD generally show worse performance than controls on the Hayling test overall scaled
score, second part scaled score, and the total error score (i.e. cumulative errors from the second
part of the test) [11, 36]. For the current study the total error score was chosen, since this
appears to be the most specific for bvFTD [11, 36].

Behavioural and clinical severity rating

As a measure of behavioural inhibition in everyday life we used the Frontal Behavioural Inven-
tory (FBI) [39]. The FBI is a rating scale based on a caregiver interview, administered by a
health professional, with 24 items designed to capture core symptoms of bvFTD. It is widely
used in studies on dementia and is more specific for “prefrontal” disturbances than more gen-
eral neurobehavioural rating scales such as the Neuropsychiatric Inventory (NPI) [40]. The
severity of single items is scored on a scale from 0 to 3 (not present, mild/occasional,moderate
and severe/most of the time). The FBI is divided into two parts, where FBI items 1–10 represent
negative symptoms such as apathy, emotional flatness, and personal neglect, and FBI item 12–
22 represent positive symptoms with diminished inhibition such as perseverations, excessive
jocularity, poor judgement, inappropriateness, impulsivity and hyperorality. For the current
study, we used the sum of items 1–10 (FBI1-10) and the sum of items 12–22 (FBI12-22). For rat-
ing general disease severity we employed the sum of boxes in the Frontotemporal Lobar Degen-
eration modifiedClinical Dementia Rating (FTLD-CDR) [41].

MRI acquisition

MRI was performed using a Philips Achieva 3T scanner equipped with an eight-channel head
coil. DTI data were acquired using a single-shot spin echo sequence with EPI using 48 diffusion
encoding directions, a diffusion-weighting factor (b) of 800 s/mm2, voxel size 2x2x2 mm3, TR
7881 ms, and TE 90 ms. Motion and eddy current correction of the data was performedwith
ElastiX [42], by affine registration of the diffusion-weighted images to the first non-diffusion
weighted image in the protocol [43]. The DTI protocol was followed by a T1-weighted 3D volu-
metric sequence with TR 8.3 ms, TE 3.84 ms, FOV 256x256x175 and a voxel size of 1x1x1
mm3.

Cortical thickness analysis

Modeling and volumetric estimations of cortical brain regions were performed on structural
T1 images using the Freesufer image analysis package version 5.3 (http://surfer.nmr.mgh.
harvard.edu/). This automated tool performs imaging intensity normalization, removal of
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non-brain tissues, segmentation of cortical and subcortical brain regions into white and grey
matter, spherical surface-based intersubject registration, which is based on the cortical surface
curvature (sulci and gyri), and, finally, an automated parcellation of the cortical surface. Qual-
ity control of the Freesurfer output was done by visual inspection.When errors were noted the
first approach was to edit these errors and, if errors remained after rerun of the edited output,
the images were discarded from further analysis. The QueryDesign Estimate Contrast
(QDEC) tool was used to do a general linear model (GLM) analysis at each vertex of the corti-
cal surface. The dependent variable was cortical thickness. In the group comparisons, no nui-
sance variables were entered in to the model as groups were balancedwith regards to gender
and age. The results of the GLM analysis were corrected for multiple comparisons at the cluster
level using the Monte Carlo method for p-cluster at p< 0.01 (z-vertex 2.0). In the correlation
analysis between cortical thickness and clinical and neuropsychological data, age was entered
as a nuisance variable and corrections for multiple comparisons were at the p< 0.01 (z-vertex
1.3) level.

