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ARBUR, a machine learning-based
analysis system for relating behaviors
and ultrasonic vocalizations of rats

Zhe Chen,1,2 Guanglu Jia,2,3 Qijie Zhou,2,3 Yulai Zhang,1,2 Zhenzhen Quan,4 Xuechao Chen,2,3 Toshio Fukuda,5

Qiang Huang,2,3 and Qing Shi2,3,6,*
SUMMARY

Deciphering how different behaviors and ultrasonic vocalizations (USVs) of rats interact can yield insights
into the neural basis of social interaction. However, the behavior-vocalization interplay of rats remains
elusive because of the challenges of relating the two communication media in complex social contexts.
Here, we propose a machine learning-based analysis system (ARBUR) that can cluster without bias both
non-step (continuous) and step USVs, hierarchically detect eight types of behavior of two freely behaving
rats with high accuracy, and locate the vocal rat in 3-D space. ARBUR reveals that rats communicate via
distinct USVs during different behaviors. Moreover, we show that ARBUR can indicate findings that are
long neglected by former manual analysis, especially regarding the non-continuous USVs during easy-
to-confuse social behaviors. This work could help mechanistically understand the behavior-vocalization
interplay of rats and highlights the potential of machine learning algorithms in automatic animal behav-
ioral and acoustic analysis.

INTRODUCTION

Nonverbal communication and vocalization are two vital means of natural communication during social interaction across the animal kingdom

and human society.1,2 Nonverbal communication such as facial expression,3 body posture, waggle dance,4 and social play5 can be received by

nearby conspecifics and often analyzed generally by human observers as social behavior,6 whereas vocalization can be communicated

remotely to convey information in dark and tortuous environments. Both social behavior and vocalization can be readily recorded experimen-

tally as outer observable states that reflect the inner emotional states3 or even neural circuit activities,7–9 and therefore are actively investi-

gated in animal behavior research.10 During social engagement, both the social behavior and vocalization of individuals influence each other

in a continuous and interactive manner, contributing to the variable group social dynamics. Deciphering the behavior-vocalization inter-

play11,12 would thus reveal insights into the neural basis of social interaction. For such deciphering efforts, rats are widely used as social animal

models because of their innate sociability13 and proven emotion-related ultrasonic vocalizations (USVs).14 For example, the alarm sounds (22-

kHz USVs) of trapped rats may induce overwhelming distress in freely moving rats via emotional contagion and further evoke pro-social

behavior in the free ones.15 However, a dedicated system for analyzing social communications of freely behaving rats is still missing to pro-

mote the mechanistic understanding of the interplay between social behavior and USVs.

The barrier is caused by the difficulty of relating the different types of behavior and USVs of rats in complex social contexts (to reveal the

underlying behavior-vocalization interplay) because of the following challenges. First of all, a method for the unbiased and automatic clus-

tering of USVs that not only covers both non-step (continuous) and step (non-continuous) signals in spectrograms12 but also comprehensively

incorporates the structure of frequency and duration,16 is still missing. Moreover, the automatic behavior detection of rats under social inter-

action poses a major challenge in constructing the behavior-specific features17,18; therefore, it is difficult to discriminate different types of

easy-to-confuse social behavior.19–22 In addition, allocating the recorded USVs to the vocal rat also brings an obstacle because of the prox-

imity and top-view partial overlapping of socially engaged rats.23

In this Article, we propose a machine learning-based Analysis system for Relating Behaviors and USVs of Rats (named ARBUR). ARBUR

clusters ultrasonic syllables into user-defined or automatically calculated subgroups from a comprehensive perspective, detects eight types

of behavior (Table 1) based on the lateral camera view, and locates the vocal rat in two-rat scenarios with free social interaction. Using ARBUR,
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Table 1. Behavioral definitions of freely behaving rats

Behavior Definition

SO (solitary) Both rats engage in separate activities.

ST (still) Both rats keep still.

MA (moving away) A rat moves away from another rat.

AP (approaching) A rat moves toward another rat until contact.

FO (following) A rat follows another rat without contact.

PIN (pinning) A rat holds down another rat lying on its back.

POU (pouncing) A rat lies on the back of another rat.

SNC (social nose contact) A rat touches another rat with its nose tip.
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we reveal that the distinct behaviors of rats are associated with different USVs. Therefore, based on the simultaneously recorded raw video

and audio streams (see Figure S1), ARBUR can relate the behavior and USVs of rats in freely interacting social contexts for downstream qual-

itative and quantitative analyses. For example, we show that the pinned rat produces significantly more 22-kHz aversive USVs compared with

the bully one or during other social behaviors or solitary states. Moreover, ARBUR indicates several novel findings about still-associated or

moving-associated USVs, which have long been neglected in the manual analysis-dominated research.

RESULTS

Comprehensive clustering of the vocal repertoire

We recorded 43,357 ultrasonic vocalizations (USVs) to create the vocal repertoire. To cluster the USVs in an unbiased and comprehensive way,

we present the comprehensive three-step clustering algorithm ARBUR:USV (see Figure S2 and Table 2). Representative clustering examples

are shown in Figure 2A. In the first step, ARBUR:USV divides the USVs into 2 clusters according to their mean frequency-indicated emotional

states (aversive 22-kHz USVs (ranging from 15 kHz to 32 kHz) or appetitive 50-kHz USVs (above 32 kHz)). This is a special treatment for rat USV

analysis since rats producemeaningful USVs with a frequency near 22 kHzwhilemice don’t. Another special consideration in ARBUR:USV is the

inclusion of step signals, which are usually overlooked in other research. Moreover, note that 50-kHz USVs are classified into four groups ac-

cording to their mean frequency and duration: high-peak-frequency (HPF) 50-kHz USVs and low-peak-frequency (LPF) 50-kHz USVs, because

two aggregated areas were observed in the density map (Figure 2B), indicating two kinds of 50-kHz USVs may be present despite of their

similar frequency contours (shape in the spectrograms). Therefore, in the second step, the 50-kHz USVs are classified into four groups (groups

A-D) according to their continuity (non-step or step) and distribution in frequency-duration space (HPF or LPF) (Figure 2A). In the third step,

ARBUR:USV separates the four 50-kHz groups (groups A-D) into subgroups within each group according to their frequency contours, thus

allowing users to investigate the correlation between USV contours and other biological factors (e.g., behavior types) in relevant research.

In the meantime, the 22-kHz group (group E) is divided into five subgroups based on mean frequency and duration because the frequency

contours of 22-kHz USVs do not vary much.

While the first two steps divide the USVs according to their biological relevance (mean frequency, natural distribution in frequency-dura-

tion space), the third clustering step separates the USVs within each group according to their contour features, which raises the question of

determining the optimal number of clusters to balance over-clustering with under-clustering. Here, ARBUR:USV provides three solutions for

users to choose. First, the number of clusters for groups A-E can be subjectively chosen according to their experiences. This may be suitable
Table 2. ARBUR:USV achieves comprehensive automated clustering of rodent’s USVs compared with current research

Manner of

clustering

Mean

frequency Duration

Non-step

contour

Step

contour

Choice of optimal

clusters (number) Rodents

Wright et al.24 Manual U – U U Subjective (15) Rats

Riede et al.25 Manual U – U U Subjective (6) Rats

Burgdorf et al.26 Manual U – U U Subjective (3) Rats

Fonseca et al.27 Automated U – U U Subjective (11) Mice

Sangiamo et al.12 Automated – – U – Progressive (22) Mice

Takahashi et al.16 Automated U U – – Bayesian information criterion (3) Rats

MUPET28 Automated – U U – Subjective (20–200) Mice

DeepSqueak29 Automated – U U – Elbow (20) Mice

AVA30 Automated – U U – Subjective (�) Mice

ARBUR:USV Automated U U U U Multiple choices(65) Rats
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Figure 1. Illustration of the working flow of ARBUR