Tractography and postprocessing

Deterministic tractography was performedwith an FA threshold of 0.2, an angular threshold
of 45 degrees and no length threshold using the diffusion toolkit and TrackVis. ROIs manually
drawn on FA maps were employed to dissect four pathways: the inferior frontooccipital fascic-
ulus (IFOF), uncinate fasciculus (UF), anterior cingulum (aCi) and the forceps minor (Fig 1).
For the IFOF, UF and aCi ROIs, methods describedby Catani and co-workers were used [44].
Briefly, these consists of placing a ROI in the extreme capsule, which is linked with an occipital
ROI to dissect the IFOF and linked with a ROI in the anterior temporal lobe to dissect the UF,
respectively. For the cingulum, a single ROI covers the whole tract from its appearance ventral
to the genu of the corpus callosum to its temporal terminations.We modified this approach to
only include the anterior part of the cingulum, ending the ROI dorsally at the first slice where
the corpus callosum appears continuous on axial slices. For the forceps minor we used two
parasagittal ROIs over the anterior corpus callosumwith a fixed dorsal extension, a procedure
that will include the rostrum of the corpus callosum together with the ventral half of the genu,
or area 1 and ventral half area 2 according toWitelson [45]. In all tractography procedures
(except for the corpus callosum) a midsagittal ROI was placed to exclude commissural fibres.
When apparent artefacts were generated, an additional exclusion ROI was drawn to exclude
these. An attempt was made to dissect the anterior commissure but this resulted in low reliabil-
ity. We also attempted an isolated subgenual parcellation of the cingulum.However, this
resulted in a high proportion of either missing tracts or tracts composed of very few stream-
lines. All image analysis was done blinded for diagnosis. Intra- and inter-rater reliability
(authors KL vs. KL and AFS vs. KL) for the tracking procedures were assessed on five patients
and five controls using the volume of the tract in millilitres as the quantitative measure. In DTI
there is a choice between different parameters, which appear to reflect different biological phe-
nomena [46]. Since our primary questions were relationships between symptoms and integrity
of different tracts, we chose the fractional anisotropy (FA) as our primary parameter. To cor-
roborate our findings we usedmean diffusivity (MD), which is closely related to axial and
radial diffusivity (MD = [axial+radial diffusivity]/2), and less sensitive for partial volume effects
in some circumstances [47], as a secondary parameter.

Statistical analysis

Demographic, cognitive, behavioural and DTI parameters of tracts were compared across
groups by the use of the Kruskal-Wallis test. Differences between group pairs were assessed
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Fig 1. Graphical representations of the tracts studied. Sagittal (upper) and coronal (lower) view. The

uncinate fasciculus (green), the anterior cingulum (orange), the inferior frontooccipital fasciculus (light blue)

and the forceps minor (dark blue). Tracts are from TrackVis, overlaid on high resolution images for illustrative

purposes.

doi:10.1371/journal.pone.0164122.g001
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with the Mann-Whitney U test. Distribution of gender was assessed by the Fisher´s Exact test.
To examine the relationships between neuropsychological test results, behavioural data and
DTI variables of tracts, we applied linear regression models adjusted with age. Model assump-
tions were checked and the logarithm of the dependent variable was used if needed to achieve
normality and/or other model assumptions. The reliability of the tracking procedures was cal-
culated using the intraclass correlations coefficient (ICC), single measures, and absolute agree-
ment. Based on the effect sizes in previous group comparisons and correlative studies [48–50],
the power of the current study (n = 21) is sufficient. The statistical analyses were performed in
SPSS Statistics 21 for Mac (IBM Corporation, Somers, NY, USA). p values less than 0.05 were
considered as statistically significant.

Results

Subject characteristics

Clinical and demographic characteristics of the patients and healthy controls are presented in
Table 1. There were no statistically significant differences in age, education or sex distribution
between the three groups. Also, there were no statistically significant differences in symptom
duration or global cognitive level as measured with the FTLD-CDR or Mini Mental State
Examination (MMSE) between patients with bvFTD and PSP. Patients with bvFTD had higher
total FBI and FBI12-22 symptom score compared with PSP, but not FBI1-10 symptom scores,
although the latter was borderline statistically significant (p = 0.054). The Hayling total error
score showed a robust difference between bvFTD patients and controls, while PSP patients had
values closer to controls. Althoughmedian total error score was higher in the bvFTD than the
PSP group, this did not reach statistical significance (p = 0.055). All behavioural and neuropsy-
chologicalmeasures (i.e. FTLD-CDR, FBI, the latter including subscores, and Hayling) showed
considerable overlap in range, supporting the use of a combined bvFTD and PSP cohort.

Correlations with the Hayling test

In the combined patient cohort (bvFTD and PSP) there was a significant correlation between
the Hayling total error score with cortical thickness in the following regions, confined to the
right hemisphere: the OFC (excluding the ventromedial prefrontal cortex- vmPFC), the para-
hippocampal gyrus and the posterior insula (Fig 2). For white matter tracts, the linear

Fig 2. Cortical thickness and Hayling error score correlations. Correlations between cortical thickness and total error score on the

Hayling test in patients with behavioural variant frontotemporal dementia and progressive supranuclear palsy using Freesurfer. Correction

for multiple comparisons was made using the Monte Carlo method at the cluster level, at p < 0.01 (z-vertex 1.3). Age was entered as a

nuisance variable. Coloured areas represent significant negative correlations, with the scale bar representing p on a logarithmic scale. Only

the right hemisphere is shown, from lateral, medial and inferior views. No regions with significant correlation with cortical thickness were

detected in the left hemisphere.

doi:10.1371/journal.pone.0164122.g002
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regression model with Hayling total error score as the dependent and FA of the tract as the
independent variable, was significant for the right UF (adjusted R2 = 0.55, unstandardized B =
-338 [95% CI -601, -75], p = 0.015), right aCi (adjusted R2 = 0.56, B = -223 [95% CI -388, -60],
p = 0.010), and forceps minor (adjusted R2 = 0.54, B = -278 [95% CI -496, -59], p = 0.016) (Fig
3), but not for any other tract. Age was a significant covariate in all models. All significant
models were re-run with MD instead of FA as the DTI parameter of the tract, with the same
models and parameters reaching statistical significance. The models were also re-run with gen-
der as a covariate, which did not contribute significantly to the models.

Correlations with the Frontal Behavioural Inventory

In the linear regression model with the FBI12-22 of the combined patient cohort as the depen-
dent variable, a statistically highly significant effect was seen for the right UF (adjusted R2 =
0.44, unstandardized B = -116 [95% CI -182, -50], p = 0.002), left UF (adjusted R2 = 0.319, B =
-98 [95% CI -167, -29], p = 0.008), the right aCi (adjusted R2 = 0.23, B = -56 [95% CI -105,
-7.6], p = 0.026) and forceps minor (adjusted R2 = 0.26, B = -77, [95% CI -139, -14], p = 0.019)
(Fig 4). Age was not a significant covariate in the models. All significantmodels were re-run
with MD instead of FA as the DTI parameter of the tract and showed the same results except
for the right aCi, in which the MDmodel was not significant. The models were also rerun with
gender as an additional covariate, which did not contribute significantly to the models. To
examine to what extent the correlations were specific for symptoms of the FBI12-22, we com-
puted the same analyses with FBI1-10 as the dependent variable. These analyses showed no sig-
nificant effect of the DTI variables on FBI1-10 scores, but in several cases a significant effect of
age. In the analysis of correlations between FBI scores and cortical thickness no significant cor-
relation was seen with FBI12-22 nor FBI1-10 in any region.

Group comparisons of cortical thickness

Compared with controls bvFTD patients showed widespread cortical thinning, bilaterally, with
right hemispheric dominance (Fig 5). Thinning was significant (in the right hemisphere) in the
medial prefrontal cortex (extending to the precuneus), the OFC (including the vmPFC), the
inferior frontal gyrus/frontal operculum, and the insula. Regions of cortical thinning also
included the temporal pole, extending to the middle and inferior temporal gyrus and parahip-
pocampal gyrus. In the left hemisphere, cortical thinning was confined to the medial OFC/
vmPFC. The PSP patients did not show any cortical thinning compared with controls, nor was
there any statistically significant difference between patients with bvFTD and PSP. One patient
with bvFTD had to be excluded from the analysis of cortical thickness because of incorrect
parcellation.