ARBUR takes simultaneously recorded video and audio streams as input and outputs the current behavior type, the ultrasonic vocalization (USV) in spectrogram

with cluster type and duration indicated, and the labeled position of the vocal rat for each frame of the binocular images in the video frame.
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for experienced animal behaviorist to investigate USV-related rat behaviors with fixed cluster size. Second, ARBUR:USV can calculate the

optimal number of clusters for each group according to the elbow method (see Method details in the STAR Methods).29 It basically relies

on the relationship (curve) of total within-cluster error (TWCE) versus the increasing number of clusters. With increasing cluster numbers,

TWCE tends to decrease exponentially. The elbow method finds the elbow point of the curve to be the optimal number. For the collected

dataset, the optimal numbers for groups A-E are 13, 28, 13, 14, and 8, respectively (see Figure S3). Third, ARBUR:USV also provides the pro-

gressivemethod, which considers the clustering degree for each cluster. In particular, the cluster number, startingwith two, increases by one if

the average innerpoint percent of clustering results does not reach a user-defined threshold. For example, if the threshold is set to be 0.98, the

optimal cluster number for group E is 8 (see Figure S4). It can produce a higher or lower number of clusters if stricter or looser thresholds are

used for particular purposes. In short, ARBUR:USV provides three methods for choosing the number of clusters for groups A-E. Here, to bal-

ance simpler visualization and the elbow method result, we subjectively set the numbers for groups A-E to be 10, 25, 10, 15, and 5,

respectively.

Figure 2A shows the clustering examples. Note that the USV clusters were re-sorted in descending order according to contour slope (for

clusters 1–60) or duration (for clusters 61–65). It is intuitive that the USVs within each cluster share similar contours, and the mean contours of

each cluster differ from those of the others (see Figure S5). We then quantified the clustering results.We show that ARBUR:USV achievesmuch

higher inter-cluster distance compared with intra-cluster variance across the 65 clusters (see Figure S6). Moreover, we quantified the 65 clus-

ters of the USVs, and showed that they vary substantially in terms of duration, frequency range, mean frequency, and signal counts across

clusters (see Figure S7).

Hierarchical behavior classification of two freely behaving rats

ARBUR:Behavior is based on a hierarchical classification architecture, which we optimized for analyzing the species-specific behaviors of two

freely behaving rats (see Method details in STAR Methods). We constructed different classification features based on behavioral states (non-

social, moving, and social) and designed three classifiers to distinguish behavioral categories further. ARBUR:Behavior uses the binocular

side-view video stream (segmented by SegFormer31 to remove the background) as input to discriminate eight behaviors of rats (Figure 1B).

ARBUR:Behavior can also run in a single-shot mode if moving behaviors are not considered.

We annotated 1,265 randomly extracted segments from all recorded videos (including 43,357 segments) to test the performance of

ARBUR:Behavior. As demonstrated in Figure 3A, the module can classify the behaviors of two freely behaving rats well, especially the moving

behaviors with large displacement and the social behaviors with complex postures. We show that the desired detection precision, recall, and

F1-score of each behavior are achieved (average precision: 0.874, average recall: 0.862, average F1-score: 0.868, Figure 3B). The confusion

matrix shows that ARBUR:Behavior can discriminate the easy-to-confuse social behaviors with high F1-scores, such as PIN (pinning) and

POU (pouncing) (Figure 3C). In contrast to studies based on end-to-end architectures,19,32,33 ARBUR:Behavior is capable of discriminating

specific social behaviors (PIN, POU, and SNC (social nose contact)) and can classify a higher number of behavior categories while achieving

comparable accuracy.

In addition, we tested the performance of currentmainstreamdeep learning classification algorithms34–37 for the direct classification of the

eight behaviors on our dataset. ResNet achieves the best performance with an accuracy of only 0.333 using an eight-class classifier (see Fig-

ure S8A). For the two- and three-class classification of three social behaviors, the highest accuracies of these algorithms are 0.767 and 0.578

(see Figure S8B).We argue that features with behavioral specificity can not be directly extracted in the images using the end-to-end approach,

resulting in poor classification performance. Therefore, some studies extracted the pose and tracking data of rats to classify behaviors in an

unsupervised way and achieved high accuracies.38,39 However, such methods are unable to discriminate specific social behaviors. In contrast,

ARBUR:Behavior detects non-social behaviors using the location feature of rats in the image and moving behaviors by estimating the optical
iScience 27, 109998, June 21, 2024 3
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Figure 2. ARBUR:USV clusters the vocal repertoire in an unbiased and comprehensive manner

(A) Representative examples show that USVs within the same clusters share similar contours. Groups A-D, top panels, mean value of contour G s.e.m. Bottom

three panels, three selected USVs spectrograms with cluster type (top left) and duration (bottom right) are indicated. Each column represents one cluster.

Intensity is indicated by color (red, maximum; blue, minimum). Groups A-E represent high-frequency non-step 50-kHz USVs (clusters 36–45), high-frequency

step 50-kHz USVs (clusters 46–60), low-frequency non-step 50-kHz USVs (clusters 1–10), low-frequency step 50-kHz USVs (clusters 11–35) and 22-kHz USVs

(clusters 61–65), respectively. The frequency range of spectrograms: 20 kHz for group A and C; 40 kHz for group B and D; 0–40 kHz for group E.

(B) Intuitive demonstration of the classification within the 50-kHz USVs, which wasmade because two independent peaks were observed in the probability density

map (inset).

(C) Quantification of the clustering results, which shows high inter-cluster distances and small intra-cluster variances.
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flow of the rat as well as its relative orientation. To discriminate social behaviors, it extracts ‘‘histogram of oriented gradients’’ (HOG)40 de-

scriptors to represent the statistics of social posture features in a standardized way.

Wealso tested theperformanceofmainstreammachine learning-basedclassifiers for two-and three-class classifierson three social behaviors.

The support vector machine (SVM) achieved the highest classification accuracy (0.843) in binary classification, and the Receiver Operating Char-

acteristic (ROC) curve shows that it has the best overall classification performance (see Figure S8C). Therefore, we designed an SVM-based de-

cision tree classifier for discriminating social behaviors (see Method details). ARBUR:Behavior has a greater advantage in terms of F1-score/ac-

curacyand thenumberofbehavior categories, comparedwithhand-crafted featuresused inexisting studies.20,22,41Onbalance,ARBUR:Behavior

outperforms existing studies with respect to comprehensive detection performance (Table 3). ARBUR:Behavior successfully detected 33,428 be-

haviors (with a confidence of over 0.8) out of 43,357 segments of video frames corresponding to recorded USVs (Figure 3D; Table 3).

Locating the vocal rat in 3-D space

To locate the vocal rat during free-behaving scenarios, we developed a novel algorithm (ARBUR:SSL) that incorporates the lateral binocular

view (for rat nose reconstruction in the Cartesian space), behavior classification results, height-sensitive distributed microphone
4 iScience 27, 109998, June 21, 2024
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Figure 3. ARBUR simultaneously achieves accurate behavior detection and sound source localization in three dimensions

(A) Examples of the ARBUR outputs for eight behaviors: left and right camera view, behavior type (top left of each panel), spectrograms of USVs with cluster (inset,

top left), and duration (inset, bottom right) and location of the vocal rat in the two camera views (red circle). Frequency range of spectrograms: 20 kHz for cluster 8;

0–40 kHz for clusters 62 and 63; 40 kHz for all other clusters.

(B) Quantification of the performance of ARBUR:Behavior.

(C) Confusion matrix showing the identification rates of ARBUR:Behavior.

(D) Counts of different types of behavior detected (logarithmic) across behavior types.

(E) Distribution of the localization confidence index (LCI) obtained by ARBUR:SSL; inset, cumulative probability vs. LCI.

(F) Distribution of the sound source localization error by ARBUR:SSL; inset, cumulative probability vs. error.
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configuration, and 3-D probabilistic triangulation of sound source to locate the vocal rat in 3-D space. ARBUR:SSL takes the 3D recon-

structed nose position, the current behavior type, and four-channel audio streams as input. It can comprehensively leverage these infor-

mation and output the pixel position of the vocal rat in both binocular images, which is useful for follow-up expert quantitative and qual-

itative analysis.