Group comparisons of white matter integrity

Boxplots of FA values of the tracts are shown in Fig 6. All tracts except the IFOF showed statis-
tically significant differences across all three groups. Patients with bvFTD showed a robust and
statistically significant lowering of FA in all tracts except the IFOF compared with healthy con-
trols, whereas significant differences between PSP and controls were confined to the forceps
minor and the left aCi. Comparisons between the two patient groups showed no difference in
the forceps minor, IFOF or the left aCi, but lower FA in bvFTD in the right aCi and right and
left UF compared with PSP. Values of mean diffusivity (MD) displayed a similar but reversed
pattern (i.e. MD bvFTD>PSP>controls) (S1 Fig), the difference being that MD showed a sta-
tistical significant difference between bvFTD and controls also for the IFOF, there were no dif-
ferences between PSP and controls, and bvFTD and PSP patients displayed statistically
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Fig 3. Fractional anisotropy and Hayling error score correlations. Scatter plots of total error score on

the Hayling test and fractional anisotropy (FA) of tracts in patients with behavioural variant frontotemporal

dementia (dots) and progressive supranuclear palsy (triangles), for A: the right uncinate fasciculus, B: the

right anterior cingulum, and C: the forceps minor. B (adjusted) and p are derived from the linear regression

model, with age as covariate.

doi:10.1371/journal.pone.0164122.g003
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significant differences in the left aCi as well. Intra-raterreliability ranged from 0.93 to 0.99 and
inter-raterreliability ranged from 0.89 to 0.98, in agreement with other centres using determin-
istic tractography with manually traced ROIs [51]. One patient with bvFTD had to be excluded
from the DTI analysis because of movement during the scan.

Discussion

The primary purpose of this study was to explore the clinico-anatomical correlates of disinhibi-
tion, adding the perspective of white matter to the more common grey matter imaging. The
main finding of our study is that in the prefrontal syndrome disinhibition is related to the
integrity of an axis between the right temporal-, insular- and orbitofrontal cortex, and their
main interconnecting white matter structures, the right uncinate fasciculus and right cingulum.
As such, our results have consequences for understanding the clinical anatomy of behavioural
control. The secondary aim of the study, the comparison of the two syndromes bvFTD and
PSP, will also be discussed in the following.

Correlates of disinhibition in the present study

The second part of the Hayling test is specifically designed to tap inhibitory function [30] and
thus to be a specificmarker of disinhibition. In our study the total error score on the Hayling
test correlated with white matter involvement of the right aCi, right UF, and forceps minor, but

Fig 4. Frontal Behavioural Inventory and FA of tracts. Scatter plots of Frontal Behavioural Inventory composite score of

items 12–22 (FBI12-22) and fractional anisotropy (FA) of tracts in patients with behavioural variant frontotemporal dementia

(bvFTD) (dots) and progressive supranuclear palsy (PSP) (triangles), for A: the right uncinate fasciculus, B: the left uncinate

fasciculus, C: the anterior cingulum and D: the forceps minor. B (adjusted) and p are derived from the linear regression

model, with age as covariate.

doi:10.1371/journal.pone.0164122.g004
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not the other tracts studied. This pattern is very similar to that in a combined neurodegenera-
tive (bvFTD + AD) correlational study using VBM analysis of DTI and the Hayling test [11],
with the difference that our findings were unilateral in the right hemisphere. The Hayling test
has an embedded verbal component, but in the present study no association was seen with left
hemispheric language areas. This is in agreement with a previous study of a bvFTD cohort
[11], where verbal function did not influence results on the Hayling test. To quantify lack of
inhibitory control outside the test setting, we chose a composite symptom score, FBI12-22. All
FBI12-22 items include an aspect of inhibitory control, but the items and thus the composite
score are likely to depend on other cerebral functions and regions as well. Eating disturbances,
social cognition and aberrant motor behaviour are all symptoms of bvFTD and map into the
OFC, medial PFC, insula and anterior temporal lobe [5, 52, 53]. However, the same tracts that
correlated with the FBI12-22 symptom score correlated with the Hayling test (with the addition
of the left UF), a considerably more “pure” disinhibitionmeasure, which shows that our com-
posite symptom score has a validity for the purpose of quantifying disinhibition in real life.
The Hayling total error score correlated to reduced cortical thickness in the parahippocampal
gyrus,OFC and insula, all in the right hemisphere, which, importantly, constitute a subset of
the regions involved in our bvFTD patients. Taken together, our grey and white matter findings
point to a right hemispheric medial temporal lobe (presumably including amygdala and hippo-
campus)-insular-orbitofrontal cortex network, areas which all are interconnected by the unci-
nate fasciculus and the cingulum [2].

Fig 5. Cortical thinning in bvFTD patients. Results of the comparison of cortical thickness between patients with behavioural variant

frontotemporal dementia and healthy controls. Results are from the Freesurfer analysis, results of the general linear model analysis were

corrected for multiple comparisons at the cluster level using the Monte Carlo method for p-cluster at p < 0.01 (z-vertex 2.0). No nuisance

variables were entered into the model. Coloured areas represent areas of significant differences, where warmer colours represent cortical

thickening and cooler colours cortical thinning. Scale bar represents p on a logarithmic scale. The upper row is the right hemisphere, the

lower row is left hemisphere, from lateral, medial and inferior views.

doi:10.1371/journal.pone.0164122.g005

Grey and White Matter Correlates of Disinhibition

PLOS ONE | DOI:10.1371/journal.pone.0164122 October 10, 2016 11 / 19



Consequences for the neuroanatomy of disinhibition

Measures of disinhibition in bvFTD, PSP and other neurodegenerative disorders tend to map
into the OFC [5–8, 10, 11, 49, 54], which in the standard model of behavioural neurology is
critical for behavioural inhibition [1, 3]. However, the studies are heterogeneous and several
studies show a relationship to a considerably wider set of regions, mainly in the right hemi-
sphere: the hippocampus/amygdala [9, 54], caudate/nucleus accumbens [9, 54], insula [8, 11],
anterior cingulate cortex/medial prefrontal cortex [10, 54], inferior frontal gyrus [8, 10, 48, 49],
and the temporal lobe [8, 10, 11, 54, 55] and other studies have shown both disinhibition and
apathy correlating with the OFC [7, 8]. In healthy subjects the results are more consistent and
inhibition (commonly assessed experimentally with motor inhibition) is related to function of
the inferior frontal gyrus [56]. This has also emerged in FTD (see above) but shown to be sec-
ondary to OFC involvement [49]. In vivo white matter correlational studies are more recent,
but point to the UF pathway for behavioural regulation both in acquired and developmental
disorders [11, 14]. Comprehensively, we believe that the results of the present study taken
together with the existing literature point to a right hemispherical medial temporal-insular-
OFC axis for behavioural control, with the UF and Ci as the main structural linkage.

Interestingly, we did not find a correlation of disinhibition with cortical thickness of the
vmPFC. Care should be taken when interpreting statistically non-significant findings as nega-
tive but the vmPFC did not correlate at a permissive, post-hoc p< 0.05 analysis, and was

Fig 6. Boxplots of FA values of tracts studied. HC: healthy controls, PSP: progressive supranuclear palsy, bvFTD: behavioural variant

frontotemporal dementia. FA: fractional anisotropy. FM: forceps minor, UF: uncinate fasciculus, IFOF: inferior frontooccipital fasciculus,

aCi: anterior cingulum. Rh: right hemisphere and lh: left hemisphere. Boxes represent 25th and 75th percentile with median, whiskers

minimum and maximum value. Staples represent statistically significant differences in between group pairs, at p < 0.05, uncorrected for

multiple comparisons.