The rat-rat social interaction scenario makes the microphone array far above the rats (50 mm above ground) compared with the experi-

mental sets for mouse interaction, which makes the recorded USVs signal intensity (therefore signal-to-noise ratio) much weaker than others.

This poses a new challenge to us because the mainstream sound source localization (SSL) algorithms suitable for mouse interaction exper-

iments work much worse in our dataset and, therefore undesirable for our purposes. To address this challenge, we optimized a classic
iScience 27, 109998, June 21, 2024 5



Table 3. ARBUR:Behavior achieves accurate behavior classification

Input modality

Algorithm

characteristics

Background

subtraction

Social

behavior

Behavior

categories

F1-score/

Accuracy

DeepEthogram19 RGB (top view) End-to-end (supervised) – U 6 0.638/-

SIPEC:BehaveNet33 RGB (top view) End-to-end (supervised) U – 3 0.720/-

DeepAction20 RGB (top view) Hand-crafted (supervised) – U 12 -/0.739

VSAMBR41 RGB (side view) Hand-crafted (supervised) U – 8 -/0.771

DeepCaT-z32 RGB-D (top view) End-to-end (supervised) U – 4 0.822/-

OpenLabCluster39 Pose and tracking data Hand-crafted (supervised) – – 8 -/0.842

MARS22 RGB (top view) Hand-crafted (supervised) – U 3 0.878/-

B-SOiD38 Pose and tracking data Hand-crafted (supervised) – – 11 -/0.915

ARBUR:Behavior RGB (side view) Hand-crafted

(supervised)

U U 8 0.868/

0.870
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method23 and proposed a new index (localization confidence index, LCI), which measures the consistency between 3-mic SSL and 4-mic SSL

results, and hence can rule out those low-SNR USVs. Using the proposedmethod, we achieved amedian SSL error of 5.01 cm in the test data-

set, which is suitable for rat-rat social scenarios. Since the large size of adult rats (>18 cm), snout-to-snout distance in rat-rat interaction sce-

narios is much bigger than in mouse-mouse interactions (see Figure S9). Such an SSL error can be usable for safely assigning the USVs to the

vocal rat in rat-rat interaction scenarios.

Another concern that haunted the experts working on SSL is the lack of accurate test datasets. Mainstream studies reportedly induced

mouse USVs using heterosexual urine,42,43 but the visual localization of rodent snout would bring unnecessary errors, and lack the ability

of snout height detection. In this article, we constructed a rat USV test dataset for evaluating SSL errors using USVs collected from still

rats, which brings two advantages: 1) all the USVs are produced at the same spatial source position because the rat kept still throughout

the process; 2) 3D position of the vocal rat nose/snout is provided, therefore allowing evaluating 3D SSL algorithms.

We further show that a higher LCI is associated with smaller sound source localization (SSL) error (see Figure S10). Therefore, only USV

signals with an LCI over 0.6 are accepted, which consist of 76% of the valid vocal repertoire (29772 USVs, intersection of the valid outputs

of ARBUR:USV and ARBUR:Behavior, see Figure S11). ARBUR:SSL shows decent horizontal-plane localization precision, with less than

10 cm error for over 78% of the data, which is considerable, considering the much weaker USVs in our dataset, compared to existing algo-

rithms12,23 (see Figures 3F and S10A), and more importantly, suitable for our purposes. Moreover, by evaluating the LCI at different heights

(reconstructed from the binocular view), ARBUR:SSL can pinpoint the vocal rat even if the two rats overlap in the top-down projection plane

(which is more frequent in, for example, pinning and pouncing). ARBUR:SSL assigned 17,235 USVs out of 29,772 USVs to the vocal rat. Fig-

ure 3A shows examples. In contrast to other sound source localizationmethods for rodents’ USVs, ARBUR:SSL features the ability to locate the

vocal rat in 3-D space while preserving the localization precision with weaker USV signals (Table 4).
Revealing the behavior-vocalization interplay

By seamlessly incorporating these three modules, ARBUR can build connections between different types of rat behavior and vocalizations.

Figure 4A shows examples (also see Video S1). It is intuitive that when the rats are engaged in non-aggressive play behavior, such as social

nose contact and pouncing, more appetitive 50-kHz USVs are communicated.On the contrary, the submissive one emitsmore aversive 22-kHz

USVs when engaged in aggressive play behavior, i.e., pinning. We investigated whether these two hypotheses would hold in the whole
Table 4. Comparison of ARBUR:SSL with mainstream sound source localization methods for rodents’ USVs

Dimen.

of SSL

Number

of mics

Principle

of SSL

Median

error (cm)

Mic-to-

source

distance (cm)

Estimation

area (cm2) Rodents

Matsumoto et al.44 2-D 4 Direction of arrival 1.58 47 20 3 20 Mice

Heckman et al.45 1-D 2 Hyperbolic 0.85 46 7 3 7.5 Mice

Warren et al.46 2-D 8 Hyperbolic 1.80 38 66 3 66 Mice

Neunuebel et al.23 2-D 4 Hyperbolic 3.87 33 66 3 66 Mice

Oliveira-Stahl et al.42 2-D 4 Hyperbolic 1.31 27.8 30 3 40 Mice

Sterling et al.43 2-D 4 + 1(64-channel) Hyperbolic 0.48 27.8 30 3 40 Mice

ARBUR:SSL 3-D 4 Hyperbolic 5.01 55 D50 Rats

6 iScience 27, 109998, June 21, 2024



Vocal signal type

1445 1452

frame number

…1 4489589238903

Start Stop

…………

Start

frame number

509 514…1 44895

Stop

… … 31537 31543

frame number

…1 44895

potStratS

… …

1

2 3

4

6261

Vocal signal type Vocal signal type

Anterior Posterior

Group-A

Group-C

Group-B

Group-D

Group-E

Unlabeled

U
SV

s
(U

)

Be
ha

vi
or

(B
)

MA

FO

AP

PIN

POU

SNC

SO

ST

Unlabeled

Z-
sc

or
e

10 20 30 40 50 60

0
-1

1
2

E-puorGB-puorGA-puorGD-puorGC-puorG

425 915

CNSUOP

PIN

B

U

Top view

2
3

Top view

4

Top view

1

RLRL

RL RL

ST

Figure 4. Revealing the behavior-vocalization interplay using ARBUR

(A) Examples showing how 22-kHz USVs are associated with pinning (top), and appetitive 50-kHz USVs are associated with pouncing (bottom left) and social nose

contact (bottom right). Frequency range of spectrograms: 20 kHz for clusters 5, 9, and 42; 0–40 kHz for clusters 61 and 62; and 40 kHz for cluster 15.

(B) Quantification of behavior-associated USV distributions, which indicates whether a certain cluster of USVs is emitted during a specific type of behavior above

chance (red), at chance (white), or below chance (blue). Groups A-E, the same as in Figure 2.
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repertoire. Therefore, we quantified the USV proportions of rats in different types of behavior (Figure 4B). Results show that the submissive rat

produces significantly more aversive 22-kHz USVs during the pinning process. Moreover, in social nose contact and pouncing, both rats pro-

duce more 50-kHz USVs.

The finding that during an aggressive interaction (i.e., pinning), the submissive one produces significantly more aversive 22-kHz USVs, is

consistent with former research.26,47,48 We also show that even though pouncing and pinning are similar types of behavior, they actually have

distinct USV distributions. In particular, during pinning, the submissive rat rarely emits appetitive 50-kHz USVs, whereas, during pouncing, the

submissive one produces mainly 50-kHz USVs. This may indicate that the submissive rat has distinct feelings and emotional states when

engaging in the two types of behavior. ARBUR can reveal such a distinction because it can not only accurately discriminate these behaviors,

but locate the submissive rat spatially. These findings are in line with former studies and therefore validate the effectiveness of ARBUR.