doi:10.1371/journal.pone.0164122.g006
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affected in our bvFTD cohort. This finding is in contrast to the majority of studies in bvFTD
and PSP cited above, with the notable exception of the study by Zamboni et al [9]. Results from
their study and our current agree with the models based on lesion and animal work [57–59],
according to which the vmPFC is a critical hub for emotional decisionmaking and/or evalua-
tion of hedonistic experience, but not for inhibitory control per se, and extend these models to
the context of neurodegenerative disease.

Our conclusion raises the broader question of why inhibitory control is anatomically “dis-
tributed” in such a manner. One explanation, using a locationalist view, is that not only beha-
vioural but also neuropsychologicalmeasures of disinhibition are dependent on other
functions in addition to inhibitory control which are localised in other cortical regions, com-
municate by the white matter pathways, and will “contaminate” the neuroimaging results. As
an example, social cognition is coupled to the anterior temporal lobe [60], medial PFC is cou-
pled to mentalisation and decisionmaking [61], the amygdala to emotional processing [62]
and the medial temporal lobe to contextual information [63]. An alternative explanation is an
associative network model, where the inhibitory function itself relies on a distributed network
with several nodes, i.e. parts of the network that each contribute to but are not individually crit-
ical for its function [13, 64]. We believe that the results of the present study, where behavioural
and neuropsychologicalmeasures of disinhibition correlate with distributed right hemispheric
cortical areas and their interconnections is more in line with the latter model. This we believe
could explain some of the divergences among previous studies. Such a model however does
question the concept of a “prefrontal” syndrome as currently conceptualized [65].

Grey and white matter affliction in bvFTD vs. PSP

The regions affected by cortical atrophy among the bvFTD patients in our study (medial pre-
frontal, orbitofrontal, inferior frontal, insular and temporal cortex) are consistent with the
expected pattern in bvFTD [23], although our patients showed a right-sided dominance. The
involvement of major associative and commissural tracts leading to/from these areas [2, 14,
66], i.e. the aCi, UF and forceps minor, is also in accordance with previous studies on bvFTD in
which these are the most consistently affected tracts [50, 67–69].

In the PSP patients we did not find any statistically significant cortical thinning compared
with controls, which was contrary to expectations since the PSP patients had prefrontal symp-
tomatology (“Richardson´s syndrome”). In PSP these symptoms are related to both subcortical
and prefrontal cortical affliction [6, 22, 70, 71]. It is possible that measuring cortical thinning is
a less sensitive method than those used in the other studies, or an issue of power. On the other
hand, the pattern of tract involvement (forceps minor and left aCi) is in accordance with previ-
ous DTI tractographical studies of PSP [72–74].

The symptomatology of our patients confirmed that it is the FBI “positive” symptoms
(FBI12-22) that, from a behavioural perspective, best separates PSP and bvFTD, while the “nega-
tive” symptom (FBI1-10) burden is more similar [15, 17, 26]. Adding to the topographical over-
lap of the conditions, with a variable extent of prefrontal and subcortical atrophy [6, 20–23, 70,
71], we believe this supports the use of a combined disease cohort of bvFTD and PSP patients
when exploring the underlying neuroanatomy of disinhibition. Lagarde et al. [71] have made
the only previous direct grey matter atrophy comparison between bvFTD and PSP and did not
find any differences when using their a priori threshold, as in this study. However, using a
post-hoc,more permissive threshold they showed greater atrophy in dorsolateral, medial and
orbital prefrontal cortex in bvFTD compared with PSP. Similarly, when we used a more per-
missive multiple comparison cut-off (p< 0.05) we did indeed find a cortical thinning in
bvFTD compared with PSP, in the OFC (including the vmPFC) and anterior temporal lobe

Grey and White Matter Correlates of Disinhibition

PLOS ONE | DOI:10.1371/journal.pone.0164122 October 10, 2016 13 / 19



(S2 Fig). To our knowledge our study is the first direct DTI comparison between bvFTD and
PSP using DTI for comparing white matter integrity in the two disorders. Comparison between
the two disease groups showed lower FA in bvFTD in the right aCi and the UF bilaterally com-
pared with PSP. This itself is an indication that the phenotype distinguishing bvFTD from PSP
(that is the “positive” FBI12-22 symptomatology) is related to the involvement of these tracts.