In addition, ARBUR reveals that several USVs, mostly 22-kHz USVs, are recorded when both rats are in the still state which resembles

sleeping (Figure 4B). The still state detected by ARBUR is characterized by both rats lying flat for several minutes or longer, with their bodies

immobilized and eyes closed. This indicates that some USVs may be emitted by rats unconsciously (possibly during sleeping), and these

22-kHz USVs may neither convey emotional information nor trigger behavioral changes of the other rat. However, the still-associated (or

sleeping-associated) USVs have rarely been focused on because of their independence from social interaction. Furthermore, ARBUR shows
iScience 27, 109998, June 21, 2024 7



ll
OPEN ACCESS

iScience
Article
that rats producemore step 50-kHz USVs than non-step ones duringmotion (Figure 4B), indicating a part of step 50-kHz USVs may be caused

by rats’ locomotion. Recent research has demonstrated the tight correlation between respiratory activity and frequency features of USVs,25

which indicated that locomotion may induce more step 50-kHz USVs by affecting rat respiratory activity.
DISCUSSION

Understanding the behavior-vocalization interplay of rats is inhibited by the difficulty of relating the behaviors and the USVs of freely behaving

rats in complex social contexts. In this study, we propose amachine learning-based analysis system (named ARBUR) to relate rat vocalizations

to their free behaviors. ARBUR contains three modules: 1) an comprehensive three-step algorithm (ARBUR:USV) that clusters rat USVs in an

unbiased manner by considering their mean frequency, duration, and both non-step (continuous) and step (non-continuous) contours in the

spectrograms; 2) a machine learning-based hierarchical framework (ARBUR:Behavior) that detects the type of social behavior from a laterally

binocular view; and 3) a sound source localization algorithm (ARBUR:SSL) that spatially allocates the USVs to the vocal rats.

Rats produce diverse USVs in terms of duration, mean frequency, and frequency contours.24 Existing studies have only clustered the USVs

in a way that considers some of these factors in an automated12,16 or manual14,25 manner (Table 2). Among them, a recent study leveraged

unsupervised learning to cluster mouse non-step USVs into 22 categories based on their contours, which showed potential for unbiased clus-

tering of a broader spectrum of USVs.12 However, an automated clustering algorithm that comprehensively takes all these three factors and

step signals under consideration remains missing. To our knowledge, ARBUR:USV is the first automated clusteringmethod that considers the

step USVs of rodents. Although it is designed and optimized to cluster rat USVs, it can be readily generalized for mouse USV applications.

Compared with algorithms from existing studies, the proposed clustering algorithm features: 1) the comprehensive consideration of fre-

quency, duration, and contour information; and 2) the inclusion of both step and non-step USVs. Moreover, ARBUR:USV provides multiple

choices for users to determine the optimal clusters, including subjective setting, the progressive method, and the elbow method. It should

therefore be adaptive to a wide range of applications regarding rodent acoustic clustering and analysis.

ARBUR:Behavior is a hierarchically supervised learning algorithm that archives state-of-the-art performance in classifying eight types of

common rat behaviors, including three easy-to-confuse social behaviors (pinning, pouncing, and social nose contact). We show that themain-

streamdeep learning classification algorithms34–37 are not competent for the end-to-end classification of complex rat behaviors. For example,

ResNet achieves the best performance with an accuracy of only 0.333 using an eight-class classifier (see Figure S8A). This highlights the ne-

cessity of the hierarchical classification of complex rat behaviors. Therefore, ARBUR:Behavior hierarchically classifies rats’ non-social, moving,

and social state behaviors sequentially. It detects non-social behaviors using the location feature of rats in the image andmoving behaviors by

estimating the optical flow of the rat as well as its relative orientation. To discriminate tricky social behaviors, ARBUR:Behavior extracts ‘‘his-

togram of oriented gradients’’ (HOG)40 descriptors to represent the statistics of social posture features in a standardized way. This empowers

ARBUR:Behavior with high-accuracy discrimination of rat social behaviors. ARBUR:Behavior outperforms existing studies with respect to

comprehensive detection performance (Table 3).

ARBUR:SSL can locate the vocal rat during two-rat free-behaving scenarios by incorporating the lateral binocular view (for rat nose recon-

struction in the Cartesian space), behavior classification results, height-sensitive distributed microphone configuration, and 3-D probabilistic

triangulation of sound source. The large rat-to-mic distance in rat-rat interacting scenariosmakes the recorded USV signal intensity (therefore

signal-to-noise ratio) much weaker than others. ARBUR:SSL addressed this challenge by measuring the consistency between 3-mic SSL and

4-mic SSL results, hence rulingout those low-SNRUSVs. It achievesdesirableSSLprecision suitable for rat-rat social scenarios.Another concern

that haunted the experts working on SSL is the lack of accurate test datasets. Maintream studies reportedly induced mouse USVs using het-

erosexual urine,42,43 but the visual localization of rodent snout would bring unnecessary errors, and lack the ability of snout height detection. In

this work, we constructeda rat USV test dataset for evaluating SSL errors usingUSVs collected fromstill rats, whichbrings two advantages: 1) all

theUSVsareproducedat the samespatial sourcepositionbecause the rat kept still throughout theprocess; 2) 3Dpositionof the vocal rat nose/

snout is provided, therefore allowing evaluating 3D SSL algorithms. ARBUR:SSL can therefore contribute to SSL research by highlighting the

potential of refining low-SNR vocal signals and stressing the value of USVs emitted by still or sleeping rats for evaluating SSL algorithms.

By seamlessly combining these three modules, ARBUR features the advantages of comprehensive and unbiased USV clustering, hierar-

chical high-accuracy rat behavior detection, and 3-D sound source localization to reveal the latent behavior-vocalization interplay of rats.

For example, during a socio-aggressive interaction (i.e., pinning), the submissive one produces significantly more aversive 22-kHz USVs, which

is consistent with former research.26,47,48 We also show that even though pouncing and pinning are similar types of behavior, they actually

have distinct USV distributions. Moreover, ARBUR indicates two novel findings. First, rats may unconsciously emit 22-kHz USVs during the still

state. The still state resembles sleeping and should not be confusedwith freezing because it features both rats lying flat on the floor for several

minutes or longer, with their eyes closed. In contrast, freezing follows the cessation of an ongoing behavior (moving, grooming, and so

forth),49,50 typically not occurring while calmly lying with the eyes closed. Second, rats possibly produce more discontinuous (step) 50-kHz

USVs during moving. It’s possible that the movement of rats can cause changes in their respiratory behavior, thereby affecting USV vocaliza-

tion. But the direct evidence to support this hypothesis is missing, and more solid examinations are required to reveal how movement

behavior or specific actions affect breathing patterns, and correspondingly affect the continuity of emitted USVs. These two directions

have long been neglected in themanual analysis-dominated research, and call for more stringent verification to bring substantial knowledge.

We also note that although ARBUR is designed and optimized to investigate the behavior-vocalization interplay of rats, it can be potentially

generalized to other rodents that also communicate through both non-verbal signals and USVs (for example, mice and mole rats).
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In summary, we proposed a machine learning-based analysis system, which can not only automatically reveal the well-understood

behavior-associated vocalizations that were carefully concluded by other behavioral researchers, but also hold the promise to indicate novel

findings that can be hardly found by manual analysis, especially regarding step USVs and the active/passive rat-associated USVs during easy-

to-confuse social behaviors. This work highlights the potential of machine learning algorithms in automatic animal behavioral and acoustic

analysis and could help mechanistically understand the interactive influence between the behaviors and USVs of rats.