Methodological discussion

From a clinico-anatomic-correlation standpoint, it is important to note that all tracts we stud-
ied, although they constitute anatomically discrete fibre systems, are composed of subcompo-
nents which likely have different functions and possibly different involvement in the diseases
studied. For example, the least affected tract in the bvFTD group, the IFOF, is composed of sev-
eral subcomponents [75] that are not separated in the present study. Another limitation of the
DTI method employed is that fibres that cross or”kiss” other fibres will be excluded which lim-
its the extents of the tracts in a non-anatomical fashion [12]. Also, the current DTI resolution
means that DTI parameters of tracts will be contaminated from adjoining or intermingling
tracts. An example of this problem is in the orbitofrontal terminations of the UF and IFOF,
which will be intermingled [2]. Future studies with methods that enable more detailed tract
parcellations may overcome some of these problems [12]. The imagingmethods chosen for the
current study do not visualize the cortico-striatal-thalamic loop. Considering its role in inhibi-
tory control, and (as noted previously) its affliction in bvFTD and PSP, both grey and white
matter imaging of this system would constitute an important improvement.

A broader methodological aspect of this study lies in the use of the clinico-anatomical-cor-
relation method in neurodegenerative diseases. Neurodegenerative diseases, through the
regional selectivity of their respective pathological processes, probably reflect entire large-scale
functional-structuralnetworks [76]. This could pose a limitation, making it difficult to disen-
tangle separated functions in an afflicted network even with a hodological approach [77].

Conclusion

In conclusion, we show that disinhibition is related to the integrity of a right hemispheric
medial temporal-insular-orbitofrontal network, interconnected by the right uncinate fasciculus
and right cingulum. These results support a frontotemporal network model of disinhibition,
and question the concept of a purely prefrontal syndrome as currently formulated. Also, our
study questions the role of atrophy of the ventromedial prefrontal cortex as the major cause for
loss of inhibitory control in neurodegenerative disease.

Supporting Information

S1 Fig. Boxplots of MD values of tracts studied.HC: healthy controls, PSP: progressive
supranuclear palsy, bvFTD: behavioural variant frontotemporal dementia. MD: mean diffusiv-
ity. FM: forceps minor, UF: uncinate fasciculus, IFOF: inferior frontooccipital fasciculus, aCi:
anterior cingulum. Rh: right hemisphere and lh: left hemisphere. Boxes represent 25th and 75th

percentiles with median, whiskers minimum and maximum value. Staples represent statisti-
cally significant differences between paired groups, at p< 0.05, uncorrected for multiple com-
parisons.
(EPS)

S2 Fig. Comparison of cortical thickness between patients with bvFTD and PSP. Results of
the post-hoc comparison of cortical thickness between patients with behavioural variant fron-
totemporal dementia (bvFTD) and progressive supranuclear palsy (PSP) using Freesurfer.
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Results of the general linear model analysis were corrected for multiple comparisons at the
cluster level using the Monte Carlo method for p-cluster at p< 0.05 (z-vertex 2.0). No nuisance
variables were entered into the model. Coloured areas represent areas of significant differences,
where warmer colours represent cortical thickening and cooler colours cortical thinning. Scale
bar represents p on a logarithmic scale. Only the right hemisphere is shown, from lateral,
medial and inferior views. No regions with significant correlation with cortical thickness were
detected in the left hemisphere.
(EPS)
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