Limitations of the study

Despite the above advancements, ARBUR can be further improved in the following aspects. First, ARBUR:USV rejects the concurrent USVs

(simultaneously recorded USVs at different frequencies), which may be important during social communication and could be separated by

intelligent segmentation algorithms combined with high-precision SSL, further enriching the vocal repertoire. Moreover, ARBUR:Behavior

lacks the ability to detect potential behavioral changes in freely behaving rats, which is essential for discovering the underlying mechanisms

of novel behavior-vocalization and could be enhanced by incorporating unsupervised learning to uncover latent structures and categories in

behavioral space.51,52 In addition, ARBUR:SSL could be improved in terms of the limited number of visual reconstructions of rat noses by incor-

poratingmore camera views in the future, fulfilling the need for amore reliable three-dimensional sound source localization. UsingARBUR, we

revealed that rat USV distribution is biased by rat behavior, indicating that the USVs of rats are associated with their behaviors. For example, a

submissive rat significantly up-regulates the aversive 22-kHz USVs during pinning. Moreover, during pouncing and social nose contact, both

rats produce substantially more appetitive 50-kHz USVs than they do during pinning.
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Mendoza, R., Johnson, L.M., McDonald
Wojciechowski, A., and Williams, Z.M. (2022).
Frontal neurons driving competitive
behaviour and ecology of social groups.
Nature 603, 661–666. https://doi.org/10.
1038/s41586-021-04000-5.

8. Schneider, S., Lee, J.H., and Mathis, M.W.
(2023). Learnable latent embeddings for joint
behavioural and neural analysis. Nature 617,
360–368. https://doi.org/10.1038/s41586-
023-06031-6.

9. Wei, D., Talwar, V., and Lin, D. (2021). Neural
circuits of social behaviors: Innate yet flexible.
Neuron 109, 1600–1620. https://doi.org/10.
1016/j.neuron.2021.02.012.

10. Murugan, M., Jang, H.J., Park, M., Miller,
E.M., Cox, J., Taliaferro, J.P., Parker, N.F.,
Bhave, V., Hur, H., Liang, Y., et al. (2017).
Combined Social and Spatial Coding in a
Descending Projection from the Prefrontal
Cortex. Cell 171, 1663–1677.e16. https://doi.
org/10.1016/j.cell.2017.11.002.

11. Knutson, B., Burgdorf, J., and Panksepp, J.
(1998). Anticipation of play elicits high-
frequency ultrasonic vocalizations in young
rats. J. Comp. Psychol. 112, 65–73. https://
doi.org/10.1037/0735-7036.112.1.65.

12. Sangiamo, D.T., Warren, M.R., and
Neunuebel, J.P. (2020). Ultrasonic signals
associated with different types of social
behavior of mice. Nat. Neurosci. 23, 411–422.
https://doi.org/10.1038/s41593-020-0584-z.

13. Venniro, M., and Shaham, Y. (2020). An
operant social self-administration and choice
model in rats. Nat. Protoc. 15, 1542–1559.
https://doi.org/10.1038/s41596-020-0296-6.

14. Brudzynski, S.M. (2013). Ethotransmission:
communication of emotional states through
ultrasonic vocalization in rats. Curr. Opin.
10 iScience 27, 109998, June 21, 2024
Neurobiol. 23, 310–317. https://doi.org/10.
1016/j.conb.2013.01.014.

15. Ben-Ami Bartal, I., Decety, J., and Mason, P.
(2011). Empathy and pro-social behavior in
rats. Science 334, 1427–1430. https://doi.org/
10.1126/science.1210789.

16. Takahashi, N., Kashino, M., and Hironaka, N.
(2010). Structure of rat ultrasonic vocalizations
and its relevance to behavior. PLoS One 5,
e14115. https://doi.org/10.1371/journal.
pone.0014115.

17. Lorbach, M., Kyriakou, E.I., Poppe, R., van
Dam, E.A., Noldus, L.P.J.J., and Veltkamp,
R.C. (2018). Learning to recognize rat social
behavior: Novel dataset and cross-dataset
application. J. Neurosci. Methods 300,
166–172. https://doi.org/10.1016/j.jneumeth.
2017.05.006.

18. Vogt, N. (2021). Automated behavioral
analysis. Nat. Methods 18, 29. https://doi.
org/10.1038/s41592-020-01030-1.

19. Bohnslav, J.P., Wimalasena, N.K., Clausing,
K.J., Dai, Y.Y., Yarmolinsky, D.A., Cruz, T.,
Kashlan, A.D., Chiappe, M.E., Orefice, L.L.,
Woolf, C.J., and Harvey, C.D. (2021).
DeepEthogram, a machine learning pipeline
for supervised behavior classification from
raw pixels. Elife 10, e63377. https://doi.org/
10.7554/eLife.63377.

20. Harris, C., Finn, K.R., Kieseler, M.L., Maechler,
M.R., and Tse, P.U. (2023). DeepAction: a
MATLAB toolbox for automated classification
of animal behavior in video. Sci. Rep. 13,
2688. https://doi.org/10.1038/s41598-023-
29574-0.

21. Kabra, M., Robie, A.A., Rivera-Alba, M.,
Branson, S., and Branson, K. (2013). JAABA:
interactive machine learning for automatic
annotation of animal behavior. Nat. Methods
10, 64–67. https://doi.org/10.1038/
nmeth.2281.

22. Segalin, C., Williams, J., Karigo, T., Hui, M.,
Zelikowsky, M., Sun, J.J., Perona, P.,
Anderson, D.J., and Kennedy, A. (2021). The
Mouse Action Recognition System (MARS)
software pipeline for automated analysis of
social behaviors in mice. Elife 10, e63720.
https://doi.org/10.7554/eLife.63720.

23. Neunuebel, J.P., Taylor, A.L., Arthur, B.J., and
Egnor, S.E.R. (2015). Female mice
ultrasonically interact with males during
courtship displays. Elife 4, e06203. https://
doi.org/10.7554/eLife.06203.

24. Wright, J.M., Gourdon, J.C., and Clarke,
P.B.S. (2010). Identification of multiple call
categories within the rich repertoire of adult
rat 50-kHz ultrasonic vocalizations: effects of
amphetamine and social context.
Psychopharmacology (Berl) 211, 1–13.
https://doi.org/10.1007/s00213-010-1859-y.

25. Riede, T. (2013). Stereotypic laryngeal and
respiratory motor patterns generate different
call types in rat ultrasound vocalization.
J. Exp. Zool. A Ecol. Genet. Physiol. 319,
213–224. https://doi.org/10.1002/jez.1785.

26. Burgdorf, J., Kroes, R.A., Moskal, J.R., Pfaus,
J.G., Brudzynski, S.M., and Panksepp, J.
(2008). Ultrasonic vocalizations of rats (Rattus
norvegicus) during mating, play, and
aggression: Behavioral concomitants,
relationship to reward, and self-
administration of playback. J. Comp. Psychol.
122, 357–367. https://doi.org/10.1037/
a0012889.

27. Fonseca, A.H., Santana, G.M., Bosque, O.G.,
Bampi, S., and Dietrich, M.O. (2021). Analysis
of ultrasonic vocalizations from mice using
computer vision and machine learning. Elife
10, e59161. https://doi.org/10.7554/eLife.
59161.

28. Van Segbroeck, M., Knoll, A.T., Levitt, P., and
Narayanan, S. (2017). MUPET-Mouse
Ultrasonic Profile ExTraction: A Signal
Processing Tool for Rapid and Unsupervised
Analysis of Ultrasonic Vocalizations. Neuron
94, 465–485.e5. https://doi.org/10.1016/j.
neuron.2017.04.005.

29. Coffey, K.R., Marx, R.E., and Neumaier, J.F.
(2019). DeepSqueak: a deep learning-based
system for detection and analysis of
ultrasonic vocalizations.
Neuropsychopharmacology 44, 859–868.
https://doi.org/10.1038/s41386-018-0303-6.

30. Goffinet, J., Brudner, S., Mooney, R., and
Pearson, J. (2021). Low-dimensional learned
feature spaces quantify individual and group
differences in vocal repertoires. Elife 10,
e67855. https://doi.org/10.7554/eLife.67855.

31. Xie, E., Wang, W., Yu, Z., Anandkumar, A.,
Alvarez, J.M., and Luo, P. (2021). SegFormer:
Simple and efficient design for semantic
segmentation with transformers. Adv. Neural
Inf. Process. Syst. 34, 12077–12090.

32. Gerós, A., Cruz, R., de Chaumont, F.,
Cardoso, J.S., and Aguiar, P. (2022). Deep
learning-based system for real-time behavior
recognition and closed-loop control of
behavioral mazes using depth sensing.
Preprint at bioRxiv. https://doi.org/10.1101/
2022.02.22.481410.

33. Marks, M., Qiuhan, J., Sturman, O., von
Ziegler, L., Kollmorgen, S., von der Behrens,
W., Mante, V., Bohacek, J., and Yanik, M.F.
(2022). Deep-learning based identification,
tracking, pose estimation, and behavior
classification of interacting primates andmice
in complex environments. Nat. Mach. Intell. 4,
331–340. https://doi.org/10.1038/s42256-
022-00477-5.

34. He, K., Zhang, X., Ren, S., and Sun, J. (2016).
Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition,
pp. 770–778.

35. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang,
Z., Lin, S., and Guo, B. (2021). Swin
transformer: Hierarchical vision transformer
using shifted windows. In Proceedings of the
IEEE/CVF International Conference on
Computer Vision, pp. 10012–10022.

36. Liu, Z., Mao, H., Wu, C., Feichtenhofer, C.,
Darrell, T., and Xie, S. (2022). A convnet for
the 2020s. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition, pp. 11976–11986.

37. Touvron, H., Cord, M., Douze, M., Massa, F.,
Sablayrolles, A., and Jégou, H. (2021).
Training data-efficient image transformers &
distillation through attention. In Proceedings
of the 38th International Conference on
Machine Learning, pp. 10347–10357.

38. Hsu, A.I., and Yttri, E.A. (2021). B-SOiD, an
open-source unsupervised algorithm for
identification and fast prediction of
behaviors. Nat. Commun. 12, 5188. https://
doi.org/10.1038/s41467-021-25420-x.

39. Li, J., Keselman, M., and Shlizerman, E. (2022).
OpenLabCluster: Active learning based
clustering and classification of animal
behaviors in videos based on automatically
extracted kinematic body keypoints. Preprint
at bioRxiv. https://doi.org/10.1101/2022.10.
10.511660.

https://doi.org/10.1126/science.abc6588
https://doi.org/10.1126/science.abc6588
https://doi.org/10.1038/s41586-022-04507-5
https://doi.org/10.1038/s41586-022-04507-5
https://doi.org/10.1126/science.aaz9468
https://doi.org/10.1126/science.aaz9468
https://doi.org/10.1126/science.ade1702
https://doi.org/10.1126/science.ade1702
https://doi.org/10.1016/j.neuron.2019.02.006
https://doi.org/10.1016/j.neuron.2019.02.006
https://doi.org/10.1126/science.1159277
https://doi.org/10.1126/science.1159277
https://doi.org/10.1038/s41586-021-04000-5
https://doi.org/10.1038/s41586-021-04000-5
https://doi.org/10.1038/s41586-023-06031-6
https://doi.org/10.1038/s41586-023-06031-6
https://doi.org/10.1016/j.neuron.2021.02.012
https://doi.org/10.1016/j.neuron.2021.02.012
https://doi.org/10.1016/j.cell.2017.11.002
https://doi.org/10.1016/j.cell.2017.11.002
https://doi.org/10.1037/0735-7036.112.1.65
https://doi.org/10.1037/0735-7036.112.1.65
https://doi.org/10.1038/s41593-020-0584-z
https://doi.org/10.1038/s41596-020-0296-6
https://doi.org/10.1016/j.conb.2013.01.014
https://doi.org/10.1016/j.conb.2013.01.014
https://doi.org/10.1126/science.1210789
https://doi.org/10.1126/science.1210789
https://doi.org/10.1371/journal.pone.0014115
https://doi.org/10.1371/journal.pone.0014115
https://doi.org/10.1016/j.jneumeth.2017.05.006
https://doi.org/10.1016/j.jneumeth.2017.05.006
https://doi.org/10.1038/s41592-020-01030-1
https://doi.org/10.1038/s41592-020-01030-1
https://doi.org/10.7554/eLife.63377
https://doi.org/10.7554/eLife.63377
https://doi.org/10.1038/s41598-023-29574-0
https://doi.org/10.1038/s41598-023-29574-0
https://doi.org/10.1038/nmeth.2281
https://doi.org/10.1038/nmeth.2281
https://doi.org/10.7554/eLife.63720
https://doi.org/10.7554/eLife.06203
https://doi.org/10.7554/eLife.06203
https://doi.org/10.1007/s00213-010-1859-y
https://doi.org/10.1002/jez.1785
https://doi.org/10.1037/a0012889
https://doi.org/10.1037/a0012889
https://doi.org/10.7554/eLife.59161
https://doi.org/10.7554/eLife.59161
https://doi.org/10.1016/j.neuron.2017.04.005
https://doi.org/10.1016/j.neuron.2017.04.005
https://doi.org/10.1038/s41386-018-0303-6
https://doi.org/10.7554/eLife.67855
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref31
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref31
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref31
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref31
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref31
https://doi.org/10.1101/2022.02.22.481410
https://doi.org/10.1101/2022.02.22.481410
https://doi.org/10.1038/s42256-022-00477-5
https://doi.org/10.1038/s42256-022-00477-5
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref34
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref34
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref34
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref34
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref34
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref35
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref35
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref35
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref35
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref35
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref35
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref36
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref36
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref36
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref36
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref36
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref37
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref37
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref37
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref37
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref37
http://refhub.elsevier.com/S2589-0042(24)01223-9/sref37
https://doi.org/10.1038/s41467-021-25420-x
https://doi.org/10.1038/s41467-021-25420-x
https://doi.org/10.1101/2022.10.10.511660
https://doi.org/10.1101/2022.10.10.511660


ll
OPEN ACCESS

iScience
Article
40. Dalal, N., and Triggs, B. (2005). Histograms of
oriented gradients for human detection. In
2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition,
pp. 886–893.

41. Jhuang, H., Garrote, E., Mutch, J., Yu, X.,
Khilnani, V., Poggio, T., Steele, A.D., and
Serre, T. (2010). Automated home-cage
behavioural phenotyping of mice. Nat.
Commun. 1, 68. https://doi.org/10.1038/
ncomms1064.

42. Oliveira-Stahl, G., Farboud, S., Sterling, M.L.,
Heckman, J.J., van Raalte, B., Lenferink, D.,
van der Stam, A., Smeets, C.J.L.M., Fisher,
S.E., and Englitz, B. (2023). High-precision
spatial analysis of mouse courtship
vocalization behavior reveals sex and strain
differences. Sci. Rep. 13, 5219. https://doi.
org/10.1038/s41598-023-31554-3.

43. Sterling, M.L., Teunisse, R., and Englitz, B.
(2023). Rodent ultrasonic vocal interaction
resolved with millimeter precision using
hybrid beamforming. Elife 12, e86126.
https://doi.org/10.7554/eLife.86126.

44. Matsumoto, J., Kanno, K., Kato, M.,
Nishimaru, H., Setogawa, T., Chinzorig, C.,
Shibata, T., and Nishijo, H. (2022). Acoustic
camera system for measuring ultrasound
communication in mice. iScience 25, 104812.
https://doi.org/10.1016/j.isci.2022.104812.
45. Heckman, J.J., Proville, R., Heckman, G.J.,
Azarfar, A., Celikel, T., and Englitz, B. (2017).
High-precision spatial localization of mouse
vocalizations during social interaction. Sci.
Rep. 7, 3017. https://doi.org/10.1038/s41598-
017-02954-z.

46. Warren, M.R., Sangiamo, D.T., and
Neunuebel, J.P. (2018). High channel count
microphone array accurately and precisely
localizes ultrasonic signals from freely-
moving mice. J. Neurosci. Methods 297,
44–60. https://doi.org/10.1016/j.jneumeth.
2017.12.013.

47. Litvin, Y., Blanchard, D.C., and Blanchard,
R.J. (2007). Rat 22kHz ultrasonic
vocalizations as alarm cries. Behav. Brain
Res. 182, 166–172. https://doi.org/10.1016/j.
bbr.2006.11.038.
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All data needed to evaluate the conclusions in the paper are present in the Article. The datasets generated and/or analyzed during the current
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The open-source software ARBUR and its tutorials are freely available at GitHub (https://github.com/Guanglu-Jia/ARBUR) and Zenodo

(https://doi.org/10.5281/zenodo.8081539).53

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Animals and experiment preparation

Animals

Adult (8-10 weeks)male (n = 4) and female (n = 4) Sprague-Dawley rats (stock number 198499, 212822, SPF biotechnology, Beijing, China) were

used. Rats were kept on a 12/12 h light/dark cycle at a consistent ambient temperature (26 G 1 �C) and humidity (50 G 5%), and all exper-

iments were performed during the light cycle. Food and water were accessed ad libitum. All experimental procedures were approved by the

Institutional Animal Care and Use Committee of the Beijing Institute of Technology, Beijing, China. Before all recording experiments, rats

were singly housed for at least 3 days to minimize group housing effects on the social behavior of the rats.

Video and audio stream recording

The video and audio simultaneous recording experimental set-up is shown in Figure S1. Rats were able to behave freely in a circular open-field

arenamade of a transparent acrylic barrel with a base diameter of 0.5 m and a height of 0.5 m. A black velvet cloth was placed underneath the

recording area as well as wood chips to avoid reflecting light. Encircling the recording area with sound-absorbing material above can reduce

sound reflections from the walls. Two synchronized cameras were mounted at an angle of 60 degrees on either side of the acquisition area.

Four ultrasonic microphones (CM16/CMPA, Avisoft Bioacoustics, Glienicke, Germany) are fixed evenly to the edges of the transparent acrylic

barrel. The video streamwas recorded at 25 frames per second. The four channels of the audio stream from the four microphones were simul-

taneously recorded through data acquisition equipment (UltraSoundGate 416H, Avisoft Bioacoustics). The video and audio streams were syn-

chronized by aligning the recording onset timing. Both the streams were stored on a high-performance computer to avoid recording time

shifting (32G RAM). The video and audio stream recording experiments were conducted over 4 days (12 hours of continuous recording

per day) with no external human interference.

Audio segmentation

Audio streams were segmented automatically with multi-taper spectral analysis. The vocal signals frommicrophone 1 were segmented using

the USVSEG algorithm,44,54 and the parameters of the algorithm were optimized as follows. First, multi-taper spectrograms (time-frequency

matrices) were generated using six discrete prolate spheroidal sequences of length 512 as windowing functions (NW=3).55 Then the
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spectrograms were flattened by replacing the first three cepstral coefficients with zero to reduce transient broadband noises and by subtract-

ing the median spectrum. After flattening, we thresholded the flattened spectrograms with a threshold of 4.5 to further reduce the environ-

mental noise. These spectrograms were band-pass filtered between 10 and 100 kHz. In addition, the maximum duration of an audio segment

was set to 5000 ms and the minimum duration was set to 5 ms. Sound elements with a more than 30 ms gap were judged as two individual

syllables and segmented as two independent spectrograms accordingly. Finally, these segmentation timings from microphone 1 were used

to segment vocal signals from the other three microphones. A total of 43357 ultrasonic signals were segmented from all the audio data

collected.
Vocal signals clustering

Extraction of frequency contours

The segmented spectrograms (time-frequency matrices) were filtered sequentially by the median, Gaussian, and threshold filters to enhance

the signal-to-noise ratio. The filtered spectrograms were then binarized for detecting the boundaries of the frequency contours (edges in the

spectrograms) by themodifiedMoore’s neighbor tracking algorithmwith the Jacobian’s termination condition. Those contours with less than

22 points and a maximum intensity inside the contour of less than 15 were detected as isolated islands and eliminated. For the discontinuous

USVs with multiple contours, only the longest four contours were selected as the final contours to recapitulate the original complex signals.

Harmonics were considered as those frequency contours with 90% overlap in time, and only the frequency contour of the lowest mean fre-

quency was preserved whereas others were eliminated. Other than harmonics, those frequency contours that share an overlap of duration

over 3 ms were considered overlapping vocalizations emitted by two rats and also abolished.

Coarse clustering

Coarse clustering consists of two steps. In the first step, the USVs were clustered coarsely into 2 groups according to their mean frequency:

aversive 22-kHz and appetitive 50-kHz USVs. In the second step, the 2 groups were further divided into 5 groups (A-D) according to their dis-

tribution of duration and mean frequency of frequency contours: so-called 22-kHz, low-peak-frequency/high-peak-frequency step/non-step

50-kHz USVs (see Figure S2A). Specifically, those USVs with a mean frequency of less than 32 kHz were classified as 22-kHz signals. The rest of

the USVs (50-kHz) were clustered into 2 groups (low-peak-frequency 50-kHz and high-peak-frequency 50-kHz) by k-means clustering accord-

ing to two features: duration andmean frequency. These USVs were further classified into 4 groups according to their continuity of frequency

contours: non-step (continuous) USVs containing only one contour and step USVs containing more than one contour.

Determining the optimal number of clusters

In the third step, groups A were further divided using unsupervised learning within their groups. For the appropriate setting of the cluster

number, ARBUR:USV provides users with three choices: subjective, automatic, and progressive methods. The subjective method allows users

to set an integer number for each cluster. For example, in Figure 2, cluster numbers for groups A-E are set as 10, 25, 10, 15, and 5, respectively.

The automatic method relies on the well-known elbowmethod to avoid over-clustering, which works as follows. For each cluster number, the

total within-cluster error (TWCE) is calculated. By sliding from 2 clusters to 100 clusters (200 for group B for its complexity), forming a TWCE-

clusters curve. Then, for each point on this curve, its left and right sides are used for linear fitting, and the total fitting error is stored, which

forms a second curve: fitting error versus cluster number (see Figure S3 as an example). The global bottom of the second curve is called the

inflection point, which indicates the optimal number of clusters. The progressivemethod takes a user-defined intra-cluster variance parameter

to find the appropriate number. It calculates the innerpoint percentage (percent of points falling within themeanG 2.5SD range of each clus-

ter). Theoretically, with increasing clusters, the intra-cluster variance decreases. This method starts with 2 clusters, calculates the average in-

nerpoint percent, and stops when the user-defined threshold is first reached. For example, if the threshold is set as 98%, that is, an average of

98% points should be the inner points for all clusters and all features. The optimal cluster should be 8 for group E (see Figure S4).

Refined clustering of non-step USVs

The non-step (continuous) signals were clustered further according to their contour shapes. The detected boundary points were centered by

subtracting the mean frequency. To normalize these centered contours with different durations, we constructed a fixed-length feature vector

containing 100 features (see Figure S2B). The first 50 and last 50 features represent the upper and the bottom boundaries of the centered

contour, respectively. Each contour was linearly mapped to a 100-feature vector. By doing so, frequency contours with different durations

or mean frequencies can be clustered appropriately according to their shapes. These USVs were categorized using k-means clustering based

on the 100-feature vectors. The number of clusters for low-frequency and high-frequency USVs were both subjectively set as 10. Alternatively,

the number of clusters can be determined progressively as in the study of Sangioamo et al.12

Refined clustering of step signals

For the step (discontinuous) signals withmultiple contours, a similar 100-feature vector was constructed based on these contours. All contours

of each USV were centered by subtracting their mean frequencies. Then, the upper boundaries of each contour were sorted in ascending

order in time and mapped linearly to a 50-feature vector. By doing so, those inter-contour intervals were deleted, and contours were placed

compactly. Similarly, the bottom boundaries were mapped to the second 50-feature vector. These step USVs were then categorized using
iScience 27, 109998, June 21, 2024 13
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k-means clustering based on the 100-feature vectors concatenating these two vectors together. The numbers of clusters for low-frequency

and high-frequency USVs were subjectively set as 15 and 25, respectively.

Refined clustering of 22-kHz USVs

22-kHzUSVs vary a lot in duration, ranging from severalmicroseconds to several seconds, such a feature should not be ignored in clustering. In

contrast, the contour shapes varied little across USVs. Therefore, we constructed a 2-feature vector for each 22-kHz signal containing themean

frequency and duration. These 22-kHz signals were then categorized using k-means clustering based on the 2-feature vectors. The number of

clusters was subjectively set to 5.

Validating clustering

To validate clustering results, dissimilarities within each cluster (intra-cluster variance) and between different clusters (inter-cluster distance)

were evaluated, respectively. They were calculated based on the constructed 100-feature vectors for both step and non-step USVs (see Fig-

ure S6A). The inter-cluster distance of the ith cluster Di was defined as the average difference between each pair of frequency contours from

two different clusters within each group (one of 5 groups by coarse clustering):

Di =
XNx

jjsi

��Vi � Vj

��
2

,
ðnx � 1Þ;

where k$k2 denotes l2-norm,Nx is the index integer set of one of five particular groups, Vi ˛R100 is the average feature vector of the ith cluster

in that group and nx is the number of individuals in Nx. The intra-cluster variance of ith cluster VARi was calculated as:

VARi =
XNi

m

kVm � Vik2 =ni;

where Ni is the index integer set of the ith cluster, Vm is the feature vector of the ,mth USV in this cluster, and ni is the number of individuals

in Ni .

Behavior classification

ARBUR:Behavior uses the binocular side-view video stream (segmented by SegFormer to remove the background) as input to discriminate

eight behaviors of rats. First, the rat regions within each input image were labeled by edge detection. Detected regions were recognized as

outlier regions if their areas were below the maximum error range:

Lea = Lf L
max
a ;

where Lmax
a is the size of the maximum area with labels in the current image, and Lf is the filter threshold. The segmented images and labels

were then input into a hierarchical algorithm to classify the non-social, moving, and social state behaviors of rats as follows.

Non-social state behaviors

The movement variation (in pixels) Mp of the center position of each label was calculated to determine whether rats have moved:

Mp = LNcenter � L1center ;

where LNcenter and L1center are the center pixel positions of the labels in the last and the first image. The value of Mp for sleeping rats hardly

changes. For individually moving rats, we consider the total number of labels in each image to reflect whether the rats come into contact

with each other (solitary) within that sequence of images.

Moving state behaviors

Based on the behavioral definition in Table 1, we used the number of labels in the first and last images of the image sequence to initially

determine the moving state behaviors. Then, we estimated the motion optical flow of the rat in the images and defined its centroid motion

vector as:

Vlabel
c

���!
=

XX
Vlabel
u;v

���!
;

where u and v are the pixel coordinates of the image.We determined the specific behavior by judging the vectorVlabel
c

���!
relative direction of the

two labels.

Social state behaviors

We designed a decision tree algorithm based on multiple binary SVM classifiers to detect social state behaviors. A total of 860 images were

labeled (PIN: 280, POU: 300, SNC: 280), and the HOG features were extracted as the training dataset. The SVM models were trained using a
14 iScience 27, 109998, June 21, 2024
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third-degree polynomial kernel function, and parameter optimization was performed for each model. Specifically, for each image, we de-

ployed three SVMmodels simultaneously (PIN-POU, PIN-SNC, POU-SNC) to determine the category of the imagewithmaximumprobability.

We defined the total confidence of the behavioral category for all images:

Plabel =
1

2N

XN
n = 1

�
Slabel

�
InRc

�
+ Slabel

�
InLc
��
;

where

SlabelðIÞ =

�
1; PðI = labelÞR Il
0; PðI = labelÞ< Il

where PðI = labelÞ is the probability that the current image category is label (PIN, POU, SNC), and Il is the likelihood of a specific image

belonging to the category. Behavioral category Ic was mapped through the maximum probability in each Plabel :

maxðPPIN; PPOU; PSNCÞ/Ic :

Image sequences that do not meet the aforementioned criteria were labeled as undetected.

Evaluation metrics

Weuse Precision, Recall and F1-score to evaluate the detection performance of ARBUR:Behavior. The number distribution of each behavior in

the test set is as follows (It should be noted that the low number of AP and FO is due to the fact that our algorithm only extracted these data in

all 43,357 segments). AP:24, FO:44, MA:181, PIN:185, POU:196, SNC:216, SO:230, ST:189. The test dataset is only used to evaluate the per-

formance of the classifier and is not used for training.
Sound source localization

3D keypoints detection of rats

To obtain the spatial position of the two rats, we designed a deep learning-based keypoint detection network capable of detecting seven

keypoints distributed across the rats’ heads, spines, and tails. We then calculated the 3D coordinates of the keypoints via triangulation by

utilizing the calibrated camera parameters and the detected key points in two image spaces. It is worth noting that for rats engaged in social

behaviors, there can be occlusions of certain body parts, resulting in only a part of keypoints being detectable in each frame. Using these 3D

coordinates, a curve that represents the posture of the rat in the current frame could be fitted (Figure 4A), which could be useful to determine

the submissive rat and the dominant one during PIN (pinning) and POU (pouncing). For other cases, only the 3D coordinates of the rats’ noses

were used for the downstream SSL processes.

Estimating sound sources

The sources of USVs were estimated using an algorithm modified from Neunuebel et al.23 For each extracted USV from four microphones, a

data augmentation process was performed by slicing the recognized frequency contours intom segments. Then, four groups with 3 channels

(mics) and a group with 4 mics were input to a steered response power-based sound source localizationmethod. That is,m35 estimates were

calculated. The estimates with 4 mics (m3 4) estimates and those with 3 mics (m3 5) were used to calculate two 2-D probability density func-

tions (f3ðx;yÞ, f4ðx;yÞ, x;y ˛R), respectively. Then, the localization confidence index (LCI) PLCI that represents the reliability of estimation results

was produced as follows:

PLCI =
f3ðx; yÞj½ðx; yÞ; f4ðx; yÞ = maxðf4ðx; yÞÞ�

maxðf3ðx; yÞÞ :

If the LCI is above the pre-set threshold (0.6), the SSL result is accepted as the center of estimates with maximum probability densities in

f3ðx; yÞ and f4ðx;yÞ. The SSL results are rejected otherwise.

Combining visual and SSL estimations

Because rats have a body length as long as 25 cm, the height of their sound source cannot be ignored in some cases. For example, if a rat

presents a high-rearing pose, the nose can be as high as over 20 cm. Under these circumstances, the height should be considered to avoid

incorrect SSL prediction.

For those behaviors with no apparent height difference between the noses of two rats (besides POU and PIN), the SSL results were as-

signed to rat noses based on horizontal information only. That is, the USV was assigned to the nearer rat if two noses were detected. If

only one rat nose was detected, the USV was assigned to the detected one if it lies within the SSL estimation area (10 cm from the estimated

point), and the USV was assigned to the undetected one otherwise. If no rat noses were detected, the USV cannot be assigned.

For pouncing and pinning behaviors, the SSL results were assigned based on not only horizontal information but also 3-D information. If

two rat noses were detected, SSL results were calculated again with the nose height added. The USVwas allocated to the rat with a higher LCI.
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If only one rat nosewas detected and an obvious height differencewas observed and labeled, theUSV can be allocated to the rat with a higher

LCI by assuming the height of another rat. This 3D SSL process is useful if two rats are close but have obvious height differences, which is

common in pinning and pouncing.
QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed in MATLAB (version 2021b, MathWorks) using two-sample single-tailed Welch’s t-tests with a signif-

icance level of a = 0.05. Data distributions were assumed to be normal, but this was not formally tested.
